

NORTH SYDNEY BOYS HIGH SCHOOL

2015 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- For Section I, shade the correct box on the sheet provided.
- For Section II, write in the booklet provided.
- Each new question is to be started on a **new page.**
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question

- Marks may be deducted for illegible or incomplete working
- Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Ireland
- O Mr Lin
- O Mr Weiss

Student Number

(To be used by the exam markers only.)									
Question No	1-10	11	12	13	14	15	16	Total	
Mark	10	15	15	15	15	15	15	100	

To be used by the exam markers only.)

Section I: Objective Response

Mark your answers on the multiple choice answer sheet provided by shading the correct box.

- 1. One solution to the equation $x^4 6x^3 + 26x^2 46x + 65 = 0$ is x = 2 3i. Another solution is:
 - (A) 1-2i (B) -1-2i (C) -2-i (D) -2+i
- 2. What restrictions must be placed on *p* if α , β , γ are the three non-zero real roots of the equation $x^3 + px 1 = 0$?
 - (A) p > 0, p is real (B) p < 0, p is real

(C)
$$p \ge 0$$
, p is real (D) $p \le 0$, p is real

3. Consider the two statements:

I:
$$\int_{0}^{1} \frac{dx}{1+x^{n}} < \int_{0}^{1} \frac{dx}{1+x^{n+1}}$$

II: $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \, dx$

Which of following is true?

(C) Statement II only (D) Both statements

4. The polynomial equation $x^3 + 4x^2 - 2x - 5 = 0$ has roots α, β, γ .

Which of the following equations has roots $\alpha^2, \beta^2, \gamma^2$?

(A)
$$x^3 - 20x^2 - 44x - 25 = 0$$
 (B) $x^3 - 20x^2 + 44x - 25 = 0$

(C)
$$x^3 - 4x^2 + 5x - 1 = 0$$
 (D) $x^3 + 4x^2 + 5x - 1 = 0$

1

1

5. Which of the following is an expression for $\int \frac{dx}{\sqrt{7-6x-x^2}}$?

(A)
$$\sin^{-1}(\frac{x-3}{2}) + c$$

(B) $\sin^{-1}(\frac{x+3}{2}) + c$
(C) $\sin^{-1}(\frac{x-3}{4}) + c$
(D) $\sin^{-1}(\frac{x+3}{4}) + c$

6. The shaded area in the Argand diagram below could be described by which

7. The region bounded by the parabola y = x² and the *x*-axis between x = 0 and x = 1 is rotated about the line x = 2 to form a solid of volume *V*.
Which of the following is an expression for *V*?

(A)
$$\pi \int_{0}^{1} (1-x)^{2} dy$$
 (B) $\pi \int_{0}^{1} (1^{2}-x^{2}) dy$
(C) $\pi \int_{0}^{1} [(2-x)^{2}-1^{2}] dy$ (D) $\pi \int_{0}^{1} [2^{2}-(2-x)^{2}] dy$

1

8. Which of the following is equal to $\int \sin^3 x \, dx$?

(A)
$$\frac{1}{4}\sin^4 x + c$$

(B) $-\cos x + \frac{1}{3}\cos^3 x + c$
(C) $-\cos x - \frac{1}{3}\cos^3 x + c$
(D) $\cos x - \frac{1}{3}\cos^3 x + c$

9. The equation of the tangent to the ellipse $x = 3 \cos\theta$, $y = 2 \sin\theta$ at the point

where
$$\theta = \frac{\pi}{3}$$
 is:
(A) $6\sqrt{3}x - 4y - 5\sqrt{3} = 0$
(B) $2x - 3\sqrt{3}y - 12 = 0$
(C) $2x + 3\sqrt{3}y - 12 = 0$
(D) $6\sqrt{3}x + 4y - 5\sqrt{3} = 0$

10. P(4,25) is a point on the rectangular hyperbola xy = 100. The tangent at *P* cuts the hyperbola's asymptotes at *Q* and *R*. The area of ΔOQR (where *O* is the origin) is:

(A)
$$200\sqrt{2}$$
 u^2 (B) $2\sqrt{50}$ u^2
(C) 100 u^2 (D) 200 u^2

Section II: Short Answer

Question 11 (15 marks) Commence a NEW page

(a) Evaluate
$$\int_{0}^{\frac{\pi}{3}} \sec^4 x \tan x \, dx$$
 3

(b) Find
$$\int \frac{dx}{\sqrt{x^2 - 8x + 25}}$$
 2

(c)
(i) Resolve
$$\frac{9+x-2x^2}{(1-x)(3+x^2)}$$
 into partial fractions. 2

(ii) Hence find
$$\int \frac{9+x-2x^2}{(1-x)(3+x^2)} dx$$
 2

(d) Use the substitution
$$t = \tan(\frac{x}{2})$$
 to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1 - \cos x} dx$ 3

(e)
(i) Prove that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
 1
(ii) Hence evaluate $\int_{0}^{\pi} x \sin x dx$ 2

Question 12 (15 marks) Commence a NEW page	Mark
(a) Find the square roots of $9-40i$. (Give your answer in the form $a+ib$)	2
(b) Express $z = \sqrt{3} + i$ in modulus-argument form.	1
(c) (i) Find the Cartesian equation of the locus represented by $2 z = 3(z+\overline{z})$. (ii) Sketch the locus on an Argand diagram.	2 1
(d) Given that $z = \cos\theta + i \sin\theta$,	

- (i) Show that $z^n + z^{-n} = 2\cos n\theta$ 2
 - (ii) Hence solve the equation $2z^4 z^3 + 3z^2 z + 2 = 0$ 3

(e) *P* is a point in the complex plane representing the complex number *z*, where

z satisfies |z-2| = 2 and $0 < \arg z < \frac{\pi}{2}$.

- (i) Sketch the locus described by these conditions. 1
- (ii) Find the value of the real number *k* if $\arg(z-2) = k \arg(z^2 2z)$. 3

Question 13 (15 marks)

Commence a NEW page

(a) Let f(x) = -(x-3)(x+1). The graph shown below depicts y = f(x):

On separate diagrams, sketch the following graphs without using calculus.

Indicate any asymptotes, intercepts or other important features.

(i)
$$y = f(|x|)$$
 2

(ii)
$$y = \frac{1}{f(x)}$$

(iii)
$$y = e^{f(x)}$$
 2

(iv)
$$y^2 = f(x)$$
 2

(b)

(i) State the domain and range of $y = \cos^{-1}(e^x)$ 2(ii) Without using calculus, sketch the graph of $y = \cos^{-1}(e^x)$, showing clearly
any intercepts and the equations of any asymptotes.2

(c) For the curve defined by $3x^2 + y^2 - 2xy - 8x + 2 = 0$ find the coordinates of the points on the curve where the tangent is parallel to the line y = 2x. 3

Question 14 (15 marks) Commence a NEW page

(a)

- (i) If α is a root of P(x) with multiplicity *n*, show that α is also a root of P'(x) with multiplicity n-1.
- (ii) Given $P(x) = 2x^4 + 9x^3 + 6x^2 20x 24$ has a triple root, factorise P(x)into its linear factors.
- (b) Using the method of cylindrical shells, find the volume generated by revolving the area bounded by the lines $x = \pm 2$ and the hyperbola $\frac{y^2}{0} - \frac{x^2}{4} = 1$ about the *y*-axis.
- (c) The diagram below shows a cross-sectional slice of a solid whose base is the region enclosed by the circle $x^2 + y^2 = 4$. Each such cross-section is an equilateral triangle. Find the volume of the solid.

÷ 7 1-2

(d) Suppose that $P(x) = x^4 - 2x^3 + 3x^2 - 4x + 1$ and the equation P(x) = 0 has

roots $\alpha, \beta, \gamma, \delta$,

- (i) Show that $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = -2$
- (ii) Hence prove that the equation P(x) = 0 has precisely two real roots.

Mark

1

3

4

3

2

(a)
$$P(5p, \frac{5}{p})$$
 and $Q(5q, \frac{5}{q})$, $p,q > 0$, are two variable points on the hyperbola $xy = 25$.

(i) Derive the equation of the chord PQ. 2

- (ii) State the equations of the tangents at P and Q. 1
- (iii) If the tangents at P and Q intersect at R, find the coordinates of R. 2
- (iv) If the secant PQ passes through the point (15, 0), find the locus of R. 2
- (b) Points *P* and *Q* are the endpoints of a focal chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

If the parameters at *P* and *Q* are θ and ϕ respectively, show that the ellipse's eccentricity is given by $e = \frac{\sin(\theta - \phi)}{\sin\theta - \sin\phi}$.

(c) A sequence of numbers T_n , n = 1, 2, 3..., is defined by $T_1 = 2$, $T_2 = 0$ and $T_n = 2T_{n-1} - 2T_{n-2}$, for n = 3, 4, 5...

Use mathematical induction to show that $T_n = (\sqrt{2})^{n+2} \cos \frac{n\pi}{4}$, n = 1, 2, 3...

The points A, B, C, represent the complex numbers z_1, z_2, z_3 respectively. The points P, Q, R, represent the complex numbers w_1, w_2, w_3 .

If
$$\frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$$
 then prove that $\triangle ABC$ is similar to $\triangle PQR$. 3

(b) *ABCD* is a cyclic quadrilateral. *DA* produced and *CB* produced meet at *P*. *T* is a point on the tangent at *D* to the circle through *A*, *B*, *C* and *D*. *PT* cuts *CA* and *CD* at *E* and *F* respectively. TF = TD.

Copy this diagram into your writing booklet.

- (i) Show that *AEFD* is a cyclic quadrilateral.
- (ii) Show that *PBEA* is a cyclic quadrilateral.

Mark

(c) Let
$$I_n = \int_0^1 (1 - x^2)^n dx$$
 and $J_n = \int_0^1 x^2 (1 - x^2)^n dx$

(i) Apply integration by parts to I_n to show that $I_n = 2n J_{n-1}$ 2

(ii) Hence show that
$$I_n = \frac{2n}{2n+1} I_{n-1}$$
 2

(iii) Show that
$$J_n = I_n - I_{n+1}$$
 and hence deduce that $J_n = \frac{1}{2n+3} I_n$ 2

(iv) Hence write down a reduction formula for J_n in terms of J_{n-1} 1

END OF EXAMINATION

2015 E	Extension 2	Assessment Task 3	Suggested Solutions.
SECTION 1 -	OBJECTIVE RES	PONSE	Į
1. A		6. B	
2. B		7. C	
3. D 4. B		8. B	
т. D 5. D		9. C 10. D	10
Q.11			
a) I=	$\int_{0}^{\frac{\pi}{3}} \sec x \tan x$	dx	
	$\int_{0}^{\frac{11}{3}} \sec x \cdot \sec x$		
-	$\begin{bmatrix} \sec^4 x \\ -\frac{4}{4} \end{bmatrix}_0^{\frac{1}{5}}$ $\frac{2}{4}^4 - \frac{1}{4}^4$	by standard integrals	V table correctly
			Correct answer
$= \int ($ $= \int ($ $= \int ($ $= \int ($ $= \frac{3}{2})$	$sec^{2}x \cdot sec^{2}x + tan(1 + tan^{2}x) \cdot tan x(tan x + tan^{3}x) se\frac{tan^{2}x}{2} + \frac{tan^{4}x}{4} \int_{0}^{1}+ \frac{9}{4}$	· sec ² x dx	

$$\begin{split} & \boxed{\mathbb{R} [1]} - c + d \\ & (b) \quad I = \int \frac{dx}{\sqrt{x^2 - 8x + 25}} \\ & = \int \frac{dx}{\sqrt{(x - 4)^2 + 3^2}} \\ & = \int dx \left(x - 4 + \sqrt{(x - 4)^2 + 9} \right) + C \\ & (by \ standard \ integrals) \\ & (c) \quad \frac{9 + x - 2x^2}{(1 - x)(3 + x^2)} = \frac{A}{1 - x} + \frac{Bx + C}{3 + x^2} \\ & (b) \ standard \ integrals) \\ & (c) \quad \frac{9 + x - 2x^2}{(1 - x)(3 + x^2)} = A(3 + x^2) + (Bx + c)(1 - x) \\ & = (A - 8)x^2 + (B - c)x + (3A + c) \\ & (A - 8) = -2 \quad (i) \\ & B - c = 1 \quad (2) \\ & 3A + c = 9 \quad (3) \\ & (1) + (2) + A - c = -1 \quad (4) \\ & (3) + (0) + 4A = 8 \qquad \therefore A = 2 \\ & \therefore \ c = 3, \ B = 4. \\ & \therefore \ \frac{9 + x - 2x^2}{(1 - x)(3 + x^2)} = \frac{2}{1 - x} + \frac{4x + 3}{3 + x^2} \\ & (ii) \quad I = \int \left(\frac{2}{1 - x} + \frac{4x}{3 + x^2} + \frac{3}{3 + x^2}\right) dx \\ & \therefore \ I = -2 \ dn \ |1 - x| + 2 \ ln (3 + x^2) + \sqrt{3} \ + \sqrt{3} \\ \end{split}$$

•

$$\begin{array}{c} \fboxlength{\fbox{}} \fboxlength{\textcircled{}} \label{eq:linear_l$$

$$Q_{14}$$
(a) (i) Let $P(x) = (x - \alpha)^{n} \cdot Q(x)$, $Q(\alpha) \neq 0$.
 $\therefore P'(x) = n(x - \alpha)^{n-1} \cdot Q(x) + (x - \alpha)^{n} \cdot Q'(x)$
 $= (x - \alpha)^{n-1} \int n \cdot Q(x) + (x - \alpha) \cdot Q'(x) \int dx$
 $= (x - \alpha)^{n-1} \cdot Q_{1}(x)$, where $Q(\alpha) \neq 0$
 $\therefore \alpha$ is a root of $P'(x)$ of multiplicity $n-1$.
(ii) $P(x) = 2x^{4} + 9x^{3} + 6x^{2} - 20x - 24$ has a triple
 $root$
 $\therefore P'(x) = 8x^{3} + 27x^{2} + 12x - 20$ has a double root
 $\therefore P''(x) = 24x^{2} + 54x + 12$ has a 1 -fold root.
 $\therefore 24x^{2} + 54x + 12 = 0$
 $4x^{2} + 9x + 2 = 0$
 $(4x + 1)(x + 2) = 0$
 $\therefore x = -\frac{1}{4} = \alpha - 2$.

$$P(-2) = 2 (-2)^{4} + 9 (-2)^{3} + 6 (-2)^{2} - 20 (-2) - 24 = 0$$

$$\therefore x = -2 \text{ is the triple root}.$$

By inspection, $P(x) = (x+2)^{3} (2x-3)$

$$\begin{array}{l} \hline \mathbb{R} | \overrightarrow{H} - c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} - c t \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t d \\ \hline \mathbb{R} | \overrightarrow{H} + c t \\ \hline \mathbb{R} | \overrightarrow{$$

.

Q15 (a) $P(5p, \frac{5}{p})$, $Q(5q, \frac{5}{2})$; $P, q > 0$	
(i) $m_{PQ} = \frac{5}{2} - \frac{5}{P} = -\frac{1}{P2}$ 5q - 5p	\checkmark
: PR equation is $y - \frac{5}{P} = -\frac{1}{P_2}(x - 5p)$	
$\therefore P_{2}y - 5q = -x + 5p \\ \therefore x + P_{2}y = 5(p+q).$	\checkmark
(ii) For tangent at P, let g >p	
:. $x + p^2 y = 5(2p)$:. $x + p^2 y = 10p$	
Likewise, tangent at Q is $x+q^2y=10q$.	
(111) For R, solve tangents simultaneously !	
$Y(p^2-q^2) = 10(p-q)$	
$\therefore as p \neq 2, y = \frac{10}{p+2}$	
Thus $x = 10p - \frac{10p^2}{p+2} = \frac{10p2}{p+2}$	
$\therefore R = \begin{pmatrix} 10 & P2 \\ \hline P+2 \end{pmatrix}, \frac{10}{P+2} \end{pmatrix}.$	
(iv) PQ secant is x+pgy = 5(p+g)	
: if goes that $(15,0)$, $15+0=5(P+2)$: $P+2=3$.	
Thus $R = \left(\frac{10 p_2}{3}, \frac{10}{3}\right)$	
So locus is $y = \frac{10}{3}$.	\checkmark
But x70, since pg >0, and since Re intersection	
cannot occur inside The hyperbola, $\therefore x < 7.5$. \therefore Locus is $y = \frac{10}{3}$, $0 < x < 7.5$.	\checkmark
[Note: the tangent at (75, 10;) on H goes thru (15,0)]	-

·

$$\begin{array}{c} \hline \mathbb{Q} 15 - ctd. \\ \hline \mathbb{Q} 15 - ctd. \\ \hline \mathbb{Q} 15 - ctd. \\ \hline \mathbb{Q} 1 - \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2 \\ \hline \mathbb{Q} 2 + \mathbb{Q} 2$$

.

$$\begin{split} \overline{\mathbb{R}}[5] - ctd. \\ \hline \\ (2) \quad & \text{We have } \quad T_n = 2 T_{n-1} - 2 T_{n-2} , \quad n = 3 \#, 5 \cdots \\ & \text{and } \quad T_1 = 2, \quad T_2 = 0 \cdot To prove : \quad T_n = (42)^{n+2} \cos \frac{n\pi}{4} \\ & \text{Mhen } n=1 : \quad (\sqrt{2})^{1+2} \cos \frac{1(\pi)}{4} = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2 \\ & \text{When } n=1 : \quad (\sqrt{2})^{1+2} \cos \frac{1(\pi)}{4} = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 2 \\ & \text{When } n=2 : \quad (\sqrt{2})^{2+2} \cos \frac{2\pi}{4} = 4 \times 0 = 0 \\ & \text{.: true for } n=1 \\ \hline \\ & \text{Mon for } n = k \\ \hline \\ & \text{Hen look at } n = k+1 : \\ & T_{k+1} = 2 \cdot T_{k} - 2 \cdot T_{k-1} \\ & \text{by The recursaive} \\ & \text{definition } \\ & = 2 \left(\sqrt{2}\right)^{k+2} \cos \frac{\pi\pi}{4} - 2\left(\sqrt{2}\right)^{k+2} \cos \frac{(k\pi)}{4} \\ & \text{wean } k \text{ in } \\ & \text{wean } k \text{ in } \\ & = 2 \left(\sqrt{2}\right)^{k+2} \left(\sqrt{2} \cos \frac{k\pi}{4} - 2\left(\sqrt{2}\right)^{k+2} \cos \frac{(k\pi)}{4} - \frac{\pi}{4} \\ & \text{wean } k \text{ in } \\ & = (\sqrt{2})^{k+3} \left[\sqrt{2} \cos \frac{k\pi}{4} - \cos \frac{k\pi}{4} - \frac{1}{\sqrt{2}} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\sqrt{2} \cos \frac{k\pi}{4} - \frac{1}{\sqrt{2}} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\sqrt{2} \cos \frac{k\pi}{4} - \frac{1}{\sqrt{2}} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & = (\sqrt{2})^{k+3} \left[\cos \frac{k\pi}{4} \cos \frac{k\pi}{4} - \sin \frac{\pi}{5} \sin \frac{k\pi}{4}\right] \\ & \approx T_{k+1} = (\sqrt{2})^{k+3} \cos \frac{(k+1)\pi}{4} \text{ for } n = k+1. \\ & \text{Hence, by induction } \lambda(0), 5(0),$$

(ii) from (i),

$$I_{n} = 2n \int_{0}^{t} x^{2} (1-x^{2})^{n+1} dx$$

$$= -2n \int_{0}^{t} \left[(1-x^{2})^{-1} \right] \cdot (1-x^{2})^{n-1} dx$$

$$= -2n \cdot \left[I_{n} - I_{n-1} \right]$$

$$= -2n \cdot I_{n} + 2n \cdot I_{n-1}$$

$$\therefore \quad (2n+1) \cdot I_{n} = 2n \cdot I_{n-1}$$

$$\therefore \quad I_{n} = \frac{2n}{2n+1} \cdot I_{n-1}$$

P.T.O.

 $\boldsymbol{\nu}$

$$\begin{array}{l} (c) \ (iii) \\ J_{n} &= \int_{0}^{1} x^{2} \left(1 - x^{2} \right)^{n} dx \\ &= - \int_{0}^{1} \left[\left(1 - x^{2} \right)^{2} - 1 \right] \left(1 - x^{2} \right)^{n} dx \\ &= - \left(I_{n+1} - I_{n} \right) \\ \therefore \ J_{n} &= I_{n} - I_{n+1} \\ &= I_{n} - \frac{2(n+1)}{2(n+1) + 1} \cdot I_{n} \qquad from(ii) \\ &= \frac{(2n+3) \cdot I_{n} - (2n+2) I_{n}}{2n+3} \\ \therefore \ J_{n} &= \frac{1}{2n+3} \cdot I_{n} \\ (iv) \quad using \quad (iii) \quad and \quad (i) \\ &J_{n} &= \frac{1}{2n+3} \cdot I_{n} \\ &= \frac{1}{2n+3} \cdot 2n \cdot J_{n-1} \\ &ie \quad J_{n} &= \frac{2n}{2n+3} \cdot J_{n-1} \end{array}$$