MATHEMATICS (EXTENSION 2)

2018 HSC Course Assessment Task 3 (Trial Examination)
Wednesday 27th of June, 2018

General instructions

- Working time -3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 13)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:

\# BOOKLETS USED:

Class (please $\boldsymbol{\checkmark}$)
12M4A - Miss Lee
○ 12M4B - Dr Jomaa
○ $12 \mathrm{M} 4 \mathrm{C}-\mathrm{Mr}$ Ireland

Marker's use only.

QUESTION	$1-10$	11	12	13	14	15	16	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 15 minutes for this section

Mark your answers on the answer sheet provided.

Questions

Marks

1.

Let $z=\sqrt{3}+i$. What is the value of $\overline{\left(\frac{i}{z}\right)}$?
(A) $1-i \sqrt{3}$
(C) $\frac{-1+i \sqrt{3}}{4}$
(B) $\frac{1-i \sqrt{3}}{4}$
(D) $\frac{\sqrt{3}-i}{4}$
2. An ellipse has foci at $(-5,0)$ and $(5,0)$ and its directrices have equations $x=-10$ and $x=10$. What is the eccentricity of the ellipse?
(A) $\frac{1}{\sqrt{2}}$
(C) 2
(B) $\sqrt{2}$
(D) $\frac{1}{2}$
3. Given that $3 x^{3}-5 x+6=0$ has roots α, β and γ. What is the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$?
(A) -1
(C) 2
(B) 6
(D) -6
4. Which of the following, for $x>0$, is an expression for $\int \frac{2}{x+x^{3}} d x$?
(A) $\ln x \sqrt{1+x^{2}}+C$
(C) $\ln \frac{x^{2}}{x^{2}+1}+C$
(B) $\ln x^{2}\left(1+x^{2}\right)+C$
(D) $\ln \frac{x^{2}}{\sqrt{1+x^{2}}}+C$
5. Using a suitable substitution, what is the correct expression for $\int_{0}^{\frac{\pi}{3}} \sin ^{4} x \cos ^{3} x d x$ 1 in terms of u ?
(A) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{6}-u^{4}\right) d u$
(C) $\int_{\frac{1}{2}}^{1}\left(u^{4}-u^{6}\right) d u$
(B) $\int_{1}^{\frac{1}{2}}\left(u^{4}-u^{6}\right) d u$
(D) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{4}-u^{6}\right) d u$
6. Consider the graph of $y=f(x)$ drawn below.

Which of the following diagrams shows the graph of $|f(-x)|$?
(A)

(C)

(B)

7. Using implicit differentiation on the equation $y^{3}=3 x^{2} y-2 x^{3}$, then $\frac{d y}{d x}$ would equal
(A) $\frac{-2 x^{2}}{y^{2}-x^{2}}$
(C) $\frac{2 x}{x-y}$
(B) $\frac{2 x}{x+y}$
(D) $\frac{y^{2}-x^{2}}{2 x^{2}}$
8. The normal to the point $P\left(c p, \frac{c}{p}\right)$ on the rectangular hyperbola $x y=c^{2}$ has the equation $p^{3} x-p y+c-c p^{4}=0$. The normal cuts the hyperbola at another point $Q\left(c q, \frac{c}{q}\right)$. What is the relationship between p and q ?
(A) $p q=-1$
(C) $p^{4} q=-1$
(B) $p^{2} q=-1$
(D) $p^{3} q=-1$
9. ω is a non-real root of the equation $z^{5}+1=0$. Which of the following is not a root of this equation?
(A) $\bar{\omega}$
(B) ω^{2}
(C) $\frac{1}{\omega}$
(D) ω^{3}
10. The Argand plane shows the square ABCD in the first quadrant. The point A represents the complex number z and the point C represents the complex number ω.

Which of the following represents the point D ?
(A) $\frac{z+\omega}{2}+i \frac{z-\omega}{2}$
(C) $\frac{z+\omega}{2}-i \frac{z-\omega}{2}$
(B) $\frac{z-\omega}{2}+i \frac{z+\omega}{2}$
(D) $\frac{z-\omega}{2}-i \frac{z+\omega}{2}$

Examination continues overleaf...

Section II

90 marks

Attempt Questions 11 to 16

Allow approximately 2 hours and 45 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)
Commence a NEW page.
Marks
(a) Evaluate $\int \frac{d x}{\sqrt{3+2 x-x^{2}}}$.
(b) Evaluate $\int_{-1}^{0} \frac{2 x^{3}-4 x+1}{x-1} d x$.
(c) By using $t=\tan \frac{x}{2}$, find $\int \frac{d x}{2+\sin x+\cos x}$.
(d) By using integration by parts, find $\int e^{-x} \cos 2 x d x$.
(e) Consider

$$
\frac{36}{(x+4)^{2}(2-x)}=\frac{a}{x+4}+\frac{b}{(x+4)^{2}}+\frac{c}{2-x}
$$

i. Find a, b and c.
ii. Hence or otherwise, evaluate $\int \frac{36}{(x+4)^{2}(2-x)} d x$.
(a) Let $z=1+i \sqrt{3}$
i. Find the value of $|z| \quad 1$
ii. Express $\frac{\bar{z}}{z}$ in modulus-argument form.
(b) Sketch the locus of z if $\frac{z+3 i}{z-3 i}$ is purely imaginary.
(c) $\quad 1-i$ is a root of the quadratic equation $z^{2}+\omega z-i=0$. Find the complex number ω in the form $a+i b$.
(d) For the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, find:
i. The eccentricity.
ii. The coordinates of the foci S and S^{\prime} and the equations of its directrices.
iii. Sketch the ellipse showing all the above features.
(e) The polynomial $x^{4}-3 x^{3}-2 x^{2}+2 x+1=0$ has roots α, β and γ. Find an equation with roots $\alpha^{2}-1, \beta^{2}-1$ and $\gamma^{2}-1$.

End of Question 12

(a) The diagram shows the graph of the function $y=f(x)$.

Draw separate one-third page sketches of graphs of the following:
i. $\quad y=\sqrt{f(x)}$.
ii. $y=\frac{1}{f(x)}$.
iii. $\quad y=x f(x)$.
(b) A solid is formed by rotating the area enclosed by the curve $x^{2}+y^{2}=9$ through one complete revolution about the line $x=7$.
i. By taking slices perpendicular to the axis of rotation, show that the volume

$$
\text { of the solid is } V=28 \pi \int_{-3}^{3} \sqrt{9-y^{2}} d y
$$

ii. Find the exact volume of the solid.
(c) Two circles c and d meet at P and S. Points A and R lie on c and points B and Q lie on d. $A B$ passes through S and $A R$ produced meets $B Q$ produced at C, as shown in the diagram.

i. Copy the diagram to your booklet.
ii. Prove that $\angle P R A=\angle P Q B$.
iii. Prove that the points P, R, Q and C are concyclic.

End of Question 13
(a) Consider the hyperbola $x y=c^{2}$ and the parabola $4 a y=x^{2}$. Let $A\left(2 a t, a t^{2}\right)$ lie on the parabola.

i. Derive the equation of the tangent at A.
ii. The tangent in (i) cuts the hyperbola at B and C. Without finding the coordinates of B and C, find the coordinates of M the midpoint of $B C$.
iii. Hence, find the equation of the locus of M as A moves on the parabola, stating all restrictions.
(b) The diagram shows the parallelogram OQRP in the Argand plane with the point P represented by the complex number z and Q represented by the complex number ω and $\alpha=\angle O P R$.

i. Show that $\arg \left(\frac{\omega}{z}\right)=\pi-\alpha$
ii. Use the cosine rule to show that

$$
|z+\omega|^{2}=|z|^{2}+|\omega|^{2}+2|z||\omega| \cos \left(\arg \left(\frac{\omega}{z}\right)\right)
$$

iii. Hence or otherwise show that

$$
\cos \left(\arg \left(\frac{\omega}{z}\right)\right)=\frac{|z+\omega|^{2}-|\omega-z|^{2}}{4|\omega||z|}
$$

iv. If $\alpha=\frac{7 \pi}{12},|P R|=2$ and $z=3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$, find in Cartesian form the complex number $\omega+z$.

End of Question 14

(a) Given that $z=\cos \theta+i \sin \theta$ and $z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta$.
i. By considering $\left(z-\frac{1}{z}\right)^{5}$, show that

$$
\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta)
$$

ii. Solve the following equation for $0 \leq \theta \leq 2 \pi$

$$
\sin 5 \theta-5 \sin 3 \theta+6 \sin \theta=0
$$

(b) If $I_{n}=\int_{0}^{\frac{\pi}{4}} \sec ^{n} x d x$
i. Show that $I_{n}=\frac{(\sqrt{2})^{n-2}}{n-1}+\frac{n-2}{n-1} I_{n-2}, \quad$ for $\quad n \geq 2$.
ii. Hence or otherwise, evaluate $\int_{0}^{1}\left(1+x^{2}\right)^{\frac{5}{2}} d x$.
(c) Let a and b be real numbers. Consider the cubic equation

$$
x^{3}-2 b x^{2}-a^{2} x+b^{2}=0
$$

i. Show that if $x=-1$ is a solution, then $1-\sqrt{2} \leq b \leq 1+\sqrt{2}$.
ii. Show that there is no value of b for which $x=-1$ is a repeated root.

Question 16 (15 Marks)
Commence a NEW page.
(a) Suppose that x is apositive real number.
i. Find the sum of the geometric series

$$
1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}
$$

ii. Hence, show that

$$
\frac{1}{1+t^{3}}<1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}, \quad \text { for } \quad 0<t<x
$$

iii. Find the sum of the geometric series

$$
1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}-t^{6 n+3}
$$

iv. Hence, show that

$$
1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}<\frac{1}{1+t^{3}}+t^{6 n+3}, \quad \text { for } \quad 0<t<x
$$

v. Multiply the inequalities of part (ii) and (iv) by a suitable factor, then integrating from $t=0$ to $t=x$, show that

$$
\frac{1}{3} \ln \left(1+x^{3}\right)<\frac{x^{3}}{3}-\frac{x^{6}}{6}+\cdots+\frac{x^{6 n+3}}{6 n+3}<\frac{1}{3} \ln \left(1+x^{3}\right)+\frac{x^{6(n+1)}}{6(n+1)}
$$

vi. By taking limit as $n \rightarrow \infty$, show that for $0 \leq x \leq 1$

$$
\ln \left(1+x^{3}\right)=x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\frac{x^{12}}{4}+\ldots
$$

vii. Use suitable substitution to prove that

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots
$$

viii. Hence or otherwise prove that

$$
\ln 4=1+\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{4.7}+\ldots
$$

(b) Given that a, b and c are all positives such that $a+b+c=1$ and $a+b+c \geq 3^{3} \sqrt{a b c}$.
i. If x, y and z are all positives, show that

$$
\frac{1}{x y}+x+y \geq 3
$$

ii. Hence or otherwise, prove that

$$
\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)} \geq 4
$$

End of paper.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please $\boldsymbol{\sim}$)12M4A - Miss Lee
O $12 \mathrm{M} 4 \mathrm{~B}-\mathrm{Dr}$ Jomaa
O $12 \mathrm{M4C}-\mathrm{Mr} \operatorname{Lin}$

$1-$ (A)	(3) (C) (D)
2 -	(B) (C) (D)
$3-$ (A)	(B) (C) D
4-(A)	(B) (D)
$5-(A)$	(B) (C) D
6-(A)	(B) (C) D
7-(A)	(a) (D)
8-(A)	(B) (C) D
9-(A)	(6) C (D)
10-(A)	(B) (D)

MC:

1. $\quad z=\sqrt{3}+i$

$$
\frac{i}{2}=\frac{-i}{\overline{2}}=\frac{i z}{|2|^{2}}=\frac{-i 2}{|2|^{2}}=\frac{-i(\sqrt{3}+i)}{4}=\frac{1-i \sqrt{3}}{4}
$$

2. ae $=5$ and $\frac{a}{e}=10$

$$
\begin{equation*}
10 e^{2}=5: \quad e^{2}=\frac{1}{2}, \quad e=\frac{1}{\sqrt{2}} \tag{A}
\end{equation*}
$$

3. $\quad \alpha^{3}+\beta^{3}+\gamma^{3}=\frac{5(\alpha+\beta+\gamma)-3 \times 6}{3}=-6$
4. $\quad \frac{2}{x+x^{3}}=\frac{A}{x}+\frac{B x+c}{1+x^{2}}=\frac{A\left(1+x^{2}\right)+(B x+c) x}{x\left(1+x^{2}\right)}=\frac{A x^{2}+A+B x^{2}+c x}{x\left(1+x^{2}\right)}$

$$
\begin{align*}
& A+B=0, C=0, \quad A=2 \quad \therefore \quad B=-2 \\
& \frac{2}{x+x^{3}}=\frac{2}{x}-\frac{2 x}{1+x^{2}} \\
& \int \frac{2 d x}{x+x^{3}}=2 \ln |x|-\ln \left|1+x^{2}\right|+C=\ln \left|\frac{x^{2}}{1+x}\right|+C \tag{C}
\end{align*}
$$

5.

$$
\int_{0}^{\pi / 3} \sum \cdot x\left(1-\sin ^{2} x\right) \cos x d x=\int_{0}^{\pi / 3}\left(2^{4} x-L^{6} x\right) \cos x d x
$$

$$
\begin{aligned}
\operatorname{let} u & =\varepsilon x \quad d u=a x d x \mid=\int_{0}^{\sqrt{3} / 2}\left(u^{4}-u^{6}\right) d u \\
u & =0 \quad(x-0)
\end{aligned} \quad d x
$$

(6)
(1)

$$
\begin{gather*}
3 y^{2} \frac{d y}{d x}=3 x^{2} \frac{d y}{d x}+6 x y-6 x^{2} \\
3\left(y^{2}-x^{2}\right) \frac{d y}{d x}=6 x(y-x) \\
\frac{d y}{d x}=\frac{2 x}{y+x} \tag{B}
\end{gather*}
$$

8. $p^{3} x-p y+c-c p_{1}^{4}=0$

$$
\begin{aligned}
& p^{2} q-p \frac{p}{q}+c-c p^{4}=0 \\
& c p^{3} q^{2}-c p+c q-c p q=0 \\
& p^{3} q^{2}-p^{4} q=p-q \\
& p^{3} q(q-p)=p-q \quad \therefore \quad p^{3} q=-1
\end{aligned}
$$

9.
10.

$$
\begin{aligned}
& \overrightarrow{A D}= i \overrightarrow{A B} \\
&= i \overrightarrow{D C} \\
& z_{D}-z=i\left(\omega-z_{D}\right) \\
& z_{D}(1+i)=z+i w \\
& z_{D}=\frac{2}{1+i}+\frac{i w}{1+i} \\
&=\frac{2(1-i)}{2}+\frac{i(1-1) w}{2} \\
&=\frac{2}{2}-\frac{2}{2}+\frac{i w+\frac{w}{2}}{2} \\
&=\frac{2+w}{2}+\frac{(2-w)}{2}
\end{aligned}
$$

Qustim II:
(a) $\int \frac{d x}{\sqrt{3+2 x-x^{2}}}=\int \frac{d x}{\sqrt{4-(x-1)^{2}}}=\sin ^{-1}\left(\frac{x-1}{2}\right)+c$
(b) $\int_{-1}^{0} \frac{2 x^{3}-4 x+1}{x-1} d x \int_{-1}^{0} \frac{2 x^{3}-2 x-2 x+2-1}{x-1} d x$

$$
\begin{aligned}
& =2 \int_{-1}^{0} \frac{x\left(x^{2}-1\right)}{x-1} d x-2 \int_{-1}^{0} \frac{x-1}{x-1} d x-\int_{-1}^{0} \frac{d x}{x-1} \\
& =2 \int_{-1}^{0} x(x+1) d x-2 \int_{-1}^{0} d x-\int_{-1}^{0} \frac{d x}{x-1} \\
& \left.\left.=2\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{-1}^{0}-2[x]_{-1}^{0}-\ln \right\rvert\, x-1\right)\left.\right|_{-1} ^{0} \\
& =2\left(0-\left(\frac{-1}{3}+\frac{1}{2}\right)\right)-2(0-(-1))-(\ln \mid-\ln 2) \\
& =\left[\frac{-1}{3}-2+\ln 2\right.
\end{aligned}
$$

(c) $t=\tan \frac{x}{2}, d t=\frac{1}{2}\left(1+t^{2}\right) d x: d x=\frac{2 d t}{1+t^{2}}$

$$
\begin{aligned}
& 2+\operatorname{cic}+\cos x=2+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}=\frac{2+2 t^{2}+2 t+1-t^{2}}{1+t^{2}}=\frac{t^{2}+2 t^{2}+3}{1+t^{2}} \\
& \frac{1}{2+\sin +\cos x}=\frac{1+t^{2}}{t^{2}+2 t+3} \\
& \int \frac{1}{2+\operatorname{cix}+\ln x} d x=\int \frac{1+t^{2}}{t^{2}+2+3} \times \frac{2 d t}{1+t^{2}}=2 \int \frac{d t}{(t+1)^{2}+2} \\
& =2 \times \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{t+1}{\sqrt{2}}\right)+c \\
& =\sqrt{2} \tan ^{-1}\left(\frac{1+\tan \frac{x}{2}}{\sqrt{2}}\right)+C
\end{aligned}
$$

(d) $I=\int e^{-x} \cos n x d x$

Let $u=\cos x \quad 2 \cdot d u=-2 \sin 2 x d x$

$$
\begin{aligned}
& e^{-x} d x=d v \therefore v=-e^{-x} \\
& I=u v-\int v d x \\
& =-e^{-x} \operatorname{los} x-2 \int e^{-x} \leq 2 x d x
\end{aligned}
$$

Let $u=\sin \quad \therefore \quad d x=2 \cos n d x$

$$
\begin{aligned}
e^{-x} d x & =d v \cdot \quad V=-e^{-x} \\
I & =-e^{-x} \operatorname{Cos} x-2\left[-e^{-x} \sin +2 \int e^{-x} \cos 2 x d x\right] \\
& =-e^{-x} \cos x+2 e^{-x} \sin -4 I \\
5 I & =e^{-x}(2 \sin 2 x-\cos x) \\
I & \left.=\frac{e^{-x}}{5}(2 \sin x-\cos x)\right]
\end{aligned}
$$

(e) $\frac{36}{(x+4)^{2}(x-x)}=\frac{a}{x+4}+\frac{b}{(x+4)^{2}}+\frac{c}{2-x}$
(i) multiply by $(x+4)$ then set $x=-4$

$$
\frac{36}{6}=b \therefore b=6
$$

multiply by $2-x$ them set $x=2$

$$
\frac{36}{36}=c \therefore c=1
$$

set $x=0 \quad \therefore \frac{3 b}{16 \times 2}=\frac{a}{4}+\frac{b}{16}+\frac{c}{2}$

$$
\begin{aligned}
& 3=a+\frac{b}{4}+2 c \\
& a=1-\frac{3}{2}=\frac{-1}{2}
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
\int \frac{36}{(x+4)^{2}(2-x)} d x & =-\frac{1}{2} \int \frac{d x}{x+4}+6 \int \frac{d x}{(x+4)^{4}}+\int \frac{d x}{2-x} \\
& \left.=-\frac{1}{2}|\ln | x+4\left|-\frac{6}{x+4}-\ln \right| 2-x \right\rvert\,+c
\end{aligned}
$$

Questiml2
(a) $z=1+i \sqrt{3}$
(i) $|z|=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2$
(ii) $\frac{\bar{z}}{2}=\frac{\bar{z}}{2} \times \frac{2}{2}=\frac{(\overline{2})^{2}}{|2|^{2}}=\frac{(1-1 \sqrt{3})^{2}}{4}=\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{2}=[\cos (-\pi / 3)]^{2}$

$$
\frac{\bar{z}}{z}=\operatorname{is}\left(-\frac{2 \pi}{3}\right)=\cos \left(\frac{-2 \pi}{3}\right)+i \sin \left(-\frac{2 \pi}{3}\right)
$$

(b) $\frac{z+3 i}{z-3 i}$ is purely imaginary

$$
\therefore \arg \left(\frac{2+3 i}{2-3 i}\right)= \pm \pi / 2
$$

so the 10 chs of z is the circle $x^{2}+y^{2}=9$ excluding $(0,3)$ and $(0,-3)$.
Algebraically, $\quad \frac{z+3 i}{z-3 i}=\frac{x+i(y+3)}{x+i(y-3)}$ Let $z=x+i y$

$$
\begin{aligned}
\frac{z+3 i}{2-3 i} & =\frac{x^{2}+(y+3)(y-3)+i(x y+3 x-y x+3 x)}{x^{2}+(y-3)^{2}} \\
& =\frac{\left.x^{2}+y^{2}-9+6 x-3\right)^{2}}{x^{2}+(y-3)^{4}}
\end{aligned}
$$

$\frac{z+3 i}{2-3 i}$ is purely imaginary: $\operatorname{Re}\left(\frac{2+3 i}{z-3 i}\right)=0: x^{2}+y^{2}-9=0$

$$
\therefore x^{2}+y^{2}=9 \text { excluding } z= \pm 3
$$

(c)

$$
\begin{aligned}
& (1-i)^{2}+\omega(1-i)-i=0 \\
& -2 i+\omega(1-i)-i=0 \quad \therefore \omega=\frac{3 i}{1-i}=\frac{3 i(1+i)}{2} \\
& w=\frac{-3}{2}+\frac{3}{2} i
\end{aligned}
$$

d)

$$
a=3, b=4 \text {. }
$$

i. $\quad a^{2}=b^{2} *\left(1-e^{2}\right)$

$$
e=\sqrt{1-\frac{a^{2}}{b^{2}}}=\frac{\sqrt{7}}{4}
$$

ii. Foci: $S(0, \pm \sqrt{7})$

Directices: $y= \pm \frac{16 \sqrt{7}}{7}$
iii.

(e) Let $x^{2}-1=y \therefore$

$$
\begin{aligned}
& \alpha^{2}=y+1 \\
& \alpha^{4}=(y+1)^{2} \\
& \alpha^{3}=(y+1) \sqrt{y+1} \\
& \alpha=\sqrt{y+1}
\end{aligned}
$$

α is a root of $x^{4}-3 x^{3}-2 x^{2}+2 x+1=0$

$$
\begin{aligned}
& \therefore \quad(y+1)^{2}-3(y+1) \sqrt{y+1}-2(y+1)+2 \sqrt{y+1}+1=0 \\
&(y+1)^{-2(y+1)+1}=3(y+1) \sqrt{y+1}-2 \sqrt{y+1} \\
&(y+1-1)^{2}=(3 y+3-2) \sqrt{y+1} \\
& y^{2}=(3 y+1) \sqrt{y+1} \\
&\left(y^{2}\right)^{2}=(3 y+1)^{2}(\sqrt{y+1})^{2} \\
& y^{4}=\left(9 y^{2}+6 y+1\right)(y+1) \\
&=9 y^{3}+9 y^{2}+6 y^{2}+6 y+y+1 \\
&=9 y^{3}+15 y^{2}+7 y+1 \\
&\left(y^{4}-9 y^{3}-15 y^{2}-7 y-1=0\right.
\end{aligned}
$$

\therefore The equation which has rots $\alpha^{2}-1, \beta^{2}-1, \gamma^{2}-1, \alpha^{2}-1$ is

$$
x^{4}-9 x^{3}-15 x^{2}-7 x-1=0
$$

Question 13
(a)
(i) $y=\sqrt{f(x)}$

(ii) $y=\frac{1}{f(x)}$

(iii) $y=x f(x)$

$13(b)$
(i)

$$
\begin{aligned}
& r=7-x=7-\sqrt{9-y^{2}} \\
& R=7+x=7+\sqrt{9-y^{2}}
\end{aligned}
$$

(R and r are. the outer \& inner radii when the hatched strip is rotated about line $x=7$.)

Area of annular cross section is

$$
\begin{aligned}
\Delta A=\pi R^{2}-\pi r^{2} & =\pi(R+r)(R-r) \\
& =\pi(14)\left(2 \sqrt{9-y^{2}}\right) \\
\therefore \Delta A & =28 \pi \sqrt{9-y^{2}}
\end{aligned}
$$

Let slice thickness be Δy. Then
Volume element is $\Delta V=28 \pi \sqrt{9-y^{2}} \cdot \Delta y$

$$
\begin{aligned}
& \text { Volume element is } \Delta V=28 \pi \sqrt{9-y^{2}} \\
& \therefore V=\lim _{\Delta y \rightarrow 0} \sum_{-3}^{3} 28 \pi \sqrt{9-y^{2}} \cdot \Delta y=28 \pi \int_{-3}^{3} \sqrt{9-y^{2}} d y
\end{aligned}
$$

(ii)
$\int_{-3}^{3} \sqrt{9-y^{2}} d y$ is the area of a semicircle:

\therefore it equals

$$
\frac{1}{2} \times \pi \times 3^{2}
$$

$$
\begin{aligned}
& \therefore V=28 \pi \times \frac{1}{2} \times \pi \times 3^{2} \\
& \therefore V=126 \pi^{2} \text { units }^{3} .
\end{aligned}
$$

[ALT: the integral may be done from scratch, using a substitution $y=3 \sin \theta$.].
(c) (i)
(i)

(ii) $\quad \angle P R A=\angle P S A$ (angles in same segment of circle c)
$=\angle P Q B$ (exterior angle of cyclic quad. $P Q B S$ equals opposite interior angle)
(iii) $\angle P R A=\angle P Q B \quad$ (from (ii))

$$
\therefore \quad 180-\angle P R A=180-\angle P Q B
$$

ie. $\quad \angle P R C=\angle P Q C$ (angles on straight line are supplementary)
$\therefore P R Q C$ is cyclic (interval $P C$ subtends equal angles at two points on the same side of it).
$6 x y=c^{2}$ and $4 a y=x^{2}$

$$
\begin{align*}
& y^{\prime}=\frac{2 x}{4 a}=\frac{x}{2 a} \quad a+x=2 a t \\
& y-a t^{2}=t(x-2 a t) \\
& y=+x-2 a t^{2}+a t^{2} \\
& y=t x-a t^{2} \quad(1) \tag{1}
\end{align*}
$$

(ii) Tangent and huperisula net at is and c
multiply (i) by n, we obtain

$$
\begin{align*}
& x y=+x^{2}-a t^{2} x, b u+x y=c^{2} \\
& \therefore+x^{2}-a t^{2} x-c^{2}=0 \quad(2) \tag{2}
\end{align*}
$$

atc: solve simulfaneowity]

The soledino of equation (2) are the joe cirwelimates if B and C So the sem of roots equal at rand the x-coordinate of 14 the midpoint of $3<$ is $\frac{1}{2} a t$
M lien on the tough $-M$ Satisfy equatotian (I)

$$
y=t\left(\frac{1}{2} a t\right)-a t^{2}=\frac{1}{2} a t^{2}-a t^{2}=\frac{-1}{2} a t^{2}
$$

so $1\left(\frac{1}{2} a+\frac{-1}{2} a+4\right)$
(it)

$$
\begin{aligned}
& x=\frac{1}{2} a t \therefore t=\frac{2 n}{a} \\
& \left.y=\frac{-1}{2} a t^{2}=\frac{-1}{2} a \cdot\left(\frac{2 n}{a}\right)^{2}=\frac{-1}{2} a \times \frac{4 x^{2}}{a^{2}}=\frac{-2 x^{2}}{a}\right)
\end{aligned}
$$

In Equation (2) the roots equend $\frac{a t^{2} \pm \sqrt{a^{2}+4+4 c^{2} t}}{2 t}$
Since t takes all valus $\therefore a^{2}+{ }^{4}+4 c^{2} t$ cannot be negative $\therefore a^{2}\left(\frac{2 n}{a}\right)^{4}+4 c^{2}\left(\frac{2 n}{a}\right)$ cam not be wegatica

$$
\begin{gathered}
\frac{16 x^{4}}{a^{2}}+\frac{8 c^{2}}{a} x=\frac{8}{a^{2}}\left(2 x^{4}+a c^{2} x\right)=\frac{8}{a^{2}} x\left(2 x^{3}+a c^{2}\right) \geqslant 0 \\
x<\left(-\frac{a c^{2}}{2}\right)^{1 / 3} \text { or } x \geqslant 0
\end{gathered}
$$

(b)
(i)

$$
\begin{aligned}
\angle P O Q & =\arg (w)-\arg (z) \\
& =\arg \left(\frac{w}{2}\right)
\end{aligned}
$$

$O P Q Q$ is a parallelogram
$\therefore \angle P O Q$ and $\angle O P R$ ane smplementory

$$
\therefore \quad \arg \left(\frac{\omega}{2}\right)+\alpha=\pi
$$

and $\arg \left(\frac{\omega}{2}\right)=\pi-\alpha$
(ii) $\overrightarrow{O R}$ represents $z+w$

$$
\begin{align*}
|z+\omega|^{2} & =|z|^{2}+|\omega|^{2}-2|z||\omega| \cos \alpha \\
& =|z|^{2}+|\omega|^{2}-2|z||\omega| \cos \left(\pi-\arg \left(\frac{\omega}{z}\right)\right) \\
& =|z|^{2}+|\omega|^{2}+2|z||\omega| \cos \left(\arg \left(\frac{\omega}{z}\right)\right) \tag{1}
\end{align*}
$$

(ii) in $\triangle O P Q, \overrightarrow{P Q}$ represents $\omega-z$

$$
\begin{equation*}
|\omega-z|^{2}=|\omega|^{2}+|z|^{2}-2|\omega||z| \cos \left(\arg \left(\frac{\omega}{z}\right)\right) \tag{2}
\end{equation*}
$$

(1)

$$
\begin{aligned}
& -(2) \therefore|z+w|^{2}-|\omega-z|^{2}=4|z||\omega| \cos \left(\arg \left(\frac{w}{z}\right)\right) \\
& \therefore \cos \left(\arg \left(\frac{\omega}{z}\right)\right)=\frac{|z+w|^{2}-|\omega-z|^{2}}{4|z||\omega|}
\end{aligned}
$$

(iv) $\alpha=\frac{7 \pi}{12},|P R|=2, \quad z=3\left(\cos \frac{\pi}{4}+i \sin \pi / 4\right), \arg (z)=\pi / 4$

$$
\arg \left(\frac{\omega}{2}\right)=\pi-\alpha=\pi-\frac{7 \pi}{12}=\frac{5 \pi}{12}
$$

$$
\arg (w)=\arg (2)+\frac{5 \pi}{12}=\pi / 4+\frac{5 \pi}{12}=\frac{2 \pi}{3}
$$

and $|\omega|=2 \quad \therefore \quad \omega=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

$$
\begin{aligned}
\omega+z & =2 \operatorname{cis} \frac{2 \pi}{3}+3 \operatorname{cis} \frac{\pi}{4} \\
& =2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)+3\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right) \\
& =-1+\frac{3}{\sqrt{2}}+i\left(\sqrt{3}+\frac{3}{\sqrt{2}}\right)
\end{aligned}
$$

Question 15: $\quad z=6 \cos \theta, \quad z^{n}-\frac{1}{2^{n}}=2 i \sin n \theta$
(i)

$$
\begin{align*}
& \left(z-\frac{1}{z}\right)^{5}=z^{5}-5 z^{3}+10 z-\frac{1}{10} z+5 \frac{1}{z}-\frac{1}{z^{5}} \\
& |z|=1, \frac{1}{z}=\bar{z}, z-z=2 i \sin \theta \\
& \left(z-\frac{1}{z}\right)^{5}=(2 \sin \theta)^{5}=2^{5}-\frac{1}{z^{5}}-5\left(z^{3}-\frac{1}{z^{3}}\right)+10\left(z-\frac{1}{z}\right) \\
& 2^{5} i \sin ^{5} \theta=2 i \sin 5 \theta-5(21 \sin 3 \theta)+10(2 i \sin \theta) \\
& \sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 30+10 \sin \theta)
\end{align*}
$$

(ii) $\quad \sin 5 \theta-5 \sin \theta+6 \sin \theta=0$
but $\sin 5 \theta-5 \sin \theta+6 \sin \theta=16 \sin ^{5} \theta-4 \sin \theta$ from $(*)$

$$
\begin{aligned}
& \therefore \quad 4 \sin \theta\left(4 \sin ^{4} \theta-1\right)=0 \\
& \therefore 4 \sin \theta\left(2 \sin ^{2} \theta-1\right)\left(2 \sin ^{2} \theta+1\right)=0 \\
& \quad \therefore \sin \theta=0 \text { or } \sin \theta= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

$\theta=0, \pi, 2 \pi, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$ and $7 \pi / 4$.
(b) $I_{n}=\int_{0}^{\pi / 4} \sec ^{2} x d x=\int_{0}^{\pi / 4} \sec ^{n-2} x \sec ^{2} x d x$

Let $u=\sec ^{n-2}$ and $\sec ^{2} n d x=d v$ $d u=(n-2) \sec ^{n-3} x \times \sec x \tan x d x$ and $v=\tan x$

$$
\begin{aligned}
I_{n} & =\left[\sec ^{n-2} x \tan x\right]_{0}^{\pi / 4}-(n-2) \int_{0}^{\pi / 4} \sec ^{n-2} x \tan x d x \\
& =(\sqrt{2})^{n-2}-(n-2) \int_{0}^{\pi / 4} \sec ^{n-2}\left(\sec ^{2} n-1\right) d x \\
& =(\sqrt{2})^{n-2}-(n-2) \int_{0}^{\pi / 4} \sec ^{n} x d n+(n-2) \int_{0}^{\pi / 4} \sec ^{n-2} x d x \\
& =(\sqrt{2})^{n-2}-(n-2) I_{n}+(n-2) I_{n-2}
\end{aligned}
$$

$$
(n-1) I_{n}=(\sqrt{2})^{n-2}+(n-2) I_{n-2} \quad \therefore \quad I_{n}=\frac{(\sqrt{2})^{n-2}}{n-1}+\frac{n-2}{n-1} I_{n-2}
$$

015

$$
\begin{aligned}
& \text { (b) (i) } \\
& I_{n}=\int_{0}^{\pi / 4} \sec ^{n} x d x \\
& =\int_{0}^{\pi \pi} \sec ^{2} x \sec ^{n-2} x d x \\
& =\int_{0}^{1 / 4}\left(\tan ^{2} x+1\right) \sec ^{n-2} x d x \\
& =\int_{0}^{\pi / 4} \tan ^{2} x \sec ^{n-2} x d x+\int_{0}^{\pi / 4} \sec ^{n-2} x d x \\
& u=\tan x \\
& d u=\sec ^{2} x d x \quad v=\frac{\sec ^{n-2} x}{n-2} \\
& \therefore I_{n}=\left[\frac{\tan x \sec ^{n-2} x}{n-2}\right]_{0}^{\pi / 4}-\frac{1}{n-2} \int \sec ^{n} x d x+I_{n-2} \\
& =\frac{\sqrt{2}^{n-2}}{n-2}-\frac{1}{n-2} I_{n}+I_{n-2} \\
& (n-2) I_{n}=\sqrt{2}^{n-2}-I_{n}+(n-2) I_{n-2} \\
& (n-2+1) I_{n}=\sqrt{2}^{n-2}+(n-2) I_{n-2} \\
& I_{n}=\frac{\sqrt{2}^{n-2}}{n-1} \quad \frac{n-2}{n-1} I_{n-2}
\end{aligned}
$$

(ii) $\int_{0}^{1}\left(1+x^{2}\right)^{5 / 2} d x$

Let $x=\tan u \therefore d n=\sec ^{2} u d u$

$$
\begin{aligned}
& \left(1+x^{2}\right)^{5 / 2}\left(1+\tan ^{5 / 4}\right)^{5 / 2}=\left(\sec ^{2} u\right)^{5 / 2}=\sec ^{5} u \\
& \text { for } u=0: u=0 \\
& x=1: u=\pi / 4 \\
& \int_{0}^{1}\left(1+x^{2}\right)^{5 / 2} d x=\int_{0}^{\pi / 4} \sec ^{5} u \sec ^{2} u d u=\int_{0}^{\pi / 4} \sec _{0}^{1} u d u=I_{7}
\end{aligned}
$$

Use (i) $I_{7}=\frac{(\sqrt{2})^{5}}{6}+\frac{5}{6} I_{5}$

$$
\begin{aligned}
& I_{5}=\frac{(\sqrt{2})^{3}}{4}+\frac{3}{4} I_{3} \\
& I_{3}=\frac{(\sqrt{2})}{2}+\frac{1}{2} I_{1}
\end{aligned}
$$

$$
\begin{aligned}
I_{1}=\int_{0}^{\pi / 4} \sec x d x & =\int_{0}^{\pi / 4} \frac{\sec x(\sec x+t-x)}{\sec x+\tan } d x \\
& =[\ln |\sec x+\tan |]_{0}^{\pi / 4}=\ln (1+\sqrt{2})
\end{aligned}
$$

$$
I_{3}=\frac{\sqrt{2}}{2}+\frac{\ln (1+\sqrt{2})}{2}
$$

$$
I_{5}=\frac{\sqrt{2}}{2}+\frac{3}{4}\left(\frac{\sqrt{2}}{2}+\frac{\ln (1+\sqrt{2})}{2}\right)=\frac{7 \sqrt{2}}{8}+\frac{3 \ln (1+\sqrt{2})}{8}
$$

$$
I_{7}=\frac{2 \sqrt{2}}{3}+\frac{5}{6}\left(\frac{7 \sqrt{2}}{8}+\frac{3 \ln (1+\sqrt{2})}{8}\right)
$$

$$
=\frac{67}{48} \sqrt{2}+\frac{15}{48} \ln (1+\sqrt{2})
$$

(c) $\quad x^{3}-2 b x^{2}-a^{2} x+b^{2}=0$
(i) $x=-1$ is a solution \because

$$
\begin{aligned}
& (-1)^{3}-2 b(-1)^{2}-a^{2}(-1)+b^{2}=0 \\
& -1-2 b+a^{2}+b^{2}=0 \\
& \quad a^{2}=1+2 b-b^{2}=2-(b-1)^{2} \geqslant 0 \quad \text { Since } a^{2} \geqslant 0 \\
& \therefore \quad-\sqrt{2} \leq b-1 \leq \sqrt{2} \\
& \quad 1-\sqrt{2} \leq b \leq 1+\sqrt{2}
\end{aligned}
$$

(ii) $x=-1$ is a repeated root
$\therefore x=-1$ is a solution of $x^{3}-2 b x^{2}-a^{2} x+b=0$
Also $x=-1$ is a solution of $3 x^{2}-4 b x-a^{2}=0$ (the derivative)

$$
\therefore \quad-1-2 b+a^{2}+b^{2}=0 \quad \text { from (i) }
$$

and $3(-1)^{2}-4 b(-1)+a^{2}=0 \therefore 3+4 b-a^{2}=0$
Now $\quad-1-2 b+a^{2}+b^{2}=0$

$$
\begin{equation*}
3+4 b-a^{2}=0 \tag{1}
\end{equation*}
$$

(1) $+(2) \div 2+2 b+b^{2}=0$

$$
\begin{equation*}
(b+1)^{2}+1=0 \tag{3}
\end{equation*}
$$

but b is a red number, hence there is no value of b which satisfy equation (3).

Qustion 16:
(a) $x>0$ eel number
(i)

$$
1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}
$$

$2 n+1$ terms of geonetric senic, their sum equal

$$
\frac{1-\left(-t^{3}\right)^{2 n+1}}{1-\left(-t^{3}\right)}=\frac{1+\left(t^{3}\right)^{2 n+1}}{1+t^{3}}
$$

(ii) $1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}=\frac{1+\left(t^{3}\right)^{2 n+1}}{1+t^{3}}=\frac{1}{1+t^{3}}+\frac{\left(t^{3}\right)^{2 n+1}}{1+t^{3}}>\frac{1}{1+t^{3}}$

$$
\begin{equation*}
\therefore \quad \frac{1}{1+t^{3}}<1-t^{3}+t^{6}-\cdots+t^{6 n} \tag{1}
\end{equation*}
$$

(iii) $1-t^{3}+t^{6}-t^{4}+\cdots+t^{6 n}-t^{6 n+3}$
$2 n+2$ terms of geometric senis, ther sum equal

$$
\frac{1-\left(-t^{3}\right)^{2 n+2}}{1+t^{3}}=\frac{1-\left(t^{3}\right)^{2 n+2}}{1+t^{3}}
$$

(iv)

$$
\begin{aligned}
& 1-t^{3}+t^{6}-t^{9}+\ldots+t^{6 n}-t^{6 n+3}=\frac{1-\left(t^{3}\right)^{2 n+2}}{1+t^{3}}=\frac{1}{1+t^{3}}-\frac{\left(t^{2}\right)^{2 n+2}}{1+t^{3}}<\frac{1}{1+t^{3}} \\
& 1-t^{3}+t^{6}-t^{9}+\cdots+t^{6 n}-t^{6 n+3}<\frac{1}{1+t^{3}}
\end{aligned}
$$

$$
\begin{equation*}
a d \left\lvert\, 1-t^{3}+t^{6}-t^{9}+-+t^{6 n}<\frac{1}{1+t^{3}}+t^{6 n+3}\right. \tag{2}
\end{equation*}
$$

(v) (1) ond (2) \therefore

$$
\begin{equation*}
\frac{1}{1+t^{3}}<1-1^{3}+t^{6}-t^{9}+-+t^{6 n}<\frac{1}{1+t^{3}}+t^{6 n+3} \tag{3}
\end{equation*}
$$

Multiply (3) by t^{2}, we obtain

$$
\begin{equation*}
\frac{t^{2}}{1+t^{3}}<t^{2}-t^{5}+t^{8}-t^{11}+-+t^{6 n+2}<\frac{t^{2}}{1+t^{3}}+t^{6 n+5} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{0}^{x} \frac{t^{2}}{1+t^{3}} d t<\int_{0}^{n}\left(t^{2}-t^{5}+t^{8}-t^{1}+\cdots+t^{6 n+2}\right) d t<\int_{0}^{x} \frac{t^{2}}{1+t^{3}} d t+\int_{0}^{x} t^{6 n+5} d t \\
& {\left[\frac{1}{3} \ln \left(1+t^{3}\right)\right]_{0}^{x}<\left[\frac{t^{3}}{3}-\frac{t^{6}}{6}+\frac{t^{9}}{9}-\frac{t^{12}}{12}+-\frac{t^{6 n+3}}{6 n+3}\right]_{0}^{x}<\left[\frac{1}{3} \ln \left(1+t^{3}\right)\right]_{0}^{n}+\left[\frac{t^{6 n+6}}{6 n+6}\right]_{0}^{x}} \\
& \frac{1}{3} \ln \left(1+x^{3}\right)<\frac{x^{3}}{3}-\frac{x^{6}}{6}+\frac{x^{9}}{9}-\frac{x^{12}}{12}+-+\frac{x^{6 n+3}}{6 n+3}<\frac{1}{3} \ln \left(1+x^{3}\right)+\frac{x^{6 n+6}}{6 n+6}
\end{aligned}
$$

(Vi) As $n \rightarrow \infty$

$$
\begin{gathered}
\frac{1}{3} \ln \left(1+x^{3}\right)<\frac{x^{3}}{3}-\frac{x^{6}}{6}+\cdots<\frac{1}{3} \ln \left(1+x^{3}\right)+0 \\
\therefore \ln \left(1+x^{3}\right)=x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{3}-\frac{x^{12}}{4}+\cdots
\end{gathered}
$$

(vii) take $x=1$

$$
\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

(vii) $\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$

Combining 1 ad $-\frac{1}{2}, \frac{1}{3}$ ad $-\frac{1}{4}$ and so on, we cobain:

$$
\begin{aligned}
& \ln 2=\frac{1}{2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+\cdots \\
& 2 \ln 2=1+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{4 \cdot 7}+\cdots \\
& \ln 4=1+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{4 \cdot 7}+\cdots
\end{aligned}
$$

(b) (i) $\frac{1}{x y}+x+y \geqslant 3 \sqrt[3]{\frac{1}{x y} \times x \times y}=3$
(ii) $\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)} \geqslant 4$?

$$
\frac{1}{a(a+1)}+a+a+1 \geqslant 3 \text { (replaaing } x \text { by a ady by a+1 }
$$

similonly

$$
\begin{align*}
& \frac{1}{b(b+1)}+b+b+1 \geqslant 3 \tag{2}\\
& \frac{1}{c(c+1)}+c+c+1 \geqslant 3 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& (1)+(2)+(3) \\
& \frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(a+1)}+a+b+c+a+b+c+3 \geqslant 3+3+3 \\
& \frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(a+1)}+1+1+3 \geqslant 9 \quad \text { snce } a+b+c=1 \\
& \frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)} \geqslant 9-5=4
\end{aligned}
$$

