HIGH SCHOOL

2016 HSC ASSESSMENT TASK 3 (TRIAL HSC)

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- For Section I, shade the correct box on the sheet provided
- For Section II, write in the booklet provided
- Each new question is to be started on a new page.
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Attempt all questions

Class Teacher:
(Please tick or highlight)
O Mr Ireland
O Mr Lin
O Dr Jomaa

Student Number
(To be used by the exam markers only.)

Question No	$1-10$	11	12	13	14	15	16	Total	Total
Mark	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$	$\overline{100}$

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10 located at the end of this section.
1 If $z=2-5 i$ find z^{-1} expressed with a real denominator
(A) $\frac{1}{24}(2+5 i)$
(B) $\frac{1}{29}(2+5 i)$
(C) $\frac{1}{29}(2-5 i)$
(D) $\frac{1}{24}(-2+5 i)$

2 If the line $y=m x+b$ is a tangent to the hyperbola $x y=c^{2}$, which of the following is true?
(A) $b^{2}=-4 m c^{2}$
(B) $b^{2}=4 m c^{2}$
(C) $b=4 m c$
(D) $c^{2}=4 m b$

3 For a certain function $=f(x)$, the function $f(|x|)$ is represented by:
(A) A reflection of $y=f(x)$ in the y axis
(B) A reflection of $y=f(x)$ in the x axis
(C) A reflection of $y=f(x)$ in the x axis for $y \geq 0$
(D) A reflection of $y=f(x)$ in the y axis for $x \geq 0$

4 A hyperbola has equation $x^{2}-4 y^{2}=4$. The distance between its directrices is:
(A) $\sqrt{5}$
(B) $\frac{4 \sqrt{5}}{5}$
(C) $2 \sqrt{5}$
(D) $\frac{8 \sqrt{5}}{5}$

5 If $e^{x}+e^{y}=1, \frac{d y}{d x}=$
(A) $-e^{x-y}$
(B) e^{y-x}
(C) e^{x-y}
(D) $-e^{y-x}$

6 The polynomial $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has real coefficients, and $P(2 i)=P(2+i)=0$ What is $a+b+c+d ?$
(A) 0
(B) 1
(C) 4
(D) 9

7 The solutions to the equation $x^{4}-10 x^{2}+5=0$ are
$x=\tan \frac{\pi}{5}, \tan \frac{2 \pi}{5}, \tan \frac{3 \pi}{5}, \tan \frac{4 \pi}{5}$
What is the value of: $\tan ^{2} \frac{\pi}{5}+\tan ^{2} \frac{2 \pi}{5}+\tan ^{2} \frac{3 \pi}{5}+\tan ^{2} \frac{4 \pi}{5}$?
(A) 20
(B) 5
(C) $\quad-20$
(D) 10

8 Which expression is equal to $\int \frac{1}{1-\sin x} d x$
(A) $\tan x-\sec x+c$
(B) $\tan x+\sec x+c$
(C) $\log _{e}(1-\sin x)+c$
(D) $\frac{\log _{e}(1-\sin x)}{-\cos x}+c$

9 Let ω be the complex root of unity such that $\omega^{n}=1, \omega \neq 1$
Find the value of $\sum_{k=0}^{n}\left(w^{k}+\frac{1}{w^{k}}\right)$
(A) 0
(B) 1
(C) 2
(D) 3

10 Which of the following equations best describe this curve?

(A) $y=e^{x^{2}}$
(B) $y=\frac{1}{(x+1)^{2}}$
(C) $y=\frac{1}{x^{2}+1}$
(D) $y=e^{-x^{2}-x}$

Section II

90 marks

Attempt Questions 11-16

Allow about $\mathbf{2}$ hours and $\mathbf{4 5}$ minutes for this section.
Answer each question on a NEW page. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page in your writing booklet.
(a) Find $\int \frac{(\ln x)^{2}}{x} d x$.
(b) Find $\int \sin ^{3} x \cos ^{2} x d x$
(c) Find $\int \frac{d x}{\sqrt{3-2 x-x^{2}}}$
(d) $\begin{aligned} & \text { By using the substitution of } x=2 \tan \theta, \quad \int_{0}^{2} \frac{d x}{\left(4+x^{2}\right)^{\frac{3}{2}}} \text { evaluate }\end{aligned}$
(e) (i) Express $\frac{7 x}{\left(x^{2}+3\right)(x+2)}$ in the form of $\frac{A x+B}{x^{2}+3}+\frac{C}{x+2}$
(ii) Hence evaluate $\int_{0}^{3} \frac{7 x}{\left(x^{2}+3\right)(x+2)} d x$

2
(f) The area bounded by the curve $y=2 \cos x$ for $0 \leq x \leq 2 \pi$ and the line $y=2$ is rotated about the y axis. Find the volume of the solid formed using the method of cylindrical shells.

Question 12 (15 marks) Start a NEW page in your writing booklet.
(a) For the hyperbola $\frac{y^{2}}{25}-\frac{x^{2}}{16}=1$, find
(i) the eccentricity 1
(ii) the coordinates of the foci S and S^{\prime} and the equations of its directrices
(iii) Sketch the hyperbola showing all the above features.
(b) Explain why the equation $\frac{x^{2}}{\lambda-23}+\frac{y^{2}}{5-\lambda}=1$ cannot represent the equation of an ellipse.
(c) Let $f(x)=x^{2}\left(x-\frac{3}{2}\right)$ be a function on the domain $-1 \leq x \leq 2$.
(i) Draw a neat sketch of $y=f(x)$, labelling all intersections with the coordinate axes and turning points. You are not required to test the nature of the turning points.
(ii) \quad Sketch $y=\frac{1}{f(x)}$.
(iii) \quad Sketch $y^{2}=f(x)$
(d) Find the coordinates of the stationary points for the curve $x^{2}-4 x y=y^{2}-20$

Question 13 (15 marks) Start a NEW page in your writing booklet.
(a) Shade the region defined by the intersection of $|\arg z| \leq \frac{\pi}{3}, z+\bar{z} \leq 4$ and $|z| \geq 2$
(b) If $z=\sqrt{3}+i$
(i) Find the exact value of $|z| \operatorname{and} \arg z \quad 2$
(ii) By using De Moivre's theorem write $\frac{1}{z^{5}}$ in the form of $x+i y$
(c) A polynomial function is $P(x)=x^{5}+x^{4}+13 x^{3}+13 x^{2}-48 x-48$.

Factorise $P(x)$ over the field of:
(i) real numbers, 2
(ii) complex numbers.
(d) Find the complex square roots of $7+6 i \sqrt{2}$, giving your answer in the form of $a+i b$, where a and b are real.
(e) R is a positive number and z_{1}, z_{2} are complex numbers. Show that the points on the Argand diagram which represent respectively the numbers $z_{1}, z_{2}, \frac{z_{1}-i R z_{2}}{1-i R}$ form the vertices of a right angled triangle.

Question 14 (15 marks) Start a NEW page in your writing booklet.
(a)

The base of the solid is the region bounded by the parabola $x^{2}=4 y$ and the line $y=1$.

Cross sections perpendicular to this base and the y axis are parabolic segments with their vertices V directly above the y axis. The diagram shows a typical segment $P V Q$. All the segments have the property that the vertical height VC is three times the base length $P Q$.

Let $P(x, y)$ where $x \geq 0$ be a point on the parabola $x^{2}=4 y$
(i) Show that the area of the segment $P V Q$ is $8 x^{2}$.
(ii) Hence, find the volume of the solid.

Question 14 (continued)
(b) let $z=\cos \theta+i \sin \theta$ be any complex number of modulus 1 .
(i) Show that $\frac{z^{2}-1}{z}=2 i \sin \theta$
(ii) Hence, prove that

$$
z+z^{3}+z^{5}+z^{7}+z^{9}=\frac{\sin 10 \theta+i(1-\cos 10 \theta)}{2 \sin \theta}
$$

(iii) Hence write down a simplified expression for

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta
$$

(c) The diagram shows the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $a>b>0$.

The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \alpha, b \tan \alpha)$ lie on the hyperbola and the chord $P Q$ subtends a right angle at the origin.

(i) Show that $\sin \theta \sin \alpha=-\frac{a^{2}}{b^{2}}$.
(ii) Hence show that the gradient of the curve at $P(a \sec \theta, b \tan \theta)$ is

$$
\frac{d y}{d x}=-\frac{b^{3}}{a^{3}} \sin \alpha
$$

Question 15 (15 marks) Start a NEW page in your writing booklet.
(a) Let $I_{n}=\int_{0}^{1} x^{n} \ln (1+x) d x, n=0,1,2 \ldots$
(i) Show that $\int \ln (1+x) d x=(1+x) \ln (1+x)-x+c$
(ii) Show that $(n+1) I_{n}=2 \ln 2-\frac{1}{n+1}-n I_{n-1}, n=1,2, \ldots$
(iii) Evaluate $3 I_{2}$ and $4 I_{3}$
(iv)

$$
\text { Show that }(n+1) I_{n}=\left\{\begin{array}{c}
\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{n+1}, \quad \text { for } n \text { is odd } \\
2 \ln 2-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n+1}\right), \text { for } n \text { is even }
\end{array}\right.
$$

(b) Given $S_{n}=\sum_{k=1}^{n} k^{2}$. Prove by mathematical induction that:

$$
n S_{n}-\sum_{r=1}^{n-1} S_{r}=\sum_{r=1}^{n} r^{3} \text { for } \mathrm{n}>1
$$

Question 15 continued on Page 13

(c)

In the figure, the two circles Γ_{1} and Γ_{2} have centres O_{1} and O_{2} respectively. They intersect at the points A and B. The extensions of $O_{1} A$ meets Γ_{2} at C and the extension of $O_{2} A$ meets Γ_{1} at D.

Given that $B E \| O_{2} A$ and $E D \| O_{1} A$. Let $\angle B E D=\alpha$
(i) Copy or trace the diagram into your answer booklet.
(ii) Prove that $O_{1} D C O_{2}$ is a cyclic quadrilateral
(iii) Hence, prove that $\mathrm{DC} \perp \mathrm{CO}_{2}$

Question 16 (15 marks) Start a NEW page in your writing booklet.
(a) (i) Given that $\frac{a+b}{2} \geq \sqrt{a b}$ Prove that $\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}}{4} \geq \sqrt[4]{a b c d}$
(ii) Using part (i) and the fact that $\frac{a+b+c}{3}=\frac{1}{4}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}+\frac{a+b+c}{3}\right)$, prove that $\frac{a+b+c}{3} \geq \sqrt[3]{a b c}$
(b) (i) Prove that for all positive values of $x, e^{x}>1+x$
(ii) If $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers with $S_{n}=x_{1}+x_{2}+\ldots+x_{n}$ and $R_{n}=\left(1+x_{1}\right)\left(1+x_{2}\right) \ldots\left(1+x_{n}\right)$, show that $e^{S_{n}}>R_{n}>1+S_{n}$
(iii) Let $b_{k}=\frac{k^{2}+k+1}{k^{2}+k}$ and $P_{n}=b_{1} \times b_{2} \times \ldots \times b_{n}$

Show that $P_{n}<e$ for any positive whole numbers n
(c) Given a polynomial $P(x)=x^{3}-a x^{2}+b x-a$ where a and b are positive real numbers. Let a be the smallest positive real number such that all the roots of the polynomial are positive and real.
(i) Explain why all three roots of the polynomial are positive real numbers.
(ii) Using the result from part (a) (ii), find the value of a and b

End of Examination

Multiple Choice.

1 | 1. | 2 | A |
| :--- | :--- | :--- |$\quad 4 D$

8. B 9.C 10.C

Question 11
a) $I=\int(\ln x)^{2} \frac{1}{x} d x$

By using the reverse chain rule

$$
I=\frac{(\ln x)^{3}}{3}+c
$$

b)

$$
\begin{aligned}
I & =\int \sin ^{3} x \cos ^{2} x d x \\
& =\int \sin x\left(1-\cos ^{2} x\right) \cos ^{2} x d x \\
& =\int \sin x \cos ^{2} x-\sin x \cos ^{4} x d x \\
& =\frac{\cos ^{5} x}{5}-\frac{\cos ^{3} x}{3}+C .
\end{aligned}
$$

c)

$$
\begin{aligned}
\int \frac{d x}{\sqrt{3-\left(2 x+x^{2}\right)}} & =\int \frac{d x}{\sqrt{4-(x+1)^{2}}} \\
& =\sin ^{-1}\left(\frac{x+1}{2}\right)+C
\end{aligned}
$$

d) let $x=2 \tan \theta$
when $x=0 \quad \theta=0$
when $x=2 \quad \theta=\frac{\pi}{4}$

$$
\begin{aligned}
& d x=2 \sec ^{3} \theta d \theta \\
& \therefore I=\int_{0}^{\pi} \frac{2 \sec ^{2} \theta}{\left(4+4 \tan ^{2} \theta\right)^{\frac{3}{2}}} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{\frac{\pi}{4}} \cos \theta d \theta \\
& =\frac{1}{4}[\sin \theta]_{0}^{\frac{\pi}{4}} \\
& =\frac{\sqrt{2}}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7 x}{\left(x^{2}+3\right)(x+2)}=\frac{A x+B}{x^{2}+3}+\frac{C}{x+2} \\
& (A x+B)(x+2)+C\left(x^{2}+3\right)=7 x \\
& \text { when } x=-2 \\
& C=-2
\end{aligned}
$$

$$
A+C=0 \Rightarrow A=2
$$

when $x=0$

$$
\begin{aligned}
2 B+3 & =0 \\
B & =3 \\
\frac{7 x}{\left(x^{2}+3\right)(x+2)} & =\frac{2 x+3}{x^{2}+3}-\frac{2}{x+2}
\end{aligned}
$$

ii) $\int_{0}^{3} \frac{7 x}{\left(x^{2}+3\right)(x+2)} d x=\int_{0}^{3} \frac{2 x+3}{x^{2}+3}-\frac{2}{x+2} d x$

$$
=\int_{0}^{3} \frac{2 x}{x^{2}+3}+\frac{3}{x^{2}+3}-\frac{2}{x+2} d x
$$

$$
=\left[\log \left(x^{2}+3\right)+\frac{3}{\sqrt{3}} \tan -\frac{x}{\sqrt{3}}-2 \log (x+21]_{0}^{3}\right.
$$

$$
=\log 12+\frac{\pi}{\sqrt{3}}-\log 25-\log 3+\log 4
$$

$$
=\log \left(\frac{16}{25}\right)+\frac{\pi}{\sqrt{3}}
$$

f)

$$
\begin{aligned}
& \text { This volure is equiralent to } \\
& \delta V=2 \pi \cdot h \delta x \\
& =2 \pi x:(2-2 \cos x) \delta x \\
& =4 \pi x(1-\cos x) 8 x \\
& \therefore V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{2 \pi} 4 \pi x(1-\cos x) \\
& =4 \pi \int_{0}^{2 \pi} x(1-\cos x) d x
\end{aligned}
$$

Question 12
a) (i) $a^{2}=b^{2}\left(a^{2}-1\right)$
$16=25\left(e^{x}-1\right)$
$\frac{16}{25}=e^{2}-1$
$e^{2}=\frac{41}{25}$
$c=\frac{\sqrt{41}}{5}$
(ii)
Foci
$\left(0, \pm 5 \times \frac{\sqrt{41}}{5}\right)$
$=(0, \pm \sqrt{41})$

Directrices

$$
\begin{aligned}
y & =E \frac{5}{\frac{\sqrt{41}}{5}} \\
& = \pm \frac{25}{\sqrt{41}}
\end{aligned}
$$

(ii) asymptotes are $y= \pm \frac{5}{4} x$. vertices ane $(0,5),(0,-5)$

b) For an ellipse $\lambda-23>0$
$s-\lambda>0$

$$
\lambda>23 \quad 5>\lambda
$$

There are no values of λ that will satisfy this condition

$$
\frac{x^{2}}{\lambda-23}+\frac{y^{2}}{5-\lambda}=1 \text { cannot represent the equation of }
$$

c)
(i) $f(x)=x^{2}\left(x-\frac{3}{2}\right) \quad-1 \leqslant x \leqslant 2$

$$
=x^{3}-\frac{3 x^{2}}{2}
$$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-3 x \\
& =3 x(x-1)
\end{aligned}
$$

$$
\text { stationary points are at }(0,0) \text { and }\left(1,-\frac{1}{2}\right)
$$

(ii)

d) $2 x-\left(4 x \frac{d y}{d x}+4 y\right)=2 y \frac{d y}{d x}$

$$
2 x-4 x \frac{d y}{d x}-4 y=2 y \frac{d y}{d x}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{2 x-4 y}{2 y+4 x} \\
& =\frac{x-2 y}{y+2 x}
\end{aligned}
$$

$$
\text { Stationing points woven } \begin{array}{rl}
x-2 y & =0 \\
; e & x=2 y \\
4 y^{2}-8 y^{2} & =y^{2}-20 \\
5 y^{2} & =20 \\
y^{2} & =4 \\
y & = \pm 2
\end{array}
$$

$$
\text { when } y=2, x=4
$$

$$
y=-2, x=-4
$$

\therefore stationary points are

$$
(6,2),(4,-2)
$$

Question 13

a) $z+\frac{1}{z} \leq 4$

$$
\begin{aligned}
& 2 x \leqslant 4 \\
& x \leqslant 2
\end{aligned}
$$

$|\arg z| \leqslant \frac{\pi}{3}$

$$
-\frac{\pi}{3} \leqslant \arg z \leqslant \frac{\pi}{3}
$$

b)

$$
\text { (i) } \begin{aligned}
|z| & =\sqrt{3+1} \\
& =2 \\
\arg z & =\frac{\pi}{6}
\end{aligned}
$$

(ii) $z=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

$$
\therefore z^{-5}=\left[2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right]^{-5}
$$

By De Moirve's Thm

$$
\begin{aligned}
z^{-5} & =\frac{1}{32}\left(\cos \left(\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right) \\
& =\frac{1}{32}\left(\cos \frac{\pi \pi}{6} \cdots i \sin \frac{\pi}{6}\right) \\
& =-\frac{\sqrt{3}}{64}-\frac{1}{64} i
\end{aligned}
$$

(c) i) $P(x)=x^{4}(x+1)+13 x^{2}(x+1)-48(x+1)$

$$
\begin{aligned}
& =(x+1)\left(x^{4}+13 x^{2}-48\right) \\
& =(x+1)\left(x^{2}-3\right)\left(x^{2}+16\right) \\
& =(x+1)(x-\sqrt{x})(x+\sqrt{3})\left(x^{2}+16\right)
\end{aligned}
$$

ii) $\quad P(x)=(x+1)(x-\sqrt{3})(x+\sqrt{3})(x-4 i)(x+4 i)$
d) $z^{2}=7+6 \sqrt{2} i$

$$
\text { let } \begin{aligned}
& z=a+i b \\
&(a+i b)^{2}=a^{2}-b^{2}+2 a b i \\
& a^{2}-b^{2}=7 \\
& 2 a b=6 \sqrt{2} \\
& a b=3 \sqrt{2} \\
& a^{2}+b^{2}=11 \\
& 2 a^{2}=18 \\
& a^{2}=9 \\
& a= \pm 3 \\
& z= \pm(3+\sqrt{2} i)
\end{aligned}
$$

e) $\quad \arg \left(z_{1}-\left(\frac{z_{1}-R_{i} z_{2}}{1-R_{i}}\right)\right)$

$$
=\arg \left(\frac{R_{i}\left(z_{2}-z_{1}\right)}{1-R_{i}}\right)
$$

and

$$
\arg \left(z_{2}-\left(\frac{z_{1}-R_{i} z_{2}}{1-\hat{k}_{i}}\right) \quad\right. \text { where }
$$

$$
=\arg \left(\frac{z_{2}-z_{1}}{1-z_{i}}\right)
$$

$$
z_{3}=\frac{z_{1}-R_{i} z_{2}}{1-R_{i}}
$$

Non $\quad \arg \left(z_{1}-z_{3}\right)-\arg \left(z_{z}-z_{5}\right)$

$$
\begin{aligned}
& =\arg \left(\frac{R_{i}\left(z_{2}-z_{i}\right)}{1-R_{i}}\right)-\arg \left(\frac{z_{2}-z_{i}}{1-R_{i}}\right) \\
& =\arg \left(\frac{R_{i}\left(z_{2}-z_{i}\right)}{z_{2}-z_{i}}\right) \\
& =\arg \left(R_{i}\right) \\
& =\frac{\pi}{2} \quad \text { as } R>0
\end{aligned}
$$

$$
z_{1}, z_{1}, z_{3} \text { form right argue triangle. }
$$

Question 14

using sing pans rise le

$$
A(x)=\frac{x}{3}(0+4 x 6 x+0)
$$

$$
=\frac{24 x^{2}}{3}
$$

$$
=8 x^{2}
$$

(ii)

$$
\begin{aligned}
\delta V & =8 x^{2} \delta y \\
& =8(4 y) \delta y \\
V & =\lim _{y, 0} \sum_{y=0}^{1} 32 y \delta y \\
& =32 \int_{0}^{1} y d y \\
& =32\left[\frac{y^{2}}{2}\right]_{0}^{1} \\
& =16 \operatorname{unts}^{3}
\end{aligned}
$$

(b) (i) $\frac{z^{2}-1}{z}=z-\frac{1}{z}$

$$
\begin{aligned}
& =(\cos \theta+i \sin \theta)-(\cos \theta+i \sin \theta)^{-1} \\
& =\cos \theta+i \sin \theta-(\cos (-\theta)+i \sin (-\theta)) \text { By De Moirve's Than } \\
& =\cos \theta+i \sin \theta-(\cos \theta-i \sin \theta) \\
& =2 i \sin \theta
\end{aligned}
$$

(ii) $z+z^{3}+z^{5}+z^{7}+7^{9}$ is a geometric progression where the common ratio $n=z^{2}$, first term is $a=z$ and $n=5$

$$
S_{5}=\frac{z\left(\left(z^{2}\right)^{5}-1\right)}{z^{2}-1}
$$

$$
=\frac{z}{z^{2}-1}\left(z^{10}-1\right)
$$

$$
=\frac{1}{2 i \sin \theta} \cdot(\cos 10 \theta+i \sin 10 \theta-1) \quad \text { From part (i) }
$$

$$
=\frac{i \cos 10 \theta-\sin 10 \theta}{-2 \sin \theta}-i
$$

$$
=\frac{\sin 10 \theta+i(1-\cos 10 \theta)}{2 \sin \theta}
$$

(iii) Hence $\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta$ is the real part of the expression found in part (ii)

$$
\therefore \quad \cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta=\frac{\sin 10 \theta}{2 \sin \theta} .
$$

C) () Gradient of chord $O Q$

$$
\begin{aligned}
m_{O Q}=\frac{b \tan \alpha}{a \sec \alpha} & =\frac{b \sin \alpha}{\cos \alpha} \times \frac{\cos \alpha}{a} \\
& =\frac{b \sin \alpha}{a}
\end{aligned}
$$

Similarly gradient of chord op

$$
m_{o p}=\frac{b \sin \theta}{a}
$$

$$
\text { Since } O Q \text { Lop }
$$

$$
m_{O Q} \times m_{O_{p}}=-1
$$

$$
\therefore \quad \frac{b \sin \alpha}{a} \times \frac{b \sin \theta}{a}=-1
$$

$$
\frac{b^{2} \sin \alpha \sin \theta}{a^{2}}=-1
$$

$$
\sin \alpha \sin \theta=\frac{-a^{2}}{b^{2}}
$$

Ditterentiating implicitly
(ii) $\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x}=0$

$$
\frac{1}{\sin \theta}=\frac{-b^{2} \sin \alpha}{a^{2}}
$$

$$
\therefore \frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}
$$

$$
\text { Substituting the point } P \text {. }
$$

$$
=\frac{b^{2} a \sec \theta}{a^{2} b \tan \theta}
$$

$$
=\frac{b \sec \theta}{a \tan \theta}
$$

$$
=\frac{b}{a \sin \theta}
$$

Since

$$
\sin \theta=-\frac{a^{2}}{b^{2} \sin \alpha}
$$

Question 15
a)

$$
I_{n}=\int_{0}^{1} x^{n} \ln (1+x) d x \quad, n=0,1,2
$$

i)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} 1 \cdot \ln (1+x) d x \\
& =x \ln (1+2)-\int \frac{x}{1+x} d x \\
& =x \ln (1+x)-\int 1-\frac{1}{1+x} a x \\
& =x \ln (1+x)-x+\ln (1+x)+C \\
& =(x+1) \ln (1+x)-x+c .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& I_{n}=\left[x^{n}(1+x) \ln (1+x) \cdots x\right]_{0}^{1}-n \int x^{n-1}[(1+x) \ln (1+x)-x] d x \\
& =2 \ln 2-1-n \int_{0}^{1}\left(x^{n-1}+x^{n}\right) \ln (1+x)-x^{n} d n \\
& =(2 \ln 2-1)-n \int_{0}^{1} x^{n-1} \ln (1+x)+x^{n} \ln (1+x)-x^{n} d x \\
& =2 \ln 2-1-n\left(I_{n-1}+I_{n}\right)+n \int x^{n} d x \\
& =2 \ln 2-1-n I_{n-1}-n I_{n}+n\left[\frac{x^{n+1}}{n+1}\right]_{0}^{1} \\
& =2 \ln 2-1-n I_{n-1}-n I_{n}+\frac{n}{n+1} \\
& I_{n}+n I_{n}=2 \ln 2-1-1+\frac{n}{n+1}-n I_{n-1} \\
& I_{n}(n+1)=2 \ln _{n}+\frac{-n-1+n}{n+1}-n I_{n-1} \\
& I_{n}=2 \ln 2-\frac{1}{n+1}-n I_{n-1}
\end{aligned}
$$

iii)

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} \ln (1+x) d n \\
& =[(1+x) \ln (1+x)-x]_{0}^{1} \\
& =(2 \ln 2-1) \\
2 I_{1} & =2 \ln 2-\frac{1}{2}-I_{0} \\
& =2 \ln 2-\frac{1}{2}-(2 \ln 2-1) \\
& =1-\frac{1}{2}-2 \ln 2-\frac{1}{3}-2 I_{1} \\
3 I_{2} & =2 \ln 2-\frac{1}{3}-\left(1-\frac{1}{2}\right) \\
& =2 \ln 2-1+\frac{1}{2}-\frac{1}{3} \\
& =2 \ln 2-\frac{1}{4}-\left(2 \ln 2-1+\frac{1}{2}-\frac{1}{3}\right) \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} \\
4 I_{5} & =2 \ln 2-\frac{1}{4}-3 I_{2} \\
& =2
\end{aligned}
$$

18) $(n+1) I_{n}=2 \ln 2-\frac{1}{n+1}-n I_{n-1}$

$$
\begin{aligned}
& =2 \ln 2-\frac{1}{n+1}-\left[2 \ln 2-\frac{1}{n}-(n-1) I_{n-2}\right] \\
& =-\frac{1}{n+1}+\frac{1}{n}+(n-1) I_{n-2}
\end{aligned}
$$

when n is odd the last term will be $2 I_{1}$ ie. $n=3$.

$$
\begin{aligned}
& \text { ie. } 2 I_{1}=1-\frac{1}{2} \\
& \therefore \text { no } \log \text { term. }
\end{aligned}
$$

When n is even the last term will be Io
where $I_{0}=(2 \ln 2-1)$

$$
(n+1) I_{n}=\left\{\begin{array}{l}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots-\frac{1}{n+1}, \text { for } n \text { is old d } \\
2 \ln 2-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n+1}\right) \text { tor } n \text { is even }
\end{array}\right.
$$

b) Given $S_{n}=\sum_{k=1}^{n} k^{2}$ RTe $n S_{n}-\sum_{r=1}^{n-1} S_{r}=\sum_{r=1}^{n} r^{3}$ for $n>1$

Bose cove when $n=2$.

$$
\begin{array}{rlrl}
L H S & =2 S_{2}-\sum_{r=1}^{1} S_{r} & R H S & =\sum_{r=1}^{2} r^{3} \\
& =2\left(1^{2}+2^{2}\right)-1^{2} & & =1^{3}+2^{3} \\
& =9 & & =1+8 \\
& =9
\end{array}
$$

$\therefore L H S=R H S \quad \therefore$ true tor $n=2$.

Assume true tor $n=k$ ie e $k \in \mathbb{Z}$

$$
k S_{k}-\sum_{r=1}^{k-1} S_{k}=\sum_{r=1}^{k} r^{3}
$$

Required to prone true for $n=k+1$ ie.

$$
(k+1) S_{k+1}-\sum_{r=1}^{k} S_{r}=\sum_{r=1}^{k+1} r^{3}
$$

$$
\begin{aligned}
L H S & =(k+1) S_{k+1}-\sum_{r=1}^{k} S_{r} \\
& =(k+1)\left[S_{k}+(k+1)^{2}\right]-\sum_{r=1}^{k-1} S_{r}-S_{k}
\end{aligned}
$$

(i) Extending O, A to line $E B$, lut the point of intersection be F

$$
\text { ADEF is a parallelogram (} 2 \text { pairs of paraller sides) }
$$

$$
\angle D A O_{1}=\alpha \text { (opposte anges of a parallelogmmare aqual) }
$$

$$
\angle C A O_{2}=\alpha \text { (recticully opposto anges ane equial). }
$$

$\because \triangle A O_{1} D$ and $\triangle A O_{2} C$ ane isosceles (as $O_{1} D=O_{1} A$ and $O_{2} A=O_{2} C$)
$\angle O_{1 D A}=\alpha$ and $\angle A C O_{2}=\alpha$ (base anges of isosceles twinng ane equal)

$$
\begin{aligned}
& \therefore \quad \angle O_{1} D A=\angle A C O_{2} \\
& \mathrm{O}_{1} \mathrm{DCO}_{2} \text { is a Gyche quadriktemi (equal angles subtended } \\
& \text { by aqual chords in the same segmentl } \\
& \text { Join } O_{1}, 0_{2} \text { and } A B \text {. Intersect at } C \text {. } \\
& \because \triangle O_{1} A C_{2}=\triangle 0_{1} B O_{2} \text { (S5) } \\
& \triangle O_{1} A G_{1} \equiv O, B G \quad(S A S) \\
& O_{1} O_{2} \perp A B \quad\left(\angle O, G A=\angle B G O_{1} \text { and } A G B\right. \text { is a straight angle) } \\
& \angle D A G=180-\alpha \text { (opposte anges of cyclic quadritateral ADEB) } \\
& \therefore \angle O, A G=180-2 \alpha \\
& \therefore \angle A O, a=2 \alpha-90^{\circ} \text { (angesun } A^{\circ}+\text { tiange) } \\
& \because \angle D O_{1} A=180-2 \alpha \text { (amgle sum of triangl) } \\
& \text { then } \angle D O_{1} C=90^{\circ} \Rightarrow \angle D C O_{2}=90^{\circ} \text { (opporte anjes of cyc. anad are supplomenang) }
\end{aligned}
$$

Question 16
a) i) $\quad \frac{a+b}{2}+\frac{c+d}{2} \geqslant \sqrt{a b}+\sqrt{c d}$
applying the $A M-G M$ inequality again

$$
\begin{aligned}
& \geqslant 2 \sqrt{\sqrt{a b} \cdot \sqrt{c d}} \\
& =2(a b c d)^{\frac{1}{4}} \\
\frac{a+b+c+d}{4} & \geqslant 4 \sqrt{a b c d .}
\end{aligned}
$$

(i)

$$
\text { Given } \frac{a+b+c}{3}=\frac{1}{4}\left(a+b+c+\frac{a+b+c}{3}\right)
$$

here we cur use port (i)

$$
\begin{aligned}
& \frac{a+b+c}{3} \geqslant \sqrt[4]{a b c\left(\frac{a+b+c}{3}\right)} \\
& \frac{(a+b+c)}{3} \geqslant(a b c)^{\frac{1}{4}} \cdot\left(\frac{a+b+c}{3}\right)^{\frac{1}{4}} \\
& \left(\frac{a+b+c}{3}\right)^{\frac{3}{4}} \geqslant(a b c)^{\frac{1}{4}} \\
& \operatorname{takin}) \\
& \left(\frac{a+b+c}{3}\right) \geqslant(a b c)^{\frac{1}{3}}
\end{aligned}
$$

(i) Any valid explanation will suttice. (Conjugate root theorem)
ii)

Let the roots be pique.

$$
\therefore \quad p q r=a \quad p+q+r=a
$$

applying the $A M-G M$.

$$
\begin{aligned}
\frac{p+q+r}{3} & \geqslant \sqrt[3]{p q r} \\
\frac{a}{3} & \geqslant \sqrt[3]{a} \\
\frac{a^{2}}{27} & \geqslant 1 \\
a & \geqslant 3 \sqrt{3}
\end{aligned}
$$

- smallest positive value of a is $3 \sqrt[3]{ }$.

$$
b=9 \quad \text { (From product ot roots } 2 \text { at a tine) }
$$

