North Sydney Boys

2015 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- For Section I, shade the correct box on the sheet provided.
- For Section II, write in the booklet provided.
- Each new question is to be started on a new page.
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for illegible or incomplete working
- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Ireland
OMr Lin
O MrWeiss

Student Number
(To be used by the exam markers only.)

Question No	$1-10$	11	12	13	14	15	16	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I: Objective Response

Mark your answers on the multiple choice answer sheet provided by shading the correct box.

1. One solution to the equation $x^{4}-6 x^{3}+26 x^{2}-46 x+65=0$ is $x=2-3 i$.

Another solution is:
(A) $1-2 i$
(B) $-1-2 i$
(C) $-2-i$
(D) $-2+i$
2. What restrictions must be placed on p if α, β, γ are the three non-zero real roots of the equation $x^{3}+p x-1=0$?
(A) $p>0, p$ is real
(B) $p<0, p$ is real
(C) $p \geq 0, p$ is real
(D) $p \leq 0, p$ is real
3. Consider the two statements:

$$
\begin{aligned}
& \text { I: } \quad \int_{0}^{1} \frac{d x}{1+x^{n}}<\int_{0}^{1} \frac{d x}{1+x^{n+1}} \\
& \text { II: } \quad \int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} d x=\int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} d x
\end{aligned}
$$

Which of following is true?
(A) Neither statement
(B) Statement I only
(C) Statement II only
(D) Both statements
4. The polynomial equation $x^{3}+4 x^{2}-2 x-5=0$ has roots α, β, γ.

Which of the following equations has roots $\alpha^{2}, \beta^{2}, \gamma^{2}$?
(A) $x^{3}-20 x^{2}-44 x-25=0$
(B) $x^{3}-20 x^{2}+44 x-25=0$
(C) $x^{3}-4 x^{2}+5 x-1=0$
(D) $x^{3}+4 x^{2}+5 x-1=0$
5. Which of the following is an expression for $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$?
(A) $\sin ^{-1}\left(\frac{x-3}{2}\right)+c$
(B) $\sin ^{-1}\left(\frac{x+3}{2}\right)+c$
(C) $\sin ^{-1}\left(\frac{x-3}{4}\right)+c$
(D) $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
6. The shaded area in the Argand diagram below could be described by which pair of inequalities?

(A) $|z-1| \leq \sqrt{2}$ and $0 \leq \arg (z-i) \leq \frac{\pi}{4}$
(B) $|z-1| \leq \sqrt{2}$ and $0 \leq \arg (z+i) \leq \frac{\pi}{4}$
(C) $|z-1| \leq 1$ and $0 \leq \arg (z-i) \leq \frac{\pi}{4}$
(D) $|z-1| \leq 1$ and $0 \leq \arg (z+i) \leq \frac{\pi}{4}$
7. The region bounded by the parabola $y=x^{2}$ and the x-axis between $x=0$ and $x=1$ is rotated about the line $x=2$ to form a solid of volume V.

Which of the following is an expression for V ?
(A) $\pi \int_{0}^{1}(1-x)^{2} d y$
(B) $\pi \int_{0}^{1}\left(1^{2}-x^{2}\right) d y$
(C) $\pi \int_{0}^{1}\left[(2-x)^{2}-1^{2}\right] d y$
(D) $\pi \int_{0}^{1}\left[2^{2}-(2-x)^{2}\right] d y$
8. Which of the following is equal to $\int \sin ^{3} x d x$?
(A) $\frac{1}{4} \sin ^{4} x+c$
(B) $-\cos x+\frac{1}{3} \cos ^{3} x+c$
(C) $-\cos x-\frac{1}{3} \cos ^{3} x+c$
(D) $\cos x-\frac{1}{3} \cos ^{3} x+c$
9. The equation of the tangent to the ellipse $x=3 \cos \theta, y=2 \sin \theta$ at the point where $\theta=\frac{\pi}{3}$ is:
(A) $6 \sqrt{3} x-4 y-5 \sqrt{3}=0$
(B) $2 x-3 \sqrt{3} y-12=0$
(C) $2 x+3 \sqrt{3} y-12=0$
(D) $6 \sqrt{3} x+4 y-5 \sqrt{3}=0$
10. $P(4,25)$ is a point on the rectangular hyperbola $x y=100$.

The tangent at P cuts the hyperbola's asymptotes at Q and R.
The area of $\triangle O Q R$ (where O is the origin) is:
(A) $200 \sqrt{2} u^{2}$
(B) $2 \sqrt{50} \quad u^{2}$
(C) $100 u^{2}$
(D) $200 u^{2}$

Section II: Short Answer

Question 11 (15 marks)
Commence a NEW page
(a) Evaluate $\int_{0}^{\frac{\pi}{3}} \sec ^{4} x \tan x d x$
(b) Find $\int \frac{d x}{\sqrt{x^{2}-8 x+25}}$
(c)
(i) Resolve $\frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)}$ into partial fractions.
(ii) Hence find $\int \frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)} d x$
(d) Use the substitution $t=\tan \left(\frac{x}{2}\right)$ to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1-\cos x} d x$
(e)
(i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
(ii) Hence evaluate $\int_{0}^{\pi} x \sin x d x$
(a) Find the square roots of $9-40 i$. (Give your answer in the form $a+i b$)
(b) Express $z=\sqrt{3}+i$ in modulus-argument form.
(c) (i) Find the Cartesian equation of the locus represented by $2|z|=3(z+\bar{z})$.
(ii) Sketch the locus on an Argand diagram.
(d) Given that $z=\cos \theta+i \sin \theta$,
(i) Show that $z^{n}+z^{-n}=2 \cos n \theta$
(ii) Hence solve the equation $2 z^{4}-z^{3}+3 z^{2}-z+2=0$
(e) P is a point in the complex plane representing the complex number z, where

$$
z \text { satisfies }|z-2|=2 \text { and } 0<\arg z<\frac{\pi}{2}
$$

(i) Sketch the locus described by these conditions.
(ii) Find the value of the real number k if $\arg (z-2)=k \arg \left(z^{2}-2 z\right)$.

Question 13 (15 marks) Commence a NEW page
(a) Let $f(x)=-(x-3)(x+1)$. The graph shown below depicts $y=f(x)$:

On separate diagrams, sketch the following graphs without using calculus.
Indicate any asymptotes, intercepts or other important features.
(i) $y=f(|x|)$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=e^{f(x)}$
(iv) $y^{2}=f(x)$
(b)
(i) State the domain and range of $y=\cos ^{-1}\left(e^{x}\right)$
(ii) Without using calculus, sketch the graph of $y=\cos ^{-1}\left(e^{x}\right)$, showing clearly any intercepts and the equations of any asymptotes.

2
(c) For the curve defined by $3 x^{2}+y^{2}-2 x y-8 x+2=0$ find the coordinates of the points on the curve where the tangent is parallel to the line $y=2 x$.
(a)
(i) If α is a root of $P(x)$ with multiplicity n, show that α is also a root of $P^{\prime}(x)$ with multiplicity $n-1$.
(ii) Given $P(x)=2 x^{4}+9 x^{3}+6 x^{2}-20 x-24$ has a triple root, factorise $P(x)$ into its linear factors.
(b) Using the method of cylindrical shells, find the volume generated by revolving the area bounded by the lines $x= \pm 2$ and the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{4}=1$ about the y-axis.
(c) The diagram below shows a cross-sectional slice of a solid whose base is the region enclosed by the circle $x^{2}+y^{2}=4$. Each such cross-section is an equilateral triangle. Find the volume of the solid.

(d) Suppose that $P(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+1$ and the equation $P(x)=0$ has roots $\alpha, \beta, \gamma, \delta$,
(i) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=-2$
(ii) Hence prove that the equation $P(x)=0$ has precisely two real roots.
(a) $P\left(5 p, \frac{5}{p}\right)$ and $Q\left(5 q, \frac{5}{q}\right), p, q>0$, are two variable points on the hyperbola $x y=25$.
(i) Derive the equation of the chord $P Q$.
(ii) State the equations of the tangents at P and Q.
(iii) If the tangents at P and Q intersect at R, find the coordinates of R.
(iv) If the secant $P Q$ passes through the point $(15,0)$, find the locus of R.
(b) Points P and Q are the endpoints of a focal chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. If the parameters at P and Q are θ and ϕ respectively, show that the ellipse's eccentricity is given by $e=\frac{\sin (\theta-\phi)}{\sin \theta-\sin \phi}$.
(c) A sequence of numbers $T_{n}, n=1,2,3 \ldots$, is defined by $T_{1}=2, T_{2}=0$ and

$$
T_{n}=2 T_{n-1}-2 T_{n-2}, \text { for } n=3,4,5 \ldots
$$

Use mathematical induction to show that $T_{n}=(\sqrt{2})^{n+2} \cos \frac{n \pi}{4}, n=1,2,3 \ldots$

Question 16 (15 marks) Commence a NEW page Mark
(a)

The points A, B, C, represent the complex numbers z_{1}, z_{2}, z_{3} respectively.
The points P, Q, R, represent the complex numbers w_{1}, w_{2}, w_{3}.

If $\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}$ then prove that $\triangle A B C$ is similar to $\triangle P Q R$.
(b) $A B C D$ is a cyclic quadrilateral. $D A$ produced and $C B$ produced meet at P. T is a point on the tangent at D to the circle through A, B, C and D.
$P T$ cuts $C A$ and $C D$ at E and F respectively. $T F=T D$.

Copy this diagram into your writing booklet.
(i) Show that $A E F D$ is a cyclic quadrilateral.
(ii) Show that $P B E A$ is a cyclic quadrilateral.
(c) Let $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ and $J_{n}=\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n} d x$
(i) Apply integration by parts to I_{n} to show that $I_{n}=2 n J_{n-1}$
(ii) Hence show that $I_{n}=\frac{2 n}{2 n+1} I_{n-1}$
(iii) Show that $J_{n}=I_{n}-I_{n+1}$ and hence deduce that $J_{n}=\frac{1}{2 n+3} I_{n}$
(iv) Hence write down a reduction formula for J_{n} in terms of J_{n-1} 1

SECTION 1 - OBJECTIVE RESPONSE

1. A
2. B
3. D
4. B
5. D
6. B
7. C
8. B
9. C
10. D
Q. 11
(a)

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{3}} \sec ^{4} x \tan x d x \\
& =\int_{0}^{\frac{\pi}{3}} \sec ^{3} x \cdot \sec x \tan x d x \\
& =\left[\frac{\sec ^{4} x}{4}\right]_{0}^{\frac{\pi}{3}} \quad \text { by standard integrals } \\
& =\frac{2^{4}}{4}-\frac{1^{4}}{4} \\
& =\frac{15}{4}
\end{aligned}
$$

ALT:

$$
\begin{aligned}
I & =\int \sec ^{2} x \cdot \sec ^{2} x \tan x d x \\
& =\int\left(1+\tan ^{2} x\right) \cdot \tan x \cdot \sec ^{2} x d x \\
& =\int\left(\tan x+\tan ^{3} x\right) \sec ^{2} x d x \\
& =\left[\frac{\tan ^{2} x}{2}+\frac{\tan ^{4} x}{4}\right]_{0}^{\pi / 3} \\
& =\frac{3}{2}+\frac{9}{4} \\
& \left.=\frac{15}{4} \cdot\right]
\end{aligned}
$$

$\sqrt{ }$| uses |
| :---: |
| table |
| correctly |

$\sqrt{\text { correct }}$| answer |
| :---: |

Q11-cted
(b)

$$
\begin{aligned}
I & =\int \frac{d x}{\sqrt{x^{2}-8 x+25}} \\
& =\int \frac{d x}{\sqrt{(x-4)^{2}+3^{2}}} \\
& =\ln \left(x-4+\sqrt{(x-4)^{2}+9}\right)+C
\end{aligned}
$$

(by standard integrals)
(c)
(i)

$$
\begin{align*}
\frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)} & \equiv \frac{A}{1-x}+\frac{B x+C}{3+x^{2}} \\
\therefore 9+x-2 x^{2} & \equiv A\left(3+x^{2}\right)+(B x+C)(1-x) \\
\therefore \quad & =(A-B) x^{2}+(B-C) x+(3 A+C) \\
\therefore B-B & =-2 \text { (1) } \tag{i}\\
B-C & =1 \text { (2) } \tag{2}\\
3 A+C & =9 \tag{3}
\end{align*}
$$

(1) $+(2) \rightarrow$

$$
A \quad-C=-1
$$

(3) $+(4) \rightarrow$
$4 A$

$$
=8
$$

$$
\therefore \quad A=2
$$

$$
\therefore \quad C=3, \quad B=4
$$

$$
\therefore \frac{9+x-2 x^{2}}{(1-x)\left(3+x^{2}\right)}=\frac{2}{1-x}+\frac{4 x+3}{3+x^{2}}
$$

(ii)

$$
\begin{aligned}
I & =\int\left[\frac{2}{1-x}+\frac{4 x}{3+x^{2}}+\frac{3}{3+x^{2}}\right] d x \\
\therefore I & =-2 \ln |1-x|+2 \ln \left(3+x^{2}\right)+\sqrt{3} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+C
\end{aligned}
$$

Q11-ctd
(d)

$$
\begin{aligned}
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1-\cos x} d x \quad \text { Lat } t & =\tan \left(\frac{x}{2}\right) \\
\therefore d t & =\frac{1}{2} \sec ^{2} \frac{x}{2} d x \\
2 d t & =\left(1+\tan ^{2} \frac{x}{2}\right) d x \\
\text { ie } d x & =\frac{2}{1+t^{2}} d t
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x=\frac{\pi}{3} \rightarrow t=\frac{1}{\sqrt{3}} \\
x=\frac{\pi}{2} \rightarrow t=1
\end{array}\right.
$$

Thes $I=\int_{\frac{1}{\sqrt{3}}}^{1} \frac{1}{1-\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t$

$$
\begin{aligned}
& =\int_{\frac{1}{\sqrt{3}}}^{1} \frac{1}{t^{2}} d t \\
& =\left[-\frac{1}{t}\right]_{\frac{1}{\sqrt{3}}}^{1}=-1+\sqrt{3} .
\end{aligned}
$$

(e) (i)

$$
\begin{aligned}
& \text { If } I=\int_{0}^{a} f(a-x) d x, \quad \text { let } u=a-x \\
& \therefore \quad x=0 \rightarrow u=a, \quad x=a \rightarrow u=0 \\
& \therefore=\int_{a}^{0} f(u) \cdot-d u \\
&=\int_{0}^{a} f(u) d u=-d x
\end{aligned}
$$

(ii)

$$
\left.\begin{array}{rl}
I & =\int_{0}^{\pi} x \sin x d x
\end{array}\right)=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) d x
$$

Q12
(a) Let $z^{2}=(a+i b)^{2}=9-40 i$

$$
\therefore \quad a^{2}-b^{2}=9
$$

and $\quad 2 a b i=-40 i \quad \therefore a b=-20$.
By inspection, $a=5, b=-4 \quad$ or $a=-5 \quad b=4$
ie. square roots are $5-4 i$ and $-5+4 i$.
(b)

$$
\begin{aligned}
z=\sqrt{3}+i & =2\left(\frac{\sqrt{3}}{2}+\frac{1}{2} i\right) \\
z & =2\left(\cos \frac{\pi}{6}+\sin \frac{\pi}{6} i\right)
\end{aligned}
$$

(c) (i) Let $z=x+i y, \quad x, y$ real

$$
\begin{aligned}
2|z| & =3(z+\bar{z}) \\
4|z|^{2} & =9(z+\bar{z})^{2} \quad \text { and } x \geqslant 0 \\
4\left(x^{2}+y^{2}\right) & =9(2 x)^{2} \\
4 y^{2} & =32 x^{2} \\
y^{2} & =8 x^{2} \quad, x \geqslant 0
\end{aligned}
$$

(ii)

Q12-ctd
(d) (i)
(ii)

$$
\begin{aligned}
& 2 z^{4}-z^{3}+3 z^{2}-z+2=0 \\
& 2 z^{4}+2-z^{3}-z+3 z^{2}=0 \\
& 2\left(z^{4}+1\right)-\left(z^{3}+z\right)+3 z^{2}=0 \\
& 2\left(z^{2}+z^{-2}\right)-\left(z+z^{-1}\right)+3=0 \\
& 2(2 \cos 2 \theta)-2 \cos \theta+3=0 \\
& 4 \cos 2 \theta-2 \cos \theta+3=0 \\
& 4\left(2 \cos ^{2} \theta-1\right)-2 \cos \theta+3=0 \\
& 8 \cos ^{2} \theta-2 \cos \theta-1=0 \\
& (2 \cos \theta-1)(4 \cos \theta+1)=0 \\
& \cos \theta=\frac{1}{2} \text { or } \cos \theta=-\frac{1}{4}
\end{aligned}
$$

$$
\left(-z^{2} \rightarrow\right) \quad 2\left(z^{2}+z^{-2}\right)-\left(z+z^{-1}\right)+3=0
$$

if $\cos \theta=\frac{1}{2}, \quad \sin \theta= \pm \frac{\sqrt{3}}{2}$
if $\cos \theta=-\frac{1}{4}, \sin \theta= \pm \frac{\sqrt{15}}{4}$
\therefore roots are $z=\frac{1}{2} \pm i \frac{\sqrt{3}}{2},-\frac{1}{4} \pm \frac{i \sqrt{15}}{4}$.

$$
\begin{aligned}
& z=\cos \theta+i \sin \theta \\
& z^{n}=(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \\
& Z^{-n}=(\cos \theta+i \sin \theta)^{-n}=\cos (-n \theta)+i \sin (-n \theta) \\
& =\cos n \theta-i \sin n \theta \\
& \therefore z^{n}+z^{-n}=\cos n \theta+i \sin 2 \theta+\cos n \theta-i \sin n \theta \\
& =2 \cos n \theta \text {. }
\end{aligned}
$$

Q12 etd
(e) $|z-2|=2$ and $0<\arg z<\frac{\pi}{2}$
(i) $\quad \operatorname{Im}(z) \uparrow$
(ii)

$$
\begin{aligned}
\arg (z-2) & =k \arg \left(z^{2}-2 z\right) \\
& =k \arg z(z-2) \\
& =k(\arg z+\arg (z-2)
\end{aligned}
$$

using vectors, we see that

$$
\arg (z-2)=2 \cdot \arg z \quad\left(\begin{array}{c}
\text { exterior }<\text { of } A ; \\
\text { equal radii) }
\end{array}\right.
$$

Hence

$$
\begin{aligned}
2 \arg z & =k(\arg z+2 \arg z) \\
2 & =3 k \\
& \therefore \quad k=\frac{2}{3}
\end{aligned}
$$

Q13

$$
f(x)=-(x-3)(x+1)
$$

(a) (i)

(ii)

(iii)

(iv)

Q13- ct.
(b) (i) $y=\cos ^{-1}\left(e^{x}\right)$

We need $-1 \leqslant e^{x} \leqslant 1 \quad \therefore e^{x} \leqslant 1 \quad \therefore \quad x \leqslant 0$

$$
\therefore \quad D: x \leqslant 0
$$

Since $x \leqslant 0,0 \leqslant y<\frac{\pi}{2} \quad$ (as $e^{x} \rightarrow 0^{+}$as $x \rightarrow-\infty$)

$$
\therefore R: 0 \leqslant y<\frac{\pi}{2}
$$

(ii)

$$
\begin{gathered}
y=\cos ^{-1}\left(e^{x}\right) . \\
\left(y=\frac{\pi}{2}\right. \text { is }
\end{gathered}
$$ asymptote).

(c)

$$
\begin{aligned}
& 3 x^{2}+y^{2}-2 x y-8 x+2=0 \\
\therefore & 6 x+2 y \frac{d y}{d x}-2 y-2 x \frac{d y}{d x}-8=0 \\
\therefore & \frac{d y}{d x}=\frac{8-6 x+2 y}{2 y-2 x}=\frac{4-3 x+y}{y-x}
\end{aligned}
$$

Thus $\frac{4-3 x+y}{y-x}=2$

$$
\therefore \quad 4-3 x+y=2 y-2 x \quad \therefore \quad y=4-x .
$$

Sub. in curve equation:-

$$
\begin{aligned}
& 3 x^{2}+16-8 x+x^{2}-8 x+2 x^{2}-8 x+2=0 \\
& 6 x^{2}-24 x+18=0 \\
& x^{2}-4 x+3=0 \\
& (x-3)(x-1)=0 \\
& \therefore x=3 \rightarrow y=1 \\
& \quad \text { or } x=1 \rightarrow y=3
\end{aligned}
$$

\therefore the points are $(3,1)$ and $(1,3)$.

Q14
(a) (i) Let $P(x)=(x-\alpha)^{n} \cdot Q(x), \quad Q(\alpha) \neq 0$.

$$
\begin{aligned}
\therefore P^{\prime}(x) & =n(x-\alpha)^{n-1} \cdot Q(x)+(x-\alpha)^{n} \cdot Q^{\prime}(x) \\
& =(x-\alpha)^{n-1}\left[n \cdot Q(x)+(x-\alpha) \cdot Q^{\prime}(x)\right] \\
& =(x-\alpha)^{n-1} \cdot Q_{1}(x), \text { where } Q(\alpha) \neq 0
\end{aligned}
$$

$\therefore \alpha$ is a root of $P^{\prime}(x)$ of multiplicity $n-1$.
(ii)

$$
\begin{aligned}
& \text { (ii) } P(x)=2 x^{4}+9 x^{3}+6 x^{2}-20 x-24 \text { has a triple } \\
& \therefore P^{\prime}(x)=8 x^{3}+27 x^{2}+12 x-20 \quad \text { has a double root } \\
& \therefore P^{\prime \prime}(x)=24 x^{2}+54 x+12 \quad \text { has a } \quad \text { 1-fold root. } \\
& \therefore \quad 24 x^{2}+54 x+12=0 \\
& 4 x^{2}+9 x+2=0 \\
& (4 x+1)(x+2)=0 \quad \therefore x=-\frac{1}{4} \text { or }-2 .
\end{aligned}
$$

Subbing $x=-2$,

$$
P(-2)=2(-2)^{4}+9(-2)^{3}+6(-2)^{2}-20(-2)-24=0
$$

$\therefore x=-2$ is the triple root.
By inspection, $\quad P(x)=(x+2)^{3} \cdot(2 x-3)$

Q14 etd
(b)

A shell at $P(x, y)$ has height $2 y$ and curved surface area $2 \pi x$.

Thus $\Delta V \div 2 \pi x \cdot 2 y \cdot \Delta x$

Now $\quad \frac{y^{2}}{9}-\frac{x^{2}}{4}=1 \quad \therefore y^{2}=9\left(1+\frac{x^{2}}{4}\right)$

$$
\therefore y= \pm \frac{3}{2} \sqrt{4+x^{2}}
$$

$$
\begin{aligned}
& \therefore \Delta V=2 \pi x \cdot 3 \sqrt{4+x^{2}} \Delta x \\
& V=\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{x=2} 6 \pi x \sqrt{4+x^{2}} \Delta x \\
& V=6 \pi \int_{0}^{2} x \sqrt{4+x^{2}} d x \\
&=3 \pi \int_{0}^{2} 2 x \sqrt{4+x^{2}} d x \\
&=3 \pi\left[\frac{2}{3}\left(4+x^{2}\right)^{\frac{3}{2}}\right]_{0}^{2} \\
& V=2 \pi\left[8^{\frac{3}{2}}-4^{\frac{3}{2}}\right] \\
& \therefore V=16 \pi(2 \sqrt{2}-1) u^{3} .
\end{aligned}
$$

Q14 cod. (c)

Area of each cross-sectional slice is $\frac{1}{2}(2 y)^{2} \sin \frac{\pi}{3}=\sqrt{3} y^{2}$

$$
\begin{aligned}
& \therefore \Delta V \doteqdot \sqrt{3} y^{2} \cdot \Delta x \\
& \therefore \Delta V \doteqdot \sqrt{3}\left(4-x^{2}\right) \Delta x
\end{aligned}
$$

Thus $V=\lim _{\Delta x \rightarrow 0} \sum_{x=-2}^{+2} \sqrt{3}\left(4-x^{2}\right) \Delta x$

$$
\begin{aligned}
V & =\sqrt{3} \int_{-2}^{2}\left(4-x^{2}\right) d x=2 \sqrt{3} \int_{0}^{2}\left(4-x^{2}\right) d x \\
\therefore V & =2 \sqrt{3}\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
& =2 \sqrt{3}\left(8-\frac{8}{3}\right) \quad \therefore V=\frac{32 \sqrt{3}}{3} u^{3}
\end{aligned}
$$

(d) $p(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+1$
(i)

$$
\begin{aligned}
& \alpha+\beta+\gamma+\delta=-(-2)=2 \\
& (\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta)=3
\end{aligned}
$$

So $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\alpha+\beta+\gamma+\delta)^{2}-2(\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma \quad 1+\beta \delta+\gamma \delta)$ $+\beta \delta+\gamma \delta)$

$$
\begin{aligned}
& =2^{2}-2(3) \\
& =-2
\end{aligned}
$$

(ii) Since $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}<0$
\therefore at least one of $\alpha, \beta, \gamma, \delta$ is non-real.
But since the coefficients of $P(x)$ are real, the conjugate of this non-real root is also a root. What of the remaining 2 roots?
We observe that $P(-1)=1+2+3+4+1=11>0$ and $P(1)=1-2+3-4+1=-1<0$.
\therefore Since $P(x)$ is continicuoss, and $P(-1)$ and $P(1)$ have opposite signs, $y=P(x)$ crosses the x axis
$\therefore P(x)$ has a real root. But the remaining root must also be real, else it would have a conjugate thati'a root. \therefore exactly 2 real roots.

Q15 (a) $P\left(5 p, \frac{5}{p}\right), Q\left(5 q, \frac{5}{q}\right) ; p, q>0$
(i) $m_{P Q}=\frac{\frac{5}{q}-\frac{5}{p}}{5 q-5 p}=-\frac{1}{p q}$
$\therefore P Q$ equation is $y-\frac{5}{P}=-\frac{1}{p q}(x-5 p)$

$$
\begin{aligned}
\therefore \quad p q y-5 q= & -x+5 p \\
& \therefore \quad x+p q y=5(p+q) .
\end{aligned}
$$

(ii) For tangent at p, let $q \rightarrow p$

$$
\begin{aligned}
& \therefore \quad x+p^{2} y=5(2 p) \\
& \therefore \quad x+p^{2} y=10 p
\end{aligned}
$$

Likewise, tangent at Q is $\quad x+q^{2} y=10 q$.
(iii) For R, solve tangents simultaneously:

$$
\begin{aligned}
& y\left(p^{2}-q^{2}\right)=10(p-q) \\
& \therefore \text { as } p \neq q, \quad y=\frac{10}{p+q}
\end{aligned}
$$

Thus $x=10 p-\frac{10 p^{2}}{p+q}=\frac{10 p q}{p+q}$

$$
\therefore \quad R=\left(\frac{10 p q}{p+q}, \frac{10}{p+q}\right)
$$

(iv) $p Q$ secant is $x+p q y=5(p+q)$
\therefore if goes thru $(15,0), 15+0=5(p+q)$

$$
\therefore p+q=3 .
$$

Thus $R=\left(\frac{10 p q}{3}, \frac{10}{3}\right)$
Solocus is $y=\frac{10}{3}$.
But $x>0$, since $p q>0$, and since the intersection cannot occur inside the hyperbola, $\therefore x<7.5$.
\therefore Locus is $y=\frac{10}{3}, 0<x<7.5$.
[Note: the tangent at $\left(75, \frac{10}{3}\right)$ on H gees thru $(15,0)$]

Q15-ctd.
(b)

Since $P Q$ is a focal chord, S his on $P Q$.

$$
\begin{aligned}
& \therefore \quad m_{\rho_{S}}=m_{P_{Q}} \\
& \therefore \quad \frac{b \sin \theta-0}{a \cos \theta-a e}=\frac{b \sin \theta-b \sin \phi}{a \cos \theta-a \cos \phi} \\
& \therefore \quad \frac{b \sin \theta}{a(\cos \theta-e)}=\frac{b(\sin \theta-\sin \phi)}{a(\cos \theta-\cos \phi)} \\
& \therefore \quad \sin \theta \cos \theta-\sin \theta \cos \phi \\
& \quad=\cos \theta \sin \theta-\cos \theta \sin \phi-e(\sin \theta-\sin \phi) \\
& \therefore \quad-\sin \theta \cos \phi+\cos \theta \sin \phi=-e(\sin \theta-\sin \phi) \\
& \therefore \quad \sin \theta \cos \phi-\cos \theta \sin \phi=e(\sin \theta-\sin \phi) \\
& \therefore \quad \sin (\theta-\phi)=e(\sin \theta-\sin \phi) \\
& \therefore \quad e=\frac{\sin (\theta-\phi)}{\sin \theta-\sin \phi}, a s \text { required. }
\end{aligned}
$$

[ALT. Equation of $P Q$ is

$$
y-b \sin \theta=\frac{b \sin \theta-b \sin \phi}{a \cos \theta-a \cos \phi}(x-a \cos \theta) .
$$

Sub.in $S(a e, 0)$, and rearrange correctly.]

Q15 ct.
(C) We have $T_{n}=2 T_{n-1}-2 T_{n-2}, n=3,4,5 \cdots$ and $T_{1}=2, T_{2}=0$. To prove: $T_{n}=(\sqrt{2})^{n+2} \cos \frac{n \pi}{4}$.

When $n=1: \quad(\sqrt{2})^{1+2} \cos \frac{1(\pi)}{4}=2 \sqrt{2} \cdot \frac{1}{\sqrt{2}}=2$
\therefore true for $n=1$
When $n=2:(\sqrt{2})^{2+2} \cos \frac{2 \pi}{4}=4 \times 0=0$
\therefore true for $n=2$
Assume true for $n \leq k$
i.e. assume $T_{n}=(\sqrt{2})^{n+2} \cos \frac{n \pi}{4}, \quad n=1,2,3, \ldots k k$. Then look at $n=k+1$:

$$
\left.\begin{array}{rl}
T_{k+1} & =2 \cdot T_{k}-2 \cdot T_{k-1} \quad \text { by the recursuir } \\
\text { definition }
\end{array}\right]=2(\sqrt{2})^{k+2} \cdot \cos \frac{k \pi}{4}-2(\sqrt{2})^{(k-1)+2} \cos \frac{(k-1) \pi}{4}
$$

by our assumption.

$$
\begin{aligned}
& =(\sqrt{2})^{k+3}\left[\sqrt{2} \cos \frac{k \pi}{4}-\cos \left(\frac{k \pi}{4}-\frac{\pi}{4}\right)\right] \\
& =(\sqrt{2})^{k+3}\left[\frac{2}{\sqrt{2}} \cos \frac{k \pi}{4}-\left(\cos \frac{k \pi}{4} \cos \frac{\pi}{4}+\sin \frac{k \pi}{4} \sin \frac{\pi}{4}\right)\right] \\
& =(\sqrt{2})^{k+3}\left[\frac{2}{\sqrt{2}} \cos \frac{k \pi}{4}-\frac{1}{\sqrt{2}} \cos \frac{k \pi}{4}-\frac{1}{\sqrt{2}} \sin \frac{k \pi}{4}\right] \\
& =(\sqrt{2})^{k+3}\left[\frac{1}{\sqrt{2}} \cos \frac{k \pi}{4}-\frac{1}{\sqrt{2}} \sin \frac{k \pi}{4}\right] \\
& =(\sqrt{2})^{k+3}\left[\cos \frac{\pi}{4} \cos \frac{k \pi}{4}-\sin \frac{\pi}{4} \sin \frac{k \pi}{4}\right] \\
& =(\sqrt{2})^{k+3}\left[\cos \left(\frac{k \pi}{4}+\frac{\pi}{4}\right)\right] \\
\therefore T_{k+1} & =(\sqrt{2})^{(k+1)+2} \cos \frac{(k+1) \pi}{4}
\end{aligned}
$$

\therefore if true for $n=1,2, \ldots k$ its true for $n=k+1$.
Hence, by induction $\&(*)$, true for $n=1,2,3 \ldots$ w

Q16
(a)

Given $\frac{z_{2}-z_{1}}{z_{3}-z_{1}}=\frac{w_{2}-w_{1}}{w_{3}-w_{1}}$

$$
\begin{aligned}
& \therefore\left|\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right|=\left|\frac{w_{2}-w_{1}}{w_{3}-w_{1}}\right| \\
& \therefore \frac{\left|z_{2}-z_{1}\right|}{\left|z_{3}-z_{1}\right|}=\frac{\left|w_{2}-w_{1}\right|}{\left|w_{3}-w_{1}\right|} \\
& \therefore \frac{A B}{A C}=\frac{P Q}{P R}
\end{aligned}
$$

Also, $\operatorname{Arg}\left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)=\operatorname{Arg}\left(\frac{\omega_{2}-w_{1}}{\omega_{3}-w_{1}}\right)$

$$
\begin{aligned}
\therefore \quad \operatorname{Arg}\left(z_{2}-z_{1}\right)-\operatorname{Arg}\left(z_{3}-z_{1}\right) & =\operatorname{Arg}\left(\omega_{2}-\omega_{1}\right)-\operatorname{Arg}\left(\omega_{3}-\omega_{1}\right) \\
\therefore \quad \theta & =\alpha
\end{aligned}
$$

Thus $\triangle A B C I I I \triangle P Q R$, since 2 pairs of corresponding sides are in the
same ratio, and the included angle 2 pairs of comesponding sides are in the
same ratio, and the included angle is equal.

Q16 cod

(i)

$$
T D=T F \text { (given) }
$$

$\therefore \angle T F D=\angle T D F$ (base angles of isosceles triangle are equal)
$\angle T D F=\angle C A D$ (angle between tangent and chord at point of contact equals angle in alternate segment)

$$
\therefore \angle T F D=\angle C A D
$$

$\therefore A E F D$ is cyclic (exterior angle equals interior opposite angle) \#
(ii) $\angle P E A=\angle A D F$ (exterior angle of cyclic quad AEFD equals interior opposite angle)
$\angle P B A=\angle A D F$ (exterior angle of cyclic quad $A B C D$ equals interior opposite angle)

$$
\therefore \quad \angle P E A=\angle P B A
$$

\therefore PBEA is cyclic (interval AP subtends equal angles at points E\&B which are on the same side of AP).

Q16 ctd
(c)

$$
I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x \& J_{n}=\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n} d x
$$

(i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{1}\left(1-x^{2}\right)^{n} \cdot \frac{d}{d x}(x) d x \\
& =\left[x\left(1-x^{2}\right)^{n}\right]_{0}^{1}-\int_{0}^{1}-2 n x^{2}\left(1-x^{2}\right)^{n-1} d x \\
& =0+2 n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n-1} d x \\
\therefore I_{n} & =2 n \cdot J_{n-1}
\end{aligned}
$$

(ii) from (i),

$$
\begin{aligned}
I_{n} & =2 n \int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n-1} d x \\
& =-2 n \int_{0}^{1}\left[\left(1-x^{2}\right)-1\right] \cdot\left(1-x^{2}\right)^{n-1} d x \\
& =-2 n \cdot\left(I_{n}-I_{n-1}\right) \\
& =-2 n \cdot I_{n}+2 n \cdot I_{n-1} \\
\therefore \quad(2 n+1) \cdot I_{n} & =2 n \cdot I_{n-1} \\
\therefore \quad I_{n} & =\frac{2 n}{2 n+1} \cdot I_{n-1}
\end{aligned}
$$

Q16 ctd.
(c) (iii)

$$
\begin{aligned}
J_{n} & =\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{n} d x \\
& =-\int_{0}^{1}\left[\left(1-x^{2}\right)-1\right]\left(1-x^{2}\right)^{n} d x \\
& =-\left(I_{n+1}-I_{n}\right) \\
\therefore J_{n} & =I_{n}-I_{n+1} \\
& =I_{n}-\frac{2(n+1)}{2(n+1)+1} \cdot I_{n} \quad \text { from(ii) } \\
& =\frac{(2 n+3) \cdot I_{n}-(2 n+2) I_{n}}{2 n+3} \\
\therefore J_{n} & =\frac{1}{2 n+3} \cdot I_{n}
\end{aligned}
$$

(iv) using (iii) and (i),

$$
\begin{aligned}
J_{n} & =\frac{1}{2 n+3} \cdot I_{n} \\
& =\frac{1}{2 n+3} \cdot 2 n \cdot J_{n-1}
\end{aligned}
$$

i.e. $J_{n}=\frac{2 n}{2 n+3} \cdot J_{n-1}$

