

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 2

2020 Year 12 Course Assessment Task 4 (Trial Examination)
 Thursday August 20, 2020

General instructions

- Working time - 3 hours.
(plus 10 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- NESA approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer grid provided (on page 13)

SECTION II

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

NESA STUDENT \#:
\# BOOKLETS USED:

Class (please \boldsymbol{V})
O 12MXX. 1 - Ms Ham
12MXX. 2 - Mr Lam

Marker's use only.

QUESTION	1-10	$\overline{11}$	$\overline{12}$	$\overline{13}$	$\overline{14}$	$\overline{15}$	$\overline{16}$	$\%$
MARKS	$\overline{10}$	$\overline{13}$	$\overline{14}$	$\overline{14}$	$\overline{18}$	$\overline{14}$	$\overline{17}$	$\overline{100}$

Section I

10 marks

Attempt Question 1 to 10
Allow approximately 15 minutes for this section
Mark your answers on the answer grid provided (labelled as page 13).

Questions

1. Consider the following statement for $n \in \mathbb{Z}$:

$$
\text { If } n^{2}+4 n+1 \text { is even, then } n \text { is odd }
$$

Which of the following statements is the contrapositive of this statement for $n \in \mathbb{Z}$?
(A) If n is even, then $n^{2}+4 n+1$ is odd. (C) If n is odd, then $n^{2}+4 n+1$ is even.
(B) If $n^{2}+4 n+1$ is odd, then n is even. (D) If $n^{2}+4 n+1$ is even, then n is even.
2. A particle is moving in simple harmonic motion about a fixed point O on a line.

1 At time t seconds, it has displacement $x=2 \cos (\pi t)$ metres from O.

What is the time taken by the particle to travel the first 100 metres of its motion?
(A) 20 seconds
(C) 50 seconds
(B) 25 seconds
(D) 100 seconds
3. The points A and B in the diagram represent the complex numbers z_{1} and z_{2} respectively, where $\left|z_{1}\right|=1$ and $\operatorname{Arg}\left(z_{1}\right)=\theta$ and $z_{2}=\sqrt{3} i z_{1}$.

Which of the following represents $z_{2}-z_{1}$?
(A) $2 e^{i\left(\frac{2 \pi}{3}+\theta\right)}$
(B) $3 e^{i\left(\frac{2 \pi}{3}+\theta\right)}$
(C) $2 e^{i\left(\frac{2 \pi}{3}-\theta\right)}$
(D) $3 e^{i\left(\frac{2 \pi}{3}-\theta\right)}$
4. A particle of mass m kilograms has acceleration $a \mathrm{~ms}^{-2}$ proportional to the square of its velocity $v \mathrm{~ms}^{-1}$, i.e.

$$
m a=-k v^{2}
$$

for some positive constant k.

Which of the following integrals will result in a relationship between the time in seconds and velocity v ?
(A) $t=\int \frac{-m}{k v^{2}} d v$
(B) $t=\int \frac{m}{k v^{2}} d v$
(C) $t=\int \frac{-k}{m v^{2}} d v$
(D) $t=\int \frac{k}{m v^{2}} d v$
5. If ω is a complex cube root of unity of smallest positive argument, which of the following is the value of $\left(1+\frac{1}{\omega}\right)^{2020} ?$
(A) ω
(B) $-\omega$
(C) 0
(D) 1
6. The points A, B and C are collinear where $\overrightarrow{O A}=\underset{\sim}{\mathrm{i}}+\underset{\sim}{\mathrm{j}}, \overrightarrow{O B}=2 \underset{\sim}{\mathrm{i}}-\underset{\sim}{\mathrm{j}}+\underset{\sim}{\mathrm{k}}$ and $\overrightarrow{O C}=3 \underset{\sim}{\mathrm{i}}+a \underset{\sim}{\mathrm{j}}+b \underset{\sim}{\mathrm{k}}$.

What are the values of a and b ?
(A) $a=-3, b=-2$
(C) $a=-3, b=2$
(B) $a=3, b=-2$
(D) $a=3, b=2$
7. Which of the following is an expression for $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} d x$ after using the substitution $t=\tan \frac{x}{2} ?$
(A) $\int_{0}^{1} \frac{1}{1+2 t} d t$
(B) $\int_{0}^{1} \frac{2}{1+2 t} d t$
(C) $\int_{0}^{1} \frac{1}{(1+t)^{2}} d t$
(D) $\int_{0}^{1} \frac{2}{(1+t)^{2}} d t$
8. In the following diagram, the vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are related such that $|\underset{\sim}{a}|=|\underset{\sim}{b}|$.

Given $|\underset{\sim}{\mathrm{a}}|=a$, which of the following expressions is equal to $\underset{\sim}{\mathrm{a}} \cdot \underset{\sim}{\mathrm{b}}$?
(A) $-\frac{\sqrt{3}}{2} a^{2}$
(B) $-\frac{1}{2} a^{2}$
(C) $\frac{1}{2} a^{2}$
(D) $\frac{\sqrt{3}}{2} a^{2}$
9. Which of the following complex numbers is a 6 th root of i ?
(A) $-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
(B) $-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$
(C) $-\sqrt{2}+\sqrt{2} i$
(D) $-\sqrt{2}-\sqrt{2} i$
10. Which integral is necessarily equal to $\int_{-a}^{a} f(x) d x$?
(A) $\int_{0}^{a}(f(x)-f(-x)) d x$
(C) $\int_{0}^{a}(f(x-a)-f(-x)) d x$
(B) $\int_{0}^{a}(f(x)-f(a-x)) d x$
(D) $\int_{0}^{a}(f(x-a)+f(a-x)) d x$

Section II

90 marks

Attempt Questions 11 to 16
Allow approximately 2 hours and 45 minutes for this section.
Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (13 Marks)
Commence a NEW booklet.
Marks
(a) A three digit numeral n has x, y and z as its digits when writing from left to right respectively.

For example, if $n=314$, then $x=3, y=1$ and $z=4$.

Show that if $x+z=y$, then the number is divisible by 11 .
(b) If $f^{(n)}(x)$ denotes the n-th derivative of $f(x)=\frac{1}{x}$, prove by mathematical induction that

$$
f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}} \quad \forall n \in \mathbb{Z}^{+}
$$

(c) i. Prove that $\forall a, b \in \mathbb{R}$,

$$
a^{2}+b^{2} \geq 2 a b
$$

ii. Prove that for $x, y \in \mathbb{R}^{+}$,

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

iii. Prove by induction, or otherwise, that

$$
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n-1}+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}}\right) \geq n^{2}
$$

where $x_{i} \in \mathbb{R}^{+}, i \in \mathbb{Z}^{+}$.
(d) Consider the following statement:

$$
\forall a \in \mathbb{R}^{+}, \forall b \in \mathbb{R}^{+}, \log _{\frac{1}{a}} \frac{1}{b}=\log _{a} b
$$

Either prove the statement is true, or give a counter example.
(a) A particle is experiencing simple harmonic motion along a straight line. At time t seconds, its displacement x metres from a fixed point O on the line is given by

$$
x=6 \cos ^{2} t-2
$$

i. Show that $\ddot{x}=-4(x-1)$.
ii. Find the centre and period of the motion.
(b) The velocity of a particle moving in simple harmonic motion along the x axis is given by

$$
v^{2}=-x^{2}-4 x+12
$$

i. State the centre and period of the motion.
ii. What is the maximum speed of the particle?
(c) A particle moving in a straight line has displacement x metres from a fixed point O. Its acceleration is given by

$$
\ddot{x}=\sqrt{3 x+4} \mathrm{~ms}^{-2}
$$

i. Show that

$$
v^{2}=\frac{4}{9}(3 x+4)^{\frac{3}{2}}+C
$$

where v is the velocity of the particle in metres per second, and C is a constant.
ii. Find the value of C if the particle commences from rest at $x=0$.
iii. Explain why the motion of the particle is always in the positive direction.
(d) The velocity of a particle at time t seconds is given by

$$
\underset{\sim}{\dot{\sim}}(t)=(4 t-3) \underset{\sim}{i}+2 t \underset{\sim}{\mathrm{j}}-5 \underset{\sim}{\mathrm{k}}
$$

where components are measured in metres per second.
Find the distance of the particle from the origin in metres when $t=2$, given that $\underset{\sim}{r}(0)=\underset{\sim}{i}-2 \underset{\sim}{j}$.

Examination continues overleaf...

(a) The equations of lines ℓ_{1} and ℓ_{2} are given with respect to a fixed origin:

$$
\begin{aligned}
\ell_{1}:{\underset{\sim}{r}}_{1} & =\left(\begin{array}{c}
11 \\
2 \\
17
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
1 \\
-4
\end{array}\right) \\
\ell_{2}:{\underset{\sim}{r}}_{2} & =\left(\begin{array}{c}
-5 \\
11 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
p \\
2 \\
2
\end{array}\right)
\end{aligned}
$$

where λ and μ are parameters, and p is a constant.
What is the value of p if $\ell_{1} \perp \ell_{2}$?
(b) The diagram below shows the parallelogram $O A B C$ where $\overrightarrow{O A}=\underset{\sim}{\mathrm{a}}, \overrightarrow{O C}=\underset{\sim}{\mathrm{b}}$ and $|\overrightarrow{O C}|=2|\overrightarrow{O A}|$. The angle between $\overrightarrow{O A}$ and $\overrightarrow{O C}$ is α.

M is a point on $A B$ such that $\overrightarrow{A M}=k \overrightarrow{A B}, k \in[0,1]$ and $O M \perp M C$.
i. Use a vector method to show that

$$
|\underset{\sim}{a}|^{2}(1-2 k)(2 \cos \alpha-(1-2 k))=0
$$

ii. Find the possible values of α for point M to satisfy the given conditions.

Examination continues overleaf...

Question 13 continued from the previous page...
(c) A ball is projected in the uphill direction from the base of the hill with velocity vector

$$
\underset{\sim}{\dot{r}}(t)=\binom{10}{10 \sqrt{3}-10 t} \mathrm{~ms}^{-1}
$$

where t is measured in seconds.

The hill is represented by the line with vector equation

$$
\underset{\sim}{\mathrm{h}}=\lambda\binom{10 \sqrt{3}}{10} \text { metres }
$$

where $\lambda \in \mathbb{R}^{+}$

i. Show that the Cartesian equation of the trajectory is

$$
y=x \sqrt{3}-\frac{x^{2}}{20}
$$

ii. Hence find the coordinates where the ball will land along the hill.
iii. Find the instantaneous velocity of the shadow which the ball casts on the uphill slope, 2 seconds after the ball has been launched, in the form

$$
k\binom{a}{b} \text { metres per second }
$$

For simplicity, you may assume that the direction of the sunlight is perpendicular to the hill.

Examination continues overleaf...
(a) The polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has roots $a+b i$ and $a+2 b i$
where a and $b \in \mathbb{R}$ and $b \neq 0$.
By evaluating a and b, find all the roots of $P(x)$.
(b) i. If $z=\cos \theta+i \sin \theta$, show that

$$
z^{n}+z^{-n}=2 \cos n \theta
$$

ii. If $z+\frac{1}{z}=u$, find an expression for $z^{3}+\frac{1}{z^{3}}$ in terms of u.
iii. It can be shown that $z^{5}+\frac{1}{z^{5}}=u^{5}-5 u^{3}+5 u$ (Do NOT prove this).

Show that

$$
1+\cos (10 \theta)=2\left(16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta\right)^{2}
$$

(c) The point $P(x, y)$ representing the complex number moves in the Argand diagram so that $|z-6|=|z+2 i|$.
i. Show that the path P traces out, has equation $3 x+y-8=0$.
ii. Find the minimum value of $|z|$ as P moves on this path.
(d) In the Argand diagram below, $\triangle O P Q$ is right-angled at Q and $Q P=k O Q$ for $k \in \mathbb{R}^{+} . M$ is the midpoint of $O P$.

i. If the complex number z is represented by the vector $\overrightarrow{O P}$ and the complex number w is represented by $\overrightarrow{O Q}$, show that

$$
\overrightarrow{O M}=\frac{1}{2}(1-k i) w
$$

ii. Express $\overrightarrow{M Q}$ in terms of w, and hence show that

$$
|\overrightarrow{O M}|=|\overrightarrow{M Q}|
$$

Examination continues overleaf...

Question 15 (14 Marks)
(a) Using the substitution $u=1-\sin 2 x$, evaluate

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x}\left(1-2 \cos ^{2} x\right) d x
$$

(b) i. Find the value of A, B and C such that

$$
\frac{1}{x\left(1+x^{2}\right)} \equiv \frac{A}{x}+\frac{B x+C}{1+x^{2}}
$$

ii. Hence evaluate

$$
\int_{1}^{\sqrt{3}} \frac{1}{x\left(1+x^{2}\right)} d x
$$

Express your answer in the form $\log _{e}\left(\sqrt{\frac{a}{b}}\right)$ where $a, b \in \mathbb{R}^{+}$.
(c) Let $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x$ where $n=0,1,2 \ldots$.
i. Show that

$$
(n+1) I_{n}=\frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} d x
$$

for $n \geq 0$.
ii. Hence or otherwise, find the value of I_{0}.
iii. Show that $(n+3) I_{n+2}+(n+1) I_{n}=\frac{\pi}{2}-\frac{1}{n+2}$
iv. Hence find the value of I_{4}.
(a) The region enclosed by the curve $y=\ln x$, the line $x=e$ and the x axis is shown in the diagram.

Find the volume of the solid formed by rotating the shaded region about the x axis.

Examination continues overleaf...

Question 16 continued from previous page...
(b) \quad Sphere S has vector equation

$$
|\underset{\sim}{\mathrm{r}}-(3 \underset{\sim}{\mathrm{i}}+\underset{\sim}{\mathrm{j}}+4 \underset{\sim}{\mathrm{k}})|=\sqrt{35}
$$

i. Write the Cartesian equation of this sphere.
ii. The line ℓ has equation $\underset{\sim}{r}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), \lambda \in \mathbb{R}$.

Determine whether this line is a tangent to the sphere S or not. Give full reasons for your answer.
(c) A car of mass $m \mathrm{~kg}$ is being driven along a straight road. The engine of the car provides a constant propelling force $m P, P \in \mathbb{R}^{+}$, while the car experiences a resistive force of $m k v^{2}$, where $v \mathrm{~ms}^{-1}$ is the velocity of the car, and k is a positive constant. The car is initially at rest.
i. By drawing a diagram or otherwise, show that the situation described can be modelled by a differential equation of the form

$$
\frac{d v}{d x}=g(v)
$$

where $g(v)$ is a function of v, and x is the displacement of the car from its initial position in metres.
ii. Show that $v^{2}=\frac{P}{k}\left(1-e^{-2 k x}\right)$. Hence or otherwise, explain why the maximum speed of the car is $v_{M}=\sqrt{\frac{P}{k}} \mathrm{~ms}^{-1}$.
iii. Show that the distance required for the car to reach a speed of $\frac{1}{3} v_{M}$ is approximately 41% of the distance required to reach a speed of $\frac{1}{2} v_{M}$.
(d) The following diagram shows the graph of $y=\ln x$ and $(n-1)$ strips of equal width from $x=1$ to $x=n$.

i. Show that

$$
\frac{\ln 1+\ln 2}{2}+\frac{\ln 2+\ln 3}{2}+\cdots+\frac{\ln (n-1)+\ln n}{2}<\int_{1}^{n} \ln x d x
$$

ii. Hence deduce that $n!<\frac{e n^{n+\frac{1}{2}}}{e^{n}}$

End of paper.

Sample Band E4 Responses

Section I

1. (A) 2. (B) 3. (A) 4. (A) 5. (A)
2. (C) 7. (D) 8. (C) 9. (A) 10. (D)

Section II

Question 11 (Ham)
(a) (2 marks)
$\checkmark \quad$ [1] for rewriting as $100 x+10 y+z$.
$\checkmark \quad[1]$ for using the given fact and undeniably proving $n=11 R$
Let the number be $n=100 x+10 y+z$, such that $x+z=y$.

$$
\begin{aligned}
n & =100 x+10(x+z)+z \\
& =100 x+10 x+10 z+z \\
& =110 x+11 z \\
& =11(10 x+z)=11 R
\end{aligned}
$$

such that $R \in \mathbb{Z}^{+}$. Hence n is divisible by 11 .
(b) (3 marks)
$\checkmark \quad[1]$ for proving the base case.
$\checkmark \quad[1]$ for the inductive hypothesis, and for progress in differentiating.
$\checkmark \quad$ [1] for final answer.
Let $P(n)$ be the proposition

$$
f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}} \quad \forall n \in \mathbb{Z}^{+}
$$

such that $f^{(n)}(x)$ denotes the n-th derivative of $f(x)=\frac{1}{x}$.

- Base case: $P(1)$:

$$
\begin{aligned}
& \text { LHS } \frac{d}{d x}\left(x^{-1}\right)=-x^{-2}=-\frac{1}{x^{2}} \\
& \text { RHS } \quad f^{(1)}(x)=\frac{(-1)^{1} \times 1!}{x^{1+1}}=\frac{-1}{x^{2}}
\end{aligned}
$$

Hence $P(1)$ is true.

- Inductive step: assume $P(k)$ is true, $k \in \mathbb{Z}^{+}$:

$$
f^{(k)}(x)=\frac{(-1)^{k} k!}{x^{k+1}} \quad \forall k \in \mathbb{Z}^{+}
$$

such that $f^{(k)}(x)$ denotes the k-th derivative of $f(x)=\frac{1}{x}$.

Examine $P(k+1)$:

$$
\begin{aligned}
\frac{d}{d x}\left(f^{k}(x)\right) & =\frac{d}{d x}\left((-1)^{k} k!\left(x^{-(k+1)}\right)\right) \\
& =(-1)^{k+1} k!\times(k+1) x^{-(k+1)-1} \\
& =\frac{(-1)^{k+1}(k+1)!}{x^{k+2}} \\
& =\frac{(-1)^{k+1}(k+1)!}{x^{(k+1)+1}}
\end{aligned}
$$

(c) i. (1 mark)

$$
\begin{gather*}
(a-b)^{2} \geq 0 \\
a^{2}-2 a b+b^{2} \geq \underset{+2 a b}{0}+2 a b \\
\therefore a^{2}+b^{2} \geq 2 a b \tag{11.1}
\end{gather*}
$$

ii. (1 mark) - From (11.1), if $b=\frac{1}{a}$,

$$
\begin{gathered}
a^{2}+\frac{1}{a^{2}} \geq 2 a \times \frac{1}{2} \\
\therefore a^{2}+\frac{1}{a^{2}} \geq 2
\end{gathered}
$$

As $a^{2} \geq 0$, and $x \in \mathbb{R}^{+}$and $y \in \mathbb{R}^{+}$, replace a^{2} with $\frac{x}{y}$ and $\frac{1}{a^{2}}$ with $\frac{y}{x}$:

$$
\therefore \frac{x}{y}+\frac{y}{x} \geq 2
$$

iii. (4 marks)
$\checkmark \quad[1]$ for proving the base case.
$\checkmark \quad$ [1] for use of $X \times Y \geq k^{2}$
$\checkmark \quad$ [1] for correct summation after expansion of $\frac{X}{x_{k+1}}+Y x_{k+1}$
$\checkmark \quad$ [1] for final answer
Let $P(n)$ be the proposition:

$$
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n-1}+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}}\right) \geq n^{2}
$$

where $x_{i} \in \mathbb{R}^{+}, i \in \mathbb{Z}^{+}$.

- Base case: $P(1)$:

$$
\begin{array}{rr}
\text { LHS } & x_{1} \times \frac{1}{x_{1}}=1 \\
\text { RHS } & 1^{2} \geq 1
\end{array}
$$

Hence $P(1)$ is true.

- Inductive hypothesis: assume $P(k)$ is true, i.e.

$$
\left(x_{1}+x_{2}+x_{3}+\cdots+x_{k-1}+x_{k}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{k-1}}+\frac{1}{x_{k}}\right) \geq k^{2}
$$

where $x_{i} \in \mathbb{R}^{+}, i \in \mathbb{Z}^{+}$.
Examine $P(k+1)$:

$$
\begin{aligned}
& \left(x_{1}+x_{2}+x_{3}+\cdots+x_{k-1}+x_{k}+x_{k+1}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{k-1}}+\frac{1}{x_{k}}+\frac{1}{x_{k+1}}\right) \\
\equiv & \left(X+x_{k+1}\right)\left(Y+\frac{1}{x_{k+1}}\right)
\end{aligned}
$$

Where $X=x_{1}+x_{2}+x_{3}+\cdots+x_{k-1}+x_{k}$ and $Y=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{k-1}}+\frac{1}{x_{k}}$

$$
\begin{aligned}
& =X Y+\frac{X}{x_{k+1}}+Y x_{k+1}+\frac{x_{k+1}}{x_{k+1}} \\
& \geq \overbrace{k^{2}}^{P(k)}+1+\left(\frac{x_{1}}{x_{k+1}}+\frac{x_{k+1}}{x_{1}}+\frac{x_{2}}{x_{k+1}}+\frac{x_{k+1}}{x_{2}}+\frac{x_{3}}{x_{k+1}}+\frac{x_{k+1}}{x_{3}}+\cdots+\frac{x_{k}}{x_{k+1}}+\frac{x_{k+1}}{x_{k}}\right) \\
& \geq k^{2}+1+\underbrace{(2+2+2+\cdots+2)}_{k \text { times }} \\
& =k^{2}+2 k+1 \\
& =(k+1)^{2}
\end{aligned}
$$

(d) (2 marks)
$\checkmark \quad$ [1] for using the change of base rule
$\checkmark \quad[1]$ for giving a reason why the statement is false.
$\checkmark \quad[2]$ if student immediately realises the problem with $a=1$ and concludes it's a false statement.

$$
\begin{aligned}
& \forall a \in \mathbb{R}^{+}, \forall b \in \mathbb{R}^{+} \\
& \log _{\frac{1}{a}} \frac{1}{b}=\frac{\log _{a} \frac{1}{b}}{\log _{a} \frac{1}{a}} \quad(\text { Change of base rule) } \\
&= \frac{\log _{a}\left(b^{-1}\right)}{\log _{a}\left(a^{-1}\right)} \\
&= \frac{-\log _{a} b}{-\log _{a} a} \\
&= \log _{a} b
\end{aligned}
$$

However if $a=1$, then

$$
\begin{gathered}
\log _{\frac{1}{1}} \frac{1}{b} \Rightarrow \frac{1}{b}=1 \\
\therefore b=1 \text { only }
\end{gathered}
$$

So when $a=1$, the statement is not true for all $b \in \mathbb{R}^{+}$, as only one value of b fits.

- Hence the statement is true $\forall a \in \mathbb{R}^{+}$and $\forall b \in \mathbb{R}^{+}$, except $a=1$ (which locks in $b=1$ only and not $\forall b \in \mathbb{R}^{+}$)

Question 12 (Ham)

(a) i. (2 marks)

$\checkmark \quad$ [1] for finding the displacement in terms of $\cos 2 t$
$\checkmark \quad[1]$ for showing required result.

$$
\begin{aligned}
x= & 6 \cos ^{2} t-2 \\
= & 6\left(\frac{1}{2}+\frac{1}{2} \cos 2 t\right)-2 \\
= & 3+3 \cos 2 t-2 \\
= & 1+3 \cos 2 t \\
& x-1=3 \cos 2 t
\end{aligned}
$$

Differentiating w.r.t. t :

$$
\dot{x}=-3(2) \sin 2 t
$$

Differentiate again,

$$
\begin{aligned}
\ddot{x} & =-3\left(2^{2}\right) \cos 2 t \\
& =-2^{2}(x-1)=-4(x-1)
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for each of the correct centre of motion and period.

$$
\begin{gathered}
c=1 \\
T=\frac{2 \pi}{2}=\pi \text { seconds }
\end{gathered}
$$

(b) i. (2 marks)
$\checkmark \quad$ [1] for each of the correct centre of motion and period.

$$
\begin{aligned}
v^{2} & =-x^{2}-4 x+12 \\
& =-\left(x^{2}+4 x+4\right)+16 \\
& =16-(x+2)^{2} \\
& =1\left(4^{2}-(x+2)^{2}\right) \\
& \equiv n^{2}\left(a^{2}-\left(x-x_{0}\right)^{2}\right) \\
& \therefore a=4 \quad x_{0}=-2 \\
& T=\frac{2 \pi}{1}=2 \pi \text { seconds }
\end{aligned}
$$

ii. (1 mark)

$$
v_{\max }=\sqrt{n^{2}\left(a^{2}-0\right)}=4
$$

(c) i. (1 mark)

$$
\begin{aligned}
\ddot{x} & =(3 x+4)^{\frac{1}{2}} \\
\frac{1}{2} v^{2} & =\int \ddot{x} d x \\
& =\int(3 x+4)^{\frac{1}{2}} d x \\
& =\frac{(3 x+4)^{\frac{3}{2}}}{\frac{3}{2} \times 3}+C_{1} \\
& =\frac{2(3 x+4)^{\frac{3}{2}}}{9}+C_{1} \\
\therefore v^{2} & =\frac{4}{9}(3 x+4)^{\frac{3}{2}}+C_{1}
\end{aligned}
$$

ii. (1 mark)

When $t=0, x=0$ and $v=0$:

$$
\begin{gathered}
0=\frac{4}{9}(0+4)^{\frac{3}{2}}+C_{1} \\
0=\frac{4}{9} \times 8+C_{1} \\
C_{1}=-\frac{32}{9} \\
v^{2}=\frac{4}{9}(3 x+4)^{\frac{3}{2}}-\frac{32}{9}
\end{gathered}
$$

iii. (1 mark)

$$
\begin{aligned}
\ddot{x} & =\left.\sqrt{3 x+4}\right|_{x=0} \\
& =\sqrt{0+4}=2 \mathrm{~ms}^{-2}
\end{aligned}
$$

As $v=0$ when $t=0$ and $\ddot{x}>0$ the particle will move in the positive x direction. Hence,

$$
v=+\sqrt{\frac{4}{9}(3 x+4)^{\frac{3}{2}}-\frac{32}{9}}>0
$$

In fact the particle will always move in the positive direction given the sign of v.
(d) (4 marks)
$\checkmark \quad$ [1] for each correct arbitrary constant of integration given the initial conditions.
$\checkmark \quad[1]$ for distance from the origin.

$$
\underset{\sim}{\dot{\underset{r}{x}}}(t)=(4 t-3) \underset{\sim}{\mathrm{i}}+(2 t) \underset{\sim}{\mathrm{j}}-5 \underset{\sim}{\mathrm{k}}
$$

Integrating the respective components,

$$
\underset{\sim}{\mathrm{r}}(t)=\left(\begin{array}{c}
2 t^{2}-3 t+C_{1} \\
t^{2}+C_{2} \\
-5 t+C_{3}
\end{array}\right)
$$

As $\underset{\sim}{r}(0)=\underset{\sim}{i}-2 \underset{\sim}{j}$,

$$
\begin{gather*}
\left(\begin{array}{c}
\left(0+C_{1}\right) \\
\left(0+C_{2}\right) \\
-\left(0+C_{3}\right)
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right) \tag{b}\\
\therefore C_{1}=1 \quad C_{2}=-2 \quad C_{3}=0 \\
\quad \underset{\sim}{\mathrm{r}}(t)=\left(\begin{array}{c}
2 t^{2}-3 t+1 \\
t^{2}-2 \\
-5 t
\end{array}\right)
\end{gather*}
$$

When $t=2$,

$$
\underset{\sim}{\mathrm{r}}(2)=\left(\begin{array}{c}
(8-6+1) \\
2 \\
-10
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-10
\end{array}\right)
$$

At $t=2$, the particle's distance from the origin is

$$
d=\sqrt{3^{2}+2^{2}+(-10)^{2}}=\sqrt{113}
$$

Question 13 (Ham)

(a) (2 marks)
$\checkmark \quad[1]$ for applying the dot product to the vector components (excluding the fixed point), and setting to zero for the lines to be perpendicular.
$\checkmark \quad[1]$ for finding the correct value of p.

$$
\begin{aligned}
& \ell_{1}:{\underset{\sim}{r}}_{1}=\left(\begin{array}{c}
11 \\
2 \\
17
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
1 \\
-4
\end{array}\right) \\
& \ell_{2}:{\underset{\sim}{r}}_{2}=\left(\begin{array}{c}
-5 \\
11 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
p \\
2 \\
2
\end{array}\right)
\end{aligned}
$$

When $\ell_{1} \perp \ell_{2}$, the parallel vector components of ℓ_{1} and ℓ_{2} are perpendicular:

$$
\begin{gathered}
\lambda\left(\begin{array}{c}
-2 \\
1 \\
-4
\end{array}\right) \cdot \mu\left(\begin{array}{l}
p \\
2 \\
2
\end{array}\right)=0 \\
\left(\begin{array}{c}
-2 \lambda \\
\lambda \\
-4 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
\mu p \\
2 \mu \\
2 \mu
\end{array}\right)=0 \\
-2 \lambda \mu p+2 \lambda \mu-8 \lambda \mu=0 \\
-2 p+2-8=0 \\
-6=2 p \\
p=-3
\end{gathered}
$$

i. (4 marks)
$\checkmark \quad[1]$ for obtaining $\overrightarrow{M C}$ in terms of $\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{b}}$ and k
$\checkmark \quad[1]$ for observing $\underset{\sim}{a} \cdot \underset{\sim}{b}=2|\underset{\sim}{a}|^{2} \cos \alpha$
$\checkmark \quad$ [1] for substantial further working to calculate $\overrightarrow{O M} \cdot \overrightarrow{M C}=0$.
$\checkmark \quad$ [1] for final result required.

By vector addition,

$$
\begin{aligned}
& \overrightarrow{O M}+\overrightarrow{M C}=\overrightarrow{O C} \\
& \overbrace{\underset{\sim}{\mathrm{a}+k} \underset{\sim}{\mathrm{~b}}}^{\overrightarrow{O M}}+\overrightarrow{M C}=\underset{\sim}{\mathrm{b}} \\
& \therefore \overrightarrow{M C}=\underset{\sim}{\mathrm{b}}-\underset{\sim}{\mathrm{a}}-k \underset{\sim}{\mathrm{~b}} \\
& \\
& \quad=\underset{\sim}{\mathrm{b}}(1-k)-\underset{\sim}{\mathrm{a}}
\end{aligned}
$$

Some additional facts:

- $\underset{\sim}{a} \cdot \underset{\sim}{a}=|\underset{\sim}{a}|^{2}$
- $|\overrightarrow{O C}|=2|\overrightarrow{O A}|$, i.e. $|\underset{\sim}{\mathrm{b}}|=2|\underset{\sim}{\mathrm{a}}|$

$$
\therefore \underset{\sim}{\mathrm{b}} \cdot \underset{\sim}{\mathrm{~b}}=|\underset{\sim}{\mathrm{b}}|^{2}=4|\underset{\sim}{\mathrm{a}}|^{2}
$$

- $\underset{\sim}{a} \cdot \underset{\sim}{b}=|\underset{\sim}{a}||\underset{\sim}{b}| \cos \alpha=2|\underset{\sim}{a}|^{2} \cos \alpha$

$$
\text { As } \overrightarrow{O M} \cdot \overrightarrow{M C}=0, \text { and } \overrightarrow{O M}=\underset{\sim}{\mathrm{a}}+k \underset{\sim}{\mathrm{~b}}, \text { (c) }
$$

$$
\begin{aligned}
0= & \overbrace{(\underset{\sim}{a}+k \underset{\sim}{b})}^{\overrightarrow{O M}} \cdot \overbrace{(\underset{\sim}{b}(1-k)-\underset{\sim}{a})}^{\vec{a}} \underset{\sim}{\vec{a}} \cdot \underset{\sim}{b}(1-k)-(\underset{\sim}{a} \cdot \underset{\sim}{a})+\underset{\sim}{b})(1-k) \\
& -(k \underset{\sim}{a} \cdot \underset{\sim}{b}) \\
= & 2(1-k)|\underset{\sim}{a}|^{2} \cos \alpha-\left(|\underset{\sim}{a}|^{2}\right) \\
& +k\left(4|\underset{\sim}{a}|^{2}\right)(1-k)-2 k|\underset{\sim}{a}|^{2} \cos \alpha \\
= & (2-4 k)|\underset{\sim}{a}|^{2} \cos \alpha+|\underset{\sim}{a}|^{2}(4 k(1-k)-1) \\
= & (2-4 k)|\underset{\sim}{a}|^{2} \cos \alpha+|\underset{\sim}{a}|^{2}\left(4 k-4 k^{2}-1\right) \\
= & 2(1-2 k)|\underset{\sim}{a}|^{2} \cos \alpha-|\underset{\sim}{a}|^{2}(1-2 k)^{2} \\
= & \left|\sim_{\sim}^{a}\right|^{2}(1-2 k)[2 \cos \alpha-(1-2 k)]
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for each correct boundary.
$\checkmark \quad$ [1] for correct inequality.
From above,

$$
|\underset{\sim}{a}|^{2}(1-2 k)[2 \cos \alpha-(1-2 k)]=0
$$

Using the null factor law,

$$
\begin{gathered}
(1-2 k)=0 \\
k=\frac{1}{2}
\end{gathered}
$$

Finding the other option,

$$
\begin{gathered}
2 \cos \alpha-(1-2 k)=0 \quad k \in[0,1] \\
2 k=1-2 \cos \alpha \\
k=\frac{1}{2}-\cos \alpha
\end{gathered}
$$

As $k \in[0,1]$,

$$
\begin{aligned}
& \underbrace{0 \leq \frac{1}{2}-\cos \alpha \leq 1}_{\times(-1)} \\
& -1 \leq \cos \alpha-\frac{1}{2} \leq 0 \\
& -\frac{1}{2} \leq \cos \alpha \leq \frac{1}{2}
\end{aligned}
$$

As $\alpha>0$,

$$
\therefore \frac{\pi}{3} \leq \alpha \leq \frac{2 \pi}{3}
$$

i. (2 marks)
$\checkmark \quad$ [1] for correct integration to obtain $\underset{\sim}{i}$ and $\underset{\sim}{j}$ components.
$\checkmark \quad[1]$ for eliminating the t parameter to obtain the Cartesian equation.

$$
\begin{aligned}
& \underset{\sim}{\dot{r}}(t)=\binom{10}{10 \sqrt{3}-10 t} \mathrm{~ms}^{-1} \\
& \dot{x}= 10 \quad \dot{y}=10 \sqrt{3}-10 t \\
& x=\int \dot{x} d t \quad y=\int \dot{y} d t \\
&= \int 10 d t \\
&==\int(10 \sqrt{3}-10 t) d t \\
&= 10 t+C_{1} \\
& x=10 t \sqrt{3}-5 t^{2}+C_{2}
\end{aligned}
$$

When $t=0, x=0$ and $y=0$:

$$
\therefore x=10 t \quad y=10 t \sqrt{3}-5 t^{2}
$$

Change subject in horizontal displacement equation:

$$
t=\frac{x}{10}
$$

Subtitute into vertical displacement equation:

$$
\begin{aligned}
y & =10\left(\frac{x}{10}\right) \sqrt{3}-5\left(\frac{x}{10}\right)^{2} \\
& =x \sqrt{3}-\frac{x^{2}}{20}
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for each correct coordinate

$$
\begin{aligned}
\underset{\sim}{\mathrm{h}} & =\lambda\binom{10 \sqrt{3}}{10} \\
\therefore x & =10 \sqrt{3} \quad y=10 \\
m & =\frac{10}{10 \sqrt{3}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Using $y=m x+c$ where $c=0$ as the projectile commences from the origin, the hill has equation

$$
y=\frac{1}{\sqrt{3}} x
$$

Solving simultaneously with the Cartesian path of the projectile,

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
y=x \sqrt{3}-\frac{x^{2}}{20} \\
y=\frac{1}{\sqrt{3}} x
\end{array}\right. \\
\frac{1}{\sqrt{3}} x=x \sqrt{3}-\frac{x^{2}}{20}
\end{array}\right\} \begin{gathered}
x\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right)-\frac{1}{20} x^{2}=0 \\
\not x\left(\left(\frac{3}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right)-\frac{x}{20}\right)=0 \\
x=20\left(\frac{2}{\sqrt{3}}\right)=\frac{40}{\sqrt{3}} \\
y=\frac{x}{\sqrt{3}}=\frac{40}{3}
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad[1]$ for correctly finding $\underset{\sim}{\dot{r}}(2)$.
$\checkmark \quad[1]$ for correctly applying the projection formula and finding the velocity of the shadow along the hill.

- The velocity of the shadow cast by the ball in the uphill direction is the projection of the velocity of the ball at $t=2$ on to the hill.

$$
\dot{\sim} \dot{\sim}(2)=\binom{10}{10 \sqrt{3}-20}
$$

- At $t=2$,

$$
\underset{\sim}{\dot{r}}(2)=\binom{10}{10 \sqrt{3}-20}
$$

- Applying the projection of $\underset{\sim}{u}$ on
to $\underset{\sim}{v}$, such that

$$
\left.\begin{array}{rl}
\underset{\sim}{u}=\underset{\sim}{\dot{r}} & (2)
\end{array}\right)=\binom{10}{10 \sqrt{3}-20} ~ \begin{gathered}
\underset{\sim}{\mathrm{v}}=\binom{10 \sqrt{3}}{10}
\end{gathered}
$$

$$
\operatorname{proj}_{\underset{\sim}{v}}^{\underset{\sim}{u}}
$$

$$
=\frac{\underset{\mathrm{u}}{\mathrm{u}} \cdot \stackrel{\tilde{v}}{|\underline{v}|^{2}}}{\underset{\sim}{v}}
$$

$$
=\frac{10(10 \sqrt{3})+10(10 \sqrt{3}-20)}{300+100}\binom{10 \sqrt{3}}{10}
$$

$$
=\frac{200 \sqrt{3}-200}{400}\binom{10 \sqrt{3}}{10}
$$

$$
=(\sqrt{3}-1)\binom{5 \sqrt{3}}{5}
$$

Question 14 (Lam)

(a) (3 marks)
$\checkmark \quad[1]$ for finding both complex conjugate roots.
$\checkmark \quad[1]$ for value of a.
$\checkmark \quad$ [1] for value of b.

$$
x^{4}-4 x^{3}+11 x^{2}-14 x+10=0
$$

As $P(x)$ has real coefficients, then any complex roots that appear will also have its conjugate appear as a root. Hence,

- $\quad a+b i$ and $a-b i$
- $\quad a+2 b i$ and $a-2 b i$
are all roots. Examine the sum of roots:

$$
\begin{gathered}
(a+b i)+(a-b i)+(a+2 b i)+(a-2 b i)=-\frac{b}{a} \\
4 a=-\frac{-4}{1}=4 \\
\therefore a=1
\end{gathered}
$$

Examine the product of roots,

$$
\begin{gathered}
(a+b i)(a-b i)(a+2 b i)(a-2 b i)=\frac{e}{a} \\
\left(a^{2}+b^{2}\right)\left(a^{2}+4 b^{2}\right)=10
\end{gathered}
$$

As $a=1$,

$$
\begin{gathered}
\left(1+b^{2}\right)\left(1+4 b^{2}\right)=10 \\
1+4 b^{2}+b^{2}+4 b^{4}=10 \\
4 b^{4}+5 b^{2}-9=0 \\
\left(4 b^{2}+9\right)\left(b^{2}-1\right)=0 \\
\therefore b= \pm 1
\end{gathered}
$$

Hence roots are $1 \pm i$ and $1 \pm 2 i$.
(b) i. (2 marks)
$\checkmark \quad[1] \quad$ for usage of De Moivre's Theorem to obtain z^{n}.
$\checkmark \quad[1]$ for showing the final result.

$$
z=\cos \theta+i \sin \theta
$$

By De Moivre's Theorem,

$$
\begin{gathered}
z^{n}=\cos n \theta+i \sin n \theta \\
z^{-n}=\cos (-n \theta)+i \sin (-n \theta) \\
=\cos (n \theta)-i \sin (n \theta)
\end{gathered}
$$

Due to cos being an even function and sin being an odd function.

$$
\begin{aligned}
\therefore z^{n}+z^{-n}= & (\cos n \theta+i \sin n \theta)+ \\
& (\cos (n \theta)-i \sin (n \theta)) \\
= & 2 \cos n \theta
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for expanding $\left(z+\frac{1}{z}\right)^{3}$ via the binomial theorem.
$\checkmark \quad[1]$ for showing the final result.

$$
\begin{gathered}
\text { Let } u=z^{1}+\frac{1}{z^{1}} \\
\left(z+\frac{1}{z}\right)^{3} \\
=z^{3}+3 z^{2}\left(\frac{1}{z}\right)+3 z\left(\frac{1}{z^{2}}\right)+\frac{1}{z^{3}} \\
=z^{3}+3 z+\frac{3}{z}+\frac{1}{z^{3}} \\
=z^{3}+\frac{1}{z^{3}}+3\left(z+\frac{1}{z}\right) \\
\therefore u^{3}=z^{3}+\frac{1}{z^{3}}+3 u \\
z^{3}+\frac{1}{z^{3}}=u^{3}-3 u
\end{gathered}
$$

iii. (3 marks)

$\checkmark \quad$ [1] for using $u=z+\frac{1}{z}$ in the given expression.
$\checkmark \quad[1]$ for using the double angle formula for $\cos 10 \theta$.
$\checkmark \quad[1]$ for final result.

$$
\begin{aligned}
& z^{5}+\frac{1}{z^{5}} \\
= & \left(z+\frac{1}{z}\right)^{5}-5\left(z+\frac{1}{z}\right)^{3}+5\left(z+\frac{1}{z}\right) \\
= & (2 \cos \theta)^{5}-5(2 \cos \theta)^{3}+5(2 \cos \theta) \\
= & 32 \cos ^{5} \theta-50 \cos ^{3} \theta+10 \cos \theta \\
= & 2 \cos 5 \theta \quad \text { from }(\mathrm{i})
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\cos 5 \theta & =\frac{1}{2}\left(\cos ^{5} \theta-40 \cos ^{3} \theta+10 \cos \theta\right) \\
& =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
\end{aligned}
$$

Also, $\cos 10 \theta=2 \cos ^{2} 5 \theta-1$:
$\therefore 1+\cos 10 \theta$
$=2 \cos ^{2} 5 \theta$
$=2\left(16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta\right)^{2}$
(c) i. (2 marks)
$\checkmark \quad[1]$ for identifying the path being the perpendicular bisector of the interval.
$\checkmark \quad$ [1] finding the equation of the path traced out.
$|z-6|=|z+2 i|$ is the perpendicular bisector of the interval between $6+0 i$ and $0-2 i$.

$$
\begin{aligned}
& M P=\left(\frac{6}{2},-1\right)=(3,-1) \\
& m=\frac{2}{6}=\frac{1}{3} \\
& \therefore m_{\perp}=-3
\end{aligned}
$$

Applying the point-gradient formula,

$$
\begin{gathered}
y+1=-3(x-3) \\
y+1=-3 x+9 \\
y=-3 x+8 \\
\therefore 3 x+y-8=0
\end{gathered}
$$

ii. (2 marks)
$\checkmark \quad[1]$ for finding the equation from O to Z.
$\checkmark \quad$ [1] for finding the $|z|_{\text {min }}$

- $|z|_{\text {min }}$ when z is at the point where the perpendicular distance from the origin coincides.
- $O Z$ is parallel to the interval $A B$, and hence

$$
y=\frac{1}{3} x
$$

is the equation of $O Z$.

- Find the point of intersection of $O Z$ and the path traced out by P :

$$
\begin{gathered}
\left\{\begin{array}{l}
y=-3 x+8 \\
y=\frac{1}{3} x
\end{array}\right. \\
\frac{1}{3} x=-3 x+8 \\
\frac{10}{3} x=8 \\
\therefore x=\frac{24}{10}=\frac{12}{5} \\
y=\frac{1}{3}\left(\frac{12}{5}\right)=\frac{4}{5}
\end{gathered}
$$

Apply the distance formula,

$$
\begin{aligned}
|z| & =\sqrt{\left(\frac{12}{5}\right)^{2}+\left(\frac{4}{5}\right)^{2}} \\
& =\sqrt{\frac{160}{25}} \\
& =\frac{4}{5} \sqrt{10}
\end{aligned}
$$

(d) i. (2 marks)
$\checkmark \quad$ [1] for substantial progress in the working.
$\checkmark \quad[1]$ for showing the final result.

$$
\begin{gathered}
\overrightarrow{O M}=\frac{1}{2} z \text { (midpoint) } \\
\overrightarrow{O Q}+\overrightarrow{Q P}=\overrightarrow{O P} \\
w+\overrightarrow{Q P}=z
\end{gathered}
$$

Also, $Q P=k O Q$:

$$
\begin{aligned}
\overrightarrow{Q P} & =z-w \\
& =-i w k
\end{aligned}
$$

as $Q P$ is a rotation of the vector w by -90°. Hence,

$$
\begin{gathered}
z=w-i w k=w(1-k i) \\
\therefore \overrightarrow{O M}=\frac{1}{2} z=\frac{1}{2} w(1-k i)
\end{gathered}
$$

ii. (2 marks)
$\checkmark \quad[1]$ for finding $\overrightarrow{M Q}$ in terms of w and k.
$\checkmark \quad[1] \quad$ for showing final result, which must include the correct application of the modulus.

$$
\begin{aligned}
& \overrightarrow{\overrightarrow{O M}}+\overrightarrow{M Q}=\overrightarrow{O Q} \\
& \begin{aligned}
& \frac{1}{2} w(1-k i)+\overrightarrow{M Q}=w \\
& \overrightarrow{M Q}=w-\frac{1}{2} w(1-k i) \\
&=w-\frac{1}{2} w+\frac{1}{2} k i w \\
&=\frac{1}{2} w(1+k i)
\end{aligned} \\
& \begin{aligned}
|\overrightarrow{M Q}| & =\left|\frac{1}{2}\right||w||1+k i| \\
& =\left|\frac{1}{2}\right||w| \sqrt{1+k^{2}}
\end{aligned}
\end{aligned}
$$

Also, the magnitude of $\overrightarrow{O M}$:

$$
\begin{aligned}
|\overrightarrow{O M}| & =\left|\frac{1}{2} w(1-k i)\right| \\
& =\left|\frac{1}{2}\right||w||1-k i| \\
& =\left|\frac{1}{2}\right||w| \sqrt{1+(-k)^{2}} \\
& =\left|\frac{1}{2}\right||w| \sqrt{1+k^{2}} \\
& \therefore|\overrightarrow{M Q}|=|\overrightarrow{O M}|
\end{aligned}
$$

Question 15 (Lam)

(a) (4 marks)
$\checkmark \quad[1]$ for transforming the differential.
$\checkmark \quad$ [1] for transforming both limits.
$\checkmark \quad[1]$ for transforming integrand to an integrable form.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
u & =1-\sin 2 x \\
\therefore d u & =-2 \cos 2 x d x
\end{aligned}
$$

Transforming the limits,

$$
\begin{aligned}
& x=\frac{\pi}{4} \quad u=1-\sin \frac{\pi}{2}=0 \\
& x=\frac{\pi}{2} \quad u=1-\sin \pi=1 \\
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1-\sin 2 x}\left(1-2 \cos ^{2} x\right) d x \\
&= \int_{u=0}^{u=1} \sqrt{u}(-\cos 2 x) d x \\
&= \frac{1}{2} \int_{u=0}^{u=1} \sqrt{u} \overbrace{(-2 \cos 2 x)}=d x \\
&= \frac{1}{2} \int_{0}^{1} \sqrt{u} d u \\
&= \frac{1}{2}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{1} \\
&= \frac{1}{2} \times \frac{2}{3}=\frac{1}{3} \\
& \text { i. }(1 \text { mark }) \\
& A=1 \quad B=-1 \quad C=0
\end{aligned}
$$

(b) i. (1 mark)
(For brevity, only the answers are shown - use method of undetermined coefficients to find A, B and C).
ii. (2 marks)
$\checkmark \quad$ [1] for finding the primitive.
\checkmark [1] for full simplification to the required form.

$$
\begin{aligned}
& \int_{1}^{\sqrt{3}} \frac{1}{x\left(1+x^{2}\right)} d x \\
= & \int_{1}^{\sqrt{3}}\left(\frac{1}{x}-\frac{x}{1+x^{2}}\right) d x \\
= & {\left[\ln x-\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{1}^{\sqrt{3}} } \\
= & {\left[\ln \frac{x}{\sqrt{1+x^{2}}}\right]_{1}^{\sqrt{3}} } \\
= & \ln \left(\frac{\sqrt{3}}{\sqrt{1+3}}\right)-\ln \left(\frac{1}{\sqrt{1+1^{2}}}\right) \\
= & \ln \frac{\sqrt{3}}{2}-\ln \frac{1}{\sqrt{2}} \\
= & \ln \sqrt{\frac{3}{2}}
\end{aligned}
$$

(c) i. (2 marks)

$$
\begin{array}{lll}
\checkmark & {[1]} & \text { for correctly finding }[u v]_{0}^{1} . \\
\checkmark & {[1]} & \text { for final result shown. }
\end{array}
$$

$$
\begin{gathered}
I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x \\
u=\tan ^{-1} x \quad v=\frac{x^{n+1}}{n+1} \\
d u=\frac{1}{1+x^{2}} \quad d v=x^{n} \\
I_{n}=[u v]_{0}^{1}-\int_{0}^{1} v d u \\
=\left[\frac{x^{n+1}}{n+1} \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{1+x^{2}}\left(\frac{x^{n+}}{n+}\right. \\
=\frac{1^{n+1}}{n+1} \tan ^{-1} 1-\frac{1}{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} d x \\
=\left(\frac{1}{n+1}\right) \frac{\pi}{4}-\frac{1}{n+1} \int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} d x
\end{gathered}
$$

$$
=\left[\frac{x^{n+1}}{n+1} \tan ^{-1} x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{1+x^{2}}\left(\frac{x^{n+1}}{n+1}\right) d x \quad \begin{gathered}
\checkmark \\
\text { When } n=0
\end{gathered}
$$

Multiplying both sides by $n+1$:

$$
\begin{equation*}
(n+1) I_{n}=\frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} d x \tag{15.1}
\end{equation*}
$$

ii. (1 mark)

When $n=0$,

$$
\begin{aligned}
(0+1) I_{0} & =\frac{\pi}{4}-\int_{0}^{1} \frac{x^{1}}{1+x^{2}} d x \\
& =\frac{\pi}{4}-\frac{1}{2}\left[\ln \left(1+x^{2}\right)\right]_{0}^{1} \\
& =\frac{\pi}{4}-\frac{1}{2} \ln 2
\end{aligned}
$$

iii. (2 marks)
$\checkmark \quad$ [1] for arriving at an expression for I_{n+2}
$\checkmark \quad$ [1] for final result.
Increment n to $n+2$:

$$
\begin{gather*}
(n+2+1) I_{n+2}=\frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+2+1}}{1+x^{2}} d x \\
(n+3) I_{n+2}=\frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+3}}{1+x^{2}} d x \tag{15.2}
\end{gather*}
$$

Adding (15.1) and (15.2),

$$
\begin{aligned}
& (n+3) I_{n+2}+(n+1) I_{n} \\
= & \frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+3}}{1+x^{2}} d x \\
& +\frac{\pi}{4}-\int_{0}^{1} \frac{x^{n+1}}{1+x^{2}} d x \\
= & \frac{\pi}{2}-\int_{0}^{1} x^{n+1}\left(\frac{x^{2}+1}{1+x^{2}}\right) d x \\
= & \frac{\pi}{2}-\int_{0}^{2} \frac{x^{n+1}}{} d x \\
= & \frac{\pi}{2}-\frac{1}{n+2}\left[x^{n+2}\right]_{0}^{1} \\
= & \frac{\pi}{2}-\frac{1}{n+2}
\end{aligned}
$$

iv. (2 marks)
$\checkmark \quad$ [1] for calculating $3 I_{2}$.

$$
3 I_{2}+I_{0}=\frac{\pi}{2}-\frac{1}{2}
$$

$$
\text { As } I_{0}=\frac{\pi}{4}-\frac{1}{2} \ln 2,
$$

$$
\begin{gathered}
3 I_{2}+\left(\frac{\pi}{4}-\frac{1}{2} \ln 2\right)=\frac{\pi}{2}-\frac{1}{2} \\
3 I_{2}=\frac{\pi}{4}-\frac{1}{2}+\frac{1}{2} \ln 2 \\
=\frac{\pi}{4}+\frac{1}{2}(\ln 2-1)
\end{gathered}
$$

When $n=2$,

$$
\begin{aligned}
& 5 I_{4}+3 I_{2}=\frac{\pi}{2}-\frac{1}{4} \\
5 I_{4}= & \frac{\pi}{2}-\frac{1}{4}-\frac{\pi}{4}-\frac{1}{2}(\ln 2-1) \\
= & \frac{\pi}{4}-\frac{1}{2}\left(\ln 2-1+\frac{1}{2}\right) \\
= & \frac{\pi}{4}-\frac{1}{2}\left(\ln 2-\frac{1}{2}\right) \\
\therefore I_{4}= & \frac{\pi}{20}-\frac{1}{10}\left(\ln 2-\frac{1}{2}\right)
\end{aligned}
$$

Question 16 (Lam)

(a) (3 marks)
$\checkmark \quad[1]$ for correct application of integration by parts.
$\checkmark \quad[1] \quad$ for correct finding $\int_{1}^{e} \ln x d x$ (graphically or by parts).
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
V & =\pi \int_{1}^{e} y^{2} d x \\
& =\pi \int_{1}^{e}(\ln x)^{2} d x
\end{aligned}
$$

Finding the integral by parts/inserting 'phantom' term

$$
\begin{gathered}
\left\lvert\, \begin{array}{cc}
u=(\ln x)^{2} & d v=1 \\
d u=2 \ln x \times \frac{1}{x} & v=x \\
=\frac{2}{x} \ln x
\end{array}\right. \\
V=\pi\left(\left[x(\ln x)^{2}\right]_{1}^{e}-\int_{1}^{e} \frac{2}{\not x} \ln x \times \not x d x\right) \\
=\pi\left(e-2 \int_{1}^{e} \ln x d x\right)
\end{gathered}
$$

$$
\therefore V=\pi(e-2)
$$

i. (1 mark) Let $\underset{\sim}{r}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}$,

$$
\begin{aligned}
& \text { Let } \underset{\sim}{1}-x \underset{\sim}{1}+9 \underset{\sim}{j}+\sim \underset{\sim}{\mathrm{K}}, \\
& \quad|\underset{\sim}{\mathrm{r}}-(3 \underset{\sim}{\mathrm{i}}+\underset{\sim}{\mathrm{j}}+4 \underset{\sim}{\mathrm{k}})|=\sqrt{35} \\
& |(x-3) \underset{\sim}{\mathrm{i}}+(y-1) \underset{\sim}{\mathrm{j}}+z-4 \underset{\sim}{\mathrm{k}}|=\sqrt{35} \\
& \therefore(x-3)^{2}+(y-1)^{2}+(z-4)^{2}=35
\end{aligned}
$$

Use the area about the y axis:

$$
\begin{aligned}
\int_{1}^{e} \ln x d x & =(e \times 1)-\int_{y=0}^{y=1} e^{y} d y \\
& =e-[e-1] \\
& =1
\end{aligned}
$$

ii. (3 marks)
$\checkmark \quad \left\lvert\, \begin{aligned} & {[1]} \\ & \left.\underset{\sim}{r}-\left(\begin{array}{l}\text { for correct expression for } \\ 1 \\ 4\end{array}\right) \right\rvert\,\end{aligned}\right.$
$\checkmark \quad$ [1] for quadratic in terms of λ
$\checkmark \quad$ [1] for final justification.

$$
\underset{\sim}{\mathrm{r}}=\left(\begin{array}{l}
2 \\
0 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

If the line is a tangent, then only one unique value of λ exists for the expression

$$
\begin{aligned}
& \left|\underset{\sim}{\mathrm{r}}-\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)\right|=\sqrt{35} \\
& =\left\lvert\,\left(\begin{array}{l}
\left.\mathrm{r}-\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right) \right\rvert\, \\
=\left|\left(\begin{array}{c}
2 \\
0 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)\right| \\
=\left|\left(\begin{array}{c}
-1+\lambda \\
-1+2 \lambda \\
-1-\lambda
\end{array}\right)\right| \\
=\sqrt{(\lambda-1)^{2}+(2 \lambda-1)^{2}+(-1-\lambda)^{2}} \\
=\sqrt{\left(\lambda^{2}-2 \lambda+1\right)+\left(4 \lambda^{2}-4 \lambda+1\right)+\left(\lambda^{2}+2 \lambda+1\right)} \\
\quad \therefore 6 \lambda^{2}-4 \lambda+3 \\
\quad \sqrt{35} \\
\quad 6 \lambda^{2}-4 \lambda-3 \lambda=3=3 \\
\quad 3 \lambda^{2}-2 \lambda-16=0
\end{array}\right.\right.
\end{aligned}
$$

Check the quadratic discriminant on λ :

$$
\Delta=(-2)^{2}-4(-16)(3)>0
$$

As the discriminant is positive, there are two unique values of λ for which the line $\underset{\sim}{r}$ will 'touch' the sphere. Hence it is not a tangent as it will intersect the sphere twice.
(c) i. (1 mark)

$$
\begin{aligned}
\sum \underset{\sim}{\mathrm{F}}=\nsim \underset{\sim}{\underset{\sim}{x}} & =\not \kappa P-\not \hbar k v^{2} \\
\ddot{x} & =P-k v^{2} \\
v \frac{d v}{d x} & =P-k v^{2} \\
\frac{d v}{d x} & =\frac{P}{v}-k v
\end{aligned}
$$

ii. (3 marks)
$\checkmark \quad$ [1] for finding the primitive of both sides.
$\checkmark \quad[1]$ for showing the v^{2} and x relationship.
$\checkmark \quad[1]$ for showing $v_{M}=\sqrt{\frac{P}{k}}$.

$$
\frac{d v}{d x}=\frac{P-k v^{2}}{v}
$$

Separating variables, and integrating:

$$
\begin{gathered}
\int \frac{v}{P-k v^{2}} d v=\int d x \\
-\frac{1}{2 k} \int \frac{-2 k v}{P-k v^{2}} d v=\int d x \\
-\frac{1}{2 k} \ln \left(P-k v^{2}\right)=x+C_{1} \\
\frac{+1)}{\text { When } x}=0, t=0 \text { and } v=0 \\
-\frac{1}{2 k} \ln P=0+C_{1} \\
C_{1}=-\frac{1}{2 k} \ln P \\
\therefore-\frac{1}{2 k} \ln \left(P-k v^{2}\right)=x-\frac{1}{2 k} \ln P \\
\ln \left(P-k v^{2}\right)=-2 k x+\ln P \\
P-k v^{2}=e^{-2 k x+\ln P}=P e^{-2 k x} \\
k v^{2}=P-P e^{-2 k x} \\
v^{2}=\frac{P}{k}\left(1-e^{-2 k x}\right)
\end{gathered}
$$

As time passes, the block continues to move to the right, $x \rightarrow \infty$ and $e^{-2 k x} \rightarrow 0$. Hence

$$
\begin{aligned}
v^{2} & \rightarrow \frac{P}{k} \\
\therefore v_{M} & \rightarrow \sqrt{\frac{P}{k}}
\end{aligned}
$$

iii. (1 mark)

At $x=x_{1}$, need $v^{2}=\frac{1}{9} \frac{P}{k}$ (one third of the maximum speed).

$$
\begin{gathered}
\frac{1}{9} \frac{P}{k}=\frac{P}{k}\left(1-e^{-2 k x_{1}}\right) \\
\frac{1}{9}=1-e^{-2 k x} \\
e^{-2 k x}=\frac{8}{9} \\
x_{1}=-\frac{1}{2 k} \ln \frac{8}{9}=\frac{1}{2 k} \ln \frac{9}{8}
\end{gathered}
$$

At $x=x_{2}$, need $v^{2}=\frac{1}{4} \frac{P}{k}$ (one half of the maximum speed).

$$
\begin{gathered}
\frac{1}{4} \frac{P}{k}=\frac{P}{k}\left(1-e^{-2 k x_{2}}\right) \\
\frac{1}{4}=1-e^{-2 k x_{2}} \\
e^{-2 k x_{2}}=\frac{3}{4} \\
-2 k x_{2}=\ln \frac{3}{4} \\
x_{2}=\frac{1}{2 k} \ln \frac{4}{3}
\end{gathered}
$$

Dividing,

$$
\begin{aligned}
\frac{x_{1}}{x_{2}} & =\frac{\frac{1}{z k} \ln \frac{9}{8}}{\frac{1}{2 k} \ln \frac{4}{3}} \\
& =0.4098 \cdots \approx 41 \%
\end{aligned}
$$

(d) i. (2 marks)
$\checkmark \quad$ [1] for reaching a generalisation for the area of trapeziums.
$\checkmark \quad$ [1] for showing the required result.

- $y=\ln x$ is concave down $\forall x$ within its domain, hence the trapeziums formed by joining the function values will be less than the actual area,

- Area of trapezium between $x=1$ and $x=2$:
$A=\frac{1}{2}(1)(\ln 1+\ln 2)=\frac{\ln 1+\ln 2}{2}$
- Area of trapezium between $x=2$ and $x=3$:

$$
A=\frac{1}{2}(1)(\ln 2+\ln 3)=\frac{\ln 2+\ln 3}{2}
$$

- Area of trapezium between $x=$

$$
(n-1) \text { and } x=n:
$$

$$
\begin{aligned}
A & =\frac{1}{2}(1)(\ln (n-1)+\ln n) \\
& =\frac{\ln (n-1)+\ln n}{2}
\end{aligned}
$$

Adding all of these together,

$$
\begin{gathered}
\frac{\ln 1+\ln 2}{2}+\frac{\ln 2+\ln 3}{2}+\cdots+\frac{\ln (n-1)+\ln n}{2} \\
<\int_{1}^{n} \ln x d x
\end{gathered}
$$

ii. (3 marks)
$\checkmark \quad[1]$ for compacting the expression to $\ln (n!)-\frac{1}{2} \ln n$.
$\checkmark \quad[1]$ for evaluating $\int_{1}^{n} \ln x d x$ (can use Q16(a) if necessary)
$\checkmark \quad[1]$ for final result.
Using the result above,

$$
\begin{aligned}
& \quad \frac{\ln 1+\ln 2}{2}+\frac{\ln 2+\ln 3}{2}+\cdots+\frac{\ln (n-1)+\ln n}{2} \\
& =\ln 2+\ln 3+\ln 4+\cdots+\ln (n-1)+\frac{1}{2} \ln n \\
& =\ln 2+\ln 3+\ln 4+\cdots+\ln (n-1) \\
& \quad \quad+\ln n-\frac{1}{2} \ln n \\
& = \\
& =\ln (2 \times 3 \times \cdots \times(n-1) \times n) \\
& \quad \quad-\frac{1}{2} \ln n \\
& = \\
& \ln (n!)-\frac{1}{2} \ln n
\end{aligned}
$$

Finding the actual area,

$$
\begin{aligned}
& \int_{1}^{n} \ln x d x \\
= & {[x \ln x-x]_{1}^{n} \quad(\text { By parts or otherwise }) } \\
= & (n \ln n-n)-(-1) \\
= & n \ln n-n+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \ln (n!)-\frac{1}{2} \ln n<n \ln n-n+1 \\
& \ln (n!)< n \ln n+\frac{1}{2} \ln n-n+1 \\
&=\left(n+\frac{1}{2}\right) \ln n-n+1 \\
&= \ln \left(n^{n+\frac{1}{2}}\right)-n+1 \\
&= \ln \left(n^{n+\frac{1}{2}}\right)-n \ln e+\ln e \\
&= \ln \left(n^{n+\frac{1}{2}}\right)-\ln e^{n}+\ln e \\
&= \ln \left(\frac{e \times n^{n+\frac{1}{2}}}{e^{n}}\right) \\
& \therefore n!<\frac{e n^{n+\frac{1}{2}}}{e^{n}}
\end{aligned}
$$

