MATHEMATICS (EXTENSION 2)
 2019 HSC Course Assessment Task 3 (Trial Examination)
 27th of June, 2019

General instructions

- Working time -3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets + answer sheet used in the correct order within this paper and hand to examination supervisors.

SECTION I

- Mark your answers on the answer sheet provided (numbered as page 13)

SECTION II

- Commence each new question on a new page. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

STUDENT NUMBER:
\# BOOKLETS USED: \qquad

Class (please $\boldsymbol{\checkmark}$)
○ $12 \mathrm{M} 4 \mathrm{~A}-\mathrm{Mr}$ Ireland
○ 12M4B - Dr Jomaa
12M4C - Miss Lee

Marker's use only.

QUESTION	$1-10$	11	12	13	14	15	16	Total
MARKS	$\overline{10}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{100}$

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 15 minutes for this section
Mark your answers on the answer sheet provided.

Questions

Marks

1. Write $\frac{10 i}{1+3 i}$ in the form $a+i b$, where a and b are real.
(A) $1-3 i$
(B) $1+3 i$
(C) $3+i$
(D) $3-i$
2. The equation $x^{3}+p x+q=0$ has a double root 1 . What is the value of $p+q$?
(A) 1
(B) -1
(C) 2
(D) -3
3. The value of $i+i^{2}+i^{3}+\ldots+i^{2019}$
(A) i
(B) 1
(C) $-i$
(D) -1
4. The value of $\lim _{h \rightarrow 0} \frac{f(a+3 h)-f(a)}{h}$ is
(A) $f^{\prime}(3 a)$
(B) $3 f^{\prime}(3 a)$
(C) $3 f^{\prime}(a)$
(D) $\frac{f^{\prime}(a)}{3}$
5. The eccentricity of the ellipse $\frac{x^{2}}{3^{2}+4^{2}}+\frac{y^{2}}{3^{2}}=1$ is
(A) $\frac{3}{4}$
(B) $\frac{4}{9}$
(C) $\frac{4}{5}$
(D) $\frac{16}{25}$
6. $\quad P(z)$ is a polynomial of degree 4 . Which of the following statements must be false?
(A) $P(z)$ has 4 real roots.
(B) $P(z)$ has 2 real and 2 non real roots
(C) $P(z)$ has 1 real and 3 non real roots
(D) $P(z)$ has no real roots
7. Given the curve $y=f(x)$, then the curve $y=f(|x|)$ is represented by
(A) A reflection of $y=f(x)$ in the y axis.
(B) A reflection of $y=f(x)$ in the x axis.
(C) A reflection of $y=f(x)$ in the y axis for $x \geq 0$.
(D) A reflection of $y=f(x)$ in the x axis for $y \geq 0$.
8. How many vertical tangents can be drawn on the graph of $x^{2}+y^{2}+4 x y-4=0$.
(A) 1
(B) 2
(C) more than 2
(D) 0
9. Which of the following $\int \frac{d x}{\sqrt{7-6 x-x^{2}}}$?
(A) $\sin ^{-1}\left(\frac{x-3}{2}\right)+c$
(B) $\sin ^{-1}\left(\frac{x+3}{2}\right)+c$
(C) $\sin ^{-1}\left(\frac{x-3}{4}\right)+c$
(D) $\sin ^{-1}\left(\frac{x+3}{4}\right)+c$
10. Given $F(x)=\int_{a}^{x}(x-t) \cos 3 t d t$, then $F^{\prime \prime}(x)$ is
(A) $(1-x) \cos 3 x$
(B) $\sin 3 x$
(C) $(1-3 x) \cos 3 x$
(D) $\cos 3 x$

Examination continues overleaf...

Section II

90 marks

Attempt Questions 11 to 16

Allow approximately 2 hours and 45 minutes for this section.
Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)
Commence a NEW page.
Marks
(a) Find $\int x^{4} e^{x^{5}+3} d x$

1
(b) Use the substitution $u=\frac{1}{1+x^{2}}$ to evaluate $\int \frac{d x}{x\left(1+x^{2}\right)^{2}}$.
(d) Given $I=\int x \sin ^{2} x d x$ and $J=\int x \cos ^{2} x d x$
i. Show that $I+J=\frac{x^{2}}{2}+c_{1}$
ii. Find $J-I$
iii. Hence, or otherwise find I and J.
(e)
i. Prove that if f is continuous function, then

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x .
$$

ii. Hence, or otherwise show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x=\frac{\pi}{4}
$$

End of Question 11

(a) Given $z=1-i$, find the values of w such that $w^{2}=i+3 \bar{z}$
(b) Find the Cartesian equation of the locus of a point P which represents the complex number z where $|z-2 i|=|z|$
(c) $\quad z$ is a point in the first quadrant of the Argand diagram which lies on the circle $|z-3|=3$. Given $\arg (z)=\theta$, find $\arg \left(z^{2}-9 z+18\right)$ in terms of θ.
(d) Consider the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{7}=1$

i. Write down the coordinates of the focus S and the equation of the associated directrix.
ii. The equation of the normal to the ellipse at the point $P\left(x_{1}, y_{1}\right)$ is given by

$$
\frac{9 x}{x_{1}}-\frac{7 y}{y_{1}}=2 \quad \text { (DO NOT PROVE THIS.) }
$$

Let Q be the x-intercept of the normal and let M be the foot of the perpendicular from P to the directrix as shown in the diagram. Show that $Q S=\frac{2}{9} P M$.
(e) The region bounded by the portion of the curve $f(x)=\frac{x}{x+2}$, and the x axis is rotated about the line $x=3$.

i. Using the method of cylindrical shells, show that the volume of a typical
shell at a distance x from the origin and with distance δx is given by

$$
\delta V=2 \pi(3-x) \frac{x}{x+2} \delta x .
$$

ii. Hence, find the volume of this solid.

End of Question 12
(a) The curve $y=f(x)$, sketched below, has asymptotes $y=0$ and $y=1-x$.

Copy or trace the above graph onto three separate number planes. Use your diagrams to show sketches of the following graphs, showing all essential features clearly.
i. $\quad y=[f(x)]^{2}$.
ii. $\quad|y|=f(x)$.
iii. $\quad y=\log (f(x))$.
(b) $\quad \alpha, \beta$ and γ are roots of the cubic equation $x^{3}+q x+r=0$.
i. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ in terms of q and r.
ii. Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$ in terms of q and r
iii. By considering $x=(\beta-\gamma)^{2}$, show that the equation whose roots are $(\beta-\gamma)^{2},(\gamma-\alpha)^{2}$ and $(\alpha-\beta)^{2}$ is

$$
(x+q)^{3}+3 q(x+q)^{2}+27 r^{2}=0
$$

(c) In the diagram below, $A B C D$ is a cyclic quadrilateral and diagonals $A C$ and $B D$ intersect at K. Circles $A K D$ and $A K B$ are drawn and it is known that $C D$ is a tangent to circle $A K D$. Let $\angle C D B=\alpha$.

i. Prove that $B C D$ is isosceles.
ii. Prove that $C B$ is a tangent to circle $A K B$

End of Question 13

(a) Consider the rectangular hyperbolas $x y=c^{2}$ and $x y=-c^{2}$.

The point $P(c p, c / p)$ lies on $x y=c^{2}$ and the equation of tangent to $x y=c^{2}$ at point P is

$$
x+p^{2} y-2 c p=0
$$

i. The tangent at P cuts the hyperbola $x y=-c^{2}$ at two points A and
B. Show the coordinates of A and B are $\left(p c(1+\sqrt{2}), \frac{-c}{p(1+\sqrt{2})}\right)$ and $\left(p c(1-\sqrt{2}), \frac{-c}{p(1-\sqrt{2})}\right)$ respectively.
ii. Show that the tangents to $x y=-c^{2}$ at A and B intersect at $Q(-c p,-c / p)$.
iii. Hence, show that the area of the triangle $A B Q$ is independent of p.
(b) Consider the integral

$$
I_{n}=\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x
$$

i. Show that $I_{n}+I_{n-1}=\int_{0}^{1} x^{n-1} \sqrt{x+1} d x$
ii. Use integration by parts to show that

$$
I_{n}=\frac{-2 n}{2 n+1} I_{n-1}+\frac{2 \sqrt{2}}{2 n+1}
$$

(c) Given that $x^{3}+y^{3}=6 x y$.
i. Find the tangent to $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.
ii. At what point in the first quadrant is the tangent line horizontal?

End of Question 14

(a) Let α be a real number and suppose z is a complex number such that

$$
z+\frac{1}{z}=2 \cos \alpha
$$

You may assume that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \alpha
$$

for all positive integer n.
i. Let $\omega=z+\frac{1}{z}$. Prove that

$$
\omega^{3}+\omega^{2}-2 \omega-2=\left(z+\frac{1}{z}\right)+\left(z^{2}+\frac{1}{z^{2}}\right)+\left(z^{3}+\frac{1}{z^{3}}\right)
$$

ii. Hence, or otherwise, find all solutions of

$$
\cos \alpha+\cos 2 \alpha+\cos 3 \alpha=0, \quad \text { for } \quad 0 \leq \alpha \leq 2 \pi
$$

(b) A sequence x_{n} is defined by the following rules: $x_{0}=2 a, x_{1}=-a^{2}$ and

$$
x_{n+1}=-a x_{n}+a^{2} x_{n-1} \quad \text { for } \quad n \geq 1
$$

Prove by mathematical induction that

$$
x_{n}=a^{n+1}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{n}+\left(\frac{-1-\sqrt{5}}{2}\right)^{n}\right], \quad \text { for } \quad n \geq 0
$$

(c) Let a, b and c are positive real numbers.

Given that $x^{2}+y^{2} \geq 2 x y$ for all positive real numbers x and y.
i. Prove that $a^{2}+(b c)^{2} \geq 2 a b c$
ii. Prove that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$
iii. Prove that $a^{2}\left(1+b^{2}\right)+b^{2}\left(1+c^{2}\right)+c^{2}\left(1+a^{2}\right) \geq 6 a b c$
iv. Hence, or otherwise prove that $a^{2}\left(1+a^{2}\right)+b^{2}\left(1+b^{2}\right)+c^{2}\left(1+c^{2}\right) \geq 6 a b c$

End of Question 15

The recurrence formula is defined by

$$
T_{0}(x)=2, \quad T_{1}(x)=2 \sec x, \quad T_{2}(x)=4 \sec ^{2} x-2
$$

and

$$
T_{k}(x)=2 \sec x T_{k-1}(x)-T_{k-2}(x) \quad \text { for } \quad k \geq 2 \quad \text { and } \quad 0 \leq x<\frac{\pi}{2}
$$

i. Show that $T_{3}(x)$ and $T_{4}(x)$ are

$$
\begin{gathered}
T_{3}(x)=8 \sec ^{3} x-6 \sec x \\
T_{4}(x)=16 \sec ^{4} x+8 \sec ^{2} x+2
\end{gathered}
$$

To find a formula for $T_{k}(x)$, let $F(Z)$ be the power series in Z with the coefficient of Z^{k} being $T_{k}(x)$. That is, let

$$
F(Z)=2+2 \sec x Z+\left(4 \sec ^{2} x-2\right) Z^{2}+\cdots+T_{k}(x) Z^{k}+\ldots
$$

ii. Find $\left(1-2 \sec x Z+Z^{2}\right) F(Z)$, hence show that

$$
F(Z)=\frac{2-2 \sec x Z}{1-2 \sec x Z+Z^{2}}
$$

iii. Given that α and β are the zeros of $1-2 \sec x Z+Z^{2}=0$. Show that

$$
1-2 \sec x Z+Z^{2}=\left(1-\frac{Z}{\alpha}\right)\left(1-\frac{Z}{\beta}\right)
$$

iv. Using partial fraction, show that $F(Z)$ can be written in the form

$$
F(Z)=\frac{2-2 \sec x Z}{1-2 \sec x Z+Z^{2}}=\frac{A}{1-\frac{Z}{\alpha}}+\frac{B}{1-\frac{Z}{\beta}}
$$

where A and B are constants.
v. For $|Z|$ sufficiently small, explain why $\frac{1}{1-\frac{Z}{\alpha}}$ is equal to

$$
1+\frac{Z}{\alpha}+\left(\frac{Z}{\alpha}\right)^{2}+\cdots+\left(\frac{Z}{\alpha}\right)^{k}+\ldots
$$

hence show that the coefficient of $T_{k}(x)$ is $A\left(\frac{1}{\alpha}\right)^{k}+B\left(\frac{1}{\beta}\right)^{k}$
vi. Hence deduce that the formula for $T_{k}(x)$ is

$$
T_{k}(x)=\left(\frac{1}{\sec x+\tan x}\right)^{k}+\left(\frac{1}{\sec x-\tan x}\right)^{k}
$$

vii. Find $\lim _{n \rightarrow \infty} \frac{T_{n+1}(x)}{T_{n}(x)}$

End of paper.

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g

STUDENT NUMBER:

Class (please \boldsymbol{V})12M4A - Mr Ireland12M4B - Dr Jomaa
O 12M4C - Miss Lee

$$
\begin{aligned}
& 1-A \text { (C) } \\
& 2-\text { A B C D } \\
& 3-\text { (A C C } \\
& 4-\text { A B C D } \\
& 5-\text { (A B C D } \\
& 6-\text { A B C D } \\
& 7-\text { (A B C } \\
& 8-\text { A B C D } \\
& 9-\text { (} B \text { (C) D } \\
& 10-\text { (A B C }
\end{aligned}
$$

Answer sheet for Section I

Mark answers to Section I by fully blackening the correct circle, e.g "•"
STUDENT NUMBER:
Class (please \boldsymbol{V})12M4A - Mr Ireland
O 12M4B - Dr Jomaa
O 12M4C - Miss Lee

$$
\begin{aligned}
& 1-\text { (A) (B) (D) } \\
& 2-\text { (A) (B) C (D) } \\
& 3-\text { (A) B (C) D } \\
& \text { 4- (A) (B) (C) } \\
& 5-\text { (A) B (C) (D) } \\
& 6-\text { (A) (C) D } \\
& 7-\text { (A) B (D) } \\
& \text { 8- (A) B (C) } \\
& 9-\text { (A) (B) D } \\
& 10-\text { (A) } \\
& \text { (B) (C) }
\end{aligned}
$$

(11.) $\int x^{4} e^{x^{5}+3} d x=\frac{1}{5} \int 5 x^{4} e^{x^{5}+3} d x=\frac{1}{5} e^{x^{5}+3}+c$
(b)

$$
\begin{aligned}
& |z-2 i|=|z| \\
& |z-2 i|^{2}=|z|^{2} \\
& x^{2}+(y-2)^{2}=x^{2}+y^{2} \\
& x^{2}+y^{2}-4 y+4=x^{2}+y^{2} \\
& \quad 4-4 y=0 \quad \therefore y=1
\end{aligned}
$$

(C) $I=\int x \sin ^{2} x d x, \quad J=\int x \cos ^{2} x d x$
(i)

$$
\begin{aligned}
I+J & =\int x \sin ^{2} x d x+\int x \cos ^{2} x d x \\
& =\int x\left(\sin ^{2} x+\cos ^{2} x\right) d x \\
& =\int x d x \\
I+J & =\frac{x^{2}}{2}+C_{1}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{1}{J-I} & =\int x \cos ^{2} x d x-\int x \sin ^{2} x d x \\
& =\int x\left(\cos ^{2} x-\sin ^{2} x\right) d x \\
& =\int x \cos ^{2} x d x
\end{aligned}
$$

Let $u=x$ and $\cos 2 x d u=d v$
$d x=d x$ and $v=\frac{1}{2} \sin 2 x$

$$
\begin{aligned}
\int x \cos 2 x d x & =\frac{1}{2} x \sin 2 x-\frac{1}{2} \int \sin 2 x d x \\
& =\frac{1}{2} x \sin 2 x-\frac{1}{2}\left(\frac{-\cos 2 x}{2}\right)+C_{2} \\
& =I=\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+C_{2}
\end{aligned}
$$

(iii)

$$
\begin{align*}
& I+J=\frac{x^{2}}{2}+c_{1} \tag{1}\\
& J-I=\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c_{2} \tag{2}
\end{align*}
$$

(1) + (2) \therefore

$$
\begin{aligned}
2 J & =\frac{x^{2}}{2}+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c_{1}+c_{2} \\
J & =\frac{x^{2}}{4}+\frac{1}{4} x \sin 2 x+\frac{1}{8} \cos 2 x+C
\end{aligned}
$$

$$
\begin{array}{r}
(1)-(2) \therefore 2 I=\frac{x^{2}}{2}-\frac{1}{2} x \sin 2 x-\frac{1}{4} \cos 2 x+c_{1}-c_{2} \\
\\
I=\frac{x^{2}}{4}-\frac{1}{4} x \sin 2 x-\frac{1}{8} \cos 2 x+C
\end{array}
$$

(d)
(i) $\int_{0}^{a} f(x) d x$
let $x=a-u$
$d x=-d u$
$x=0, u=a$
$x=a, u=0$

$$
\begin{aligned}
\int_{0}^{a} f(x) d x & =\int_{a}^{0} f(a-u)(-d u)=-\int_{a}^{0} f(a-u) d u \\
& =\int_{0}^{a} f(a-u) d u=\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I & =\int_{0}^{\pi / 2} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x=\int_{0}^{\pi / 2} \frac{\cos ^{n}(\pi / 2-x)}{\sin ^{n}(\pi / 2 x)+\cos ^{n}(\pi / 2-x)} d x \\
& =\int_{0}^{\pi / h} \frac{\sin ^{n}(x)}{\cos ^{n} x+\sin ^{n} x} d x \\
2 I & =\int_{0}^{\pi / 2} \frac{\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x+\int_{0}^{\pi / 2} \frac{\sin ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x \\
& =\int_{0}^{\pi / 2} d x=[x]_{0}^{\pi / 2}=\pi / 2-0 \\
I & =\pi / 4 .
\end{aligned}
$$

$$
\text { (e) } \begin{aligned}
& \int \frac{3 x}{5 x^{2}-4 x+2} d x=\frac{3}{10} \int \frac{10 x-4+4}{5 x^{2}-4 x+2} d x \\
& =\frac{3}{10} \int \frac{10 x-4}{5 x^{2}-4 x+2} d x+\frac{6}{5} \int \frac{d x}{5 x^{2}-4 x+2} \\
& =\frac{3}{10} \ln \left|5 x^{2}-4 x+2\right|+6 \int \frac{d x}{(5 x)^{2}-20 x+10} \\
& =\frac{3}{10} \ln \left|5 x^{2}-4 x+2\right|+6 \int \frac{d x}{(5 x-2)^{2}+6} \\
= & \frac{3}{10} \ln \left|5 x^{2}-4 x+2\right|+\frac{6}{5} \int \frac{5 d x}{(5 x-2)^{2}+6} \\
= & \frac{3}{10} \ln \left|5 x^{2}-4 x+2\right|+\frac{6}{5} \times \frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{5 x-2}{\sqrt{6}}\right)+C \\
= & \frac{3}{10} \ln \left|5 x^{2}-4 x+2\right|+\frac{\sqrt{6}}{5} \tan ^{-1}\left(\frac{5 x-2}{\sqrt{6}}\right)+C
\end{aligned}
$$

12.

(a)

$$
\begin{aligned}
z= & 1-i \\
\omega^{2} & =i+3 \bar{z} \\
& =i+3(1+i) \\
& =3+4 i \\
& =2^{2}-1^{2}+2 \times 2 \times 1 \times i \\
& =(2+i)^{2} \\
\omega & = \pm(2+i)
\end{aligned}
$$

(b)

$$
\begin{aligned}
&|z-3|=3 \\
& \arg \left(z^{2}-9 z+18\right)=\arg ((z-3)(z-6)) \\
&=\arg (z-3)+\arg (z-6)
\end{aligned}
$$

$\arg (z-3)=2 \theta$ (see diagram)

$$
\text { arg }(z-6)=\theta+\pi / 2 \quad \text { (see diagram) }
$$

$$
\arg \left(z^{2}-9 z+18\right)=\pi / 2+3 \theta
$$

(c) $\frac{x^{2}}{9}+\frac{y^{2}}{7}=1$
(i)

$$
\begin{aligned}
& 7=9\left(1-e^{2}\right) \therefore \frac{7}{9}=1-e^{2} \therefore e^{2}=1-\frac{7}{9}=\frac{2}{9}: e=\frac{\sqrt{2}}{3} \\
& a=3 \\
& S(a e, 0)=(\sqrt{2}, 0)
\end{aligned}
$$

the dinectrix $x=+\frac{a}{e}=+\frac{3}{\frac{\sqrt{2}}{3}}=+\frac{9}{\sqrt{2}}$
(ii) $\quad \frac{9 x}{x_{1}}-\frac{7 y}{y_{1}}=2$
sub $y=0 \therefore x=\frac{2 x_{1}}{9} \quad \therefore \quad Q\left(\frac{2 x_{1}}{9}, 0\right)$
Also, $M\left(\frac{9}{\sqrt{2}}, y\right)$

$$
\begin{aligned}
& Q S=\sqrt{2}-\frac{2 x_{1}}{9} \\
& P M=\frac{9}{\sqrt{2}}-x_{1} \\
& Q S=\sqrt{2}-\frac{2 x_{1}}{9}=\frac{2}{9}\left(\frac{9}{\sqrt{2}}-x_{1}\right)=\frac{2}{9} P M
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \text { Area }=2 \pi(3-x) \frac{x}{x+2} \\
& S V=2 \pi(3-x) \frac{x}{x+2} \Delta x \\
& V=\lim _{\Delta x \rightarrow 0} \delta V=\lim _{\Delta x \rightarrow 0} 2 \pi(3-x) \frac{x}{x+2} \Delta x \\
& V=2 \pi \int_{0}^{3}(3-x) \frac{x}{x+2} d x=2 \pi \int_{0}^{3}(3-x)\left(\frac{x+2-2}{x+2}\right) d x \\
& =2 \pi \int_{0}^{3}(3-x) d x+4 \pi \int_{0}^{3} \frac{x-3}{x+2} d x \\
& =2 \pi \int_{0}^{3}(3-x) d x+4 \pi \int_{0}^{3} d x-20 \pi \int_{0}^{3} \frac{d x}{x+2} \\
& =2 \pi\left[3 x-\frac{x^{2}}{2}\right]_{0}^{3}+4 \pi(x)_{0}^{3}-20 \pi[\ln |x+2|]_{0}^{3}
\end{aligned}
$$

continue (d)

$$
\begin{aligned}
V & =2 \pi\left(9-\frac{3^{2}}{2}-0\right)+4 \pi(3-0)-20 \pi(\ln 5-\ln 2) \\
& =9 \pi+12 \pi-20 \pi \ln \left(\frac{5}{2}\right) \\
& =21 \pi-20 \pi \ln \left(\frac{5}{2}\right) \\
V & =\pi\left(21-20 \ln \frac{5}{2}\right)
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \quad \int \frac{d x}{x\left(1+x^{2}\right)} \\
& \text { Cet } u=\frac{1}{1+x^{2}} \therefore d u=\frac{-2 x}{\left(1+x^{2}\right)^{2}} d x \\
& \qquad 1+x^{2}=\frac{1}{4} \therefore x^{2}=\frac{1}{u}-1=\frac{1-u}{u} \therefore \frac{1}{x^{2}}=\frac{u}{1-u} \\
& \int \frac{d u}{x\left(1+x^{2}\right)}=\frac{-1}{2} \int \frac{-2 x d u}{x^{2}\left(1+x^{2}\right)^{2}}=\frac{-1}{2} \int \frac{u d u}{1-u} \\
& =\frac{1}{2} \int \frac{1-u-1}{1-u} d u=\frac{1}{2} \int d u-\frac{1}{2} \int \frac{d u}{1-u} \\
& =\frac{1}{2} u+\frac{1}{2} \ln |1-u|+C \\
& =\frac{1}{2} \times \frac{1}{1+x^{2}}+\frac{1}{2} \ln \left|1-\frac{1}{1+x^{2}}\right|+C \\
& =\frac{1}{2\left(1+x^{2}\right)}+\frac{1}{2} \ln \left(\frac{x^{2}}{1+x^{2}}\right)+C
\end{aligned}
$$

Question 13:

(a)
$\gamma=f(x)$

(i)
$Y=f(x)^{\wedge}{ }^{\wedge}$

(ii) $|y|=f(x)$

(iii) $\gamma=\log (f(x))$

(b) $\quad x^{3}+q x+r=0$
$\alpha_{1} \beta$ and γ are noots

$$
\begin{align*}
& \therefore \quad \alpha+\beta+\gamma=0 \tag{1}\\
& \alpha \beta+\beta \gamma+\gamma \alpha=q \tag{2}\\
& \alpha \beta \gamma=-r \tag{3}
\end{align*}
$$

(i) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}=\frac{q}{-r}=-\frac{q}{r}$
(ii)

$$
\begin{aligned}
\alpha^{3}+\beta^{3}+\gamma^{3} & =-q(\alpha+\beta+\gamma)-3 r \\
& =-q \times 0-3 r \\
& =-3 r
\end{aligned}
$$

(iii)

$$
\begin{align*}
& x=(\beta-\gamma)^{2}=(\beta+\gamma)^{2}-4 \gamma \beta \\
& \text { (1) } \therefore \beta+\gamma=-\alpha \\
& \text { (3) } \therefore \beta \gamma=-r / \alpha \\
& x=(-\alpha)^{2}-4(-r / \alpha)=\alpha^{2}+\frac{4 r}{\alpha} \therefore \alpha^{3}-\alpha x+4 r=0 \text { (4) } \\
& \text { bset, } \alpha^{3}+q \alpha+r=0 \text { (5) } \tag{6}
\end{align*}
$$

(5) - (4) $\therefore \quad(q+x) \alpha=3 r \therefore \alpha=\frac{3 r}{q+x}$
sub (6) into (5) we obtain:

$$
\begin{aligned}
& \frac{27 r^{3}}{(q+x)^{3}}+\frac{3 q r}{q+x}+r=0 \\
& 27 r^{3}+3 q(q+x)^{2}+(q+x)^{3}=0
\end{aligned}
$$

OR $\quad x^{3}+6 q x^{2}+9 q^{2} x+4 q^{3}+27 r^{2}=0$.

In the diagram above, $A B C D$ is a cyclic quadrilateral and diagonals $A C$ and $B D$ intersect at K. Circles $A K D$ and $A K B$ are drawn and it is known that $C D$ is a tangent to circle $A K D$. Let $\angle C D B=\alpha$.

Use the separate blue answer sheet for Question 16 (b).
(i) Prove that $\triangle B C D$ is isosceles.
(ii) Prove that $C B$ is a tangent to circle $A K B$
(c) (i) If $\angle C D B=\alpha$
then $\angle D A C=\alpha$ (Angle in the alternate segment theorem) and $\therefore \angle D B C=\alpha$ (Angles on the circumference. standing on the same are are equal) $\therefore \triangle B C D$ is isosceles (Base L's equal),
(ii) $\quad C D^{2}=A C \cdot C K$ (Square on tangent). but $C D=B C$ (Equal sides of isosceles $\triangle B C D$)

$$
\therefore B C^{2}=A C \cdot C K
$$

$\therefore B C$ must be a tangent to circle $A K B$.
(14)
(a) $\quad x^{3}+y^{3}=6 x y$
(i)

$$
\begin{aligned}
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x} \\
& x^{2}+y^{2} \frac{d y}{d x}=2 y+2 x \frac{d y}{d x} \\
& \left(y^{2}-2 x\right) \frac{d y}{d x}=2 y-x^{2} \\
& \frac{d y}{d x}=\frac{2 y-x^{2}}{y^{2}-2 x}
\end{aligned}
$$

at $(3,3), \frac{d y}{d x}=\frac{2(3)-3^{2}}{3^{2}-2(3)}=\frac{-3}{3}=-1$
The equation of tangent is

$$
y-3=-1(x-3) \therefore y=-x+6
$$

(ii) Tangent line is horizontal $\therefore y^{\prime}=0$

$$
\begin{gathered}
\therefore y-x^{2}=0 \therefore y=x^{2} / 2 \\
x^{3}+\left(x^{2} / 2\right)^{3}=6 x\left(x^{2} / 2\right) \\
x^{3}+\frac{x^{6}}{8}=3 x^{3} \\
x^{6}=16 x^{3} \\
x^{3}=16 \\
x=16^{1 / 3}=2^{4 / 3} \\
y=\frac{\left(2^{4 / 3}\right)^{2}}{2}=2^{5 / 3}
\end{gathered}
$$

\therefore At $\left(2^{4 / 3}, 2^{5 / 3}\right)$ the tangent line is horizontal.
(b) (i) $x+p^{2} y-2 c p=0$

Multiply by x, we obtain

$$
\begin{array}{cl}
& x^{2}+p^{2} x y-2 c p x=0 \text {, but } x y=-c^{2} \\
& x^{2}-c^{2} p^{2}-2 c p x=0 \\
& x^{2}-2 c p x+c^{2} p^{2}-2 c^{2} p^{2}=0 \\
(x-c p)^{2}=2 c^{2} p^{2} \\
x-c p= \pm c p \sqrt{2} \\
x=c p(1 \pm \sqrt{2}) \\
\therefore \quad A\left(c p(1+\sqrt{2}), \frac{-c}{p(1+\sqrt{2})}\right) \\
\text { and } \quad B\left(c p(1-\sqrt{2}), \frac{-c}{p(1-\sqrt{2})}\right)
\end{array}
$$

(ii) The equation of tangent at A is

$$
\begin{gather*}
y+\frac{c}{p(1+\sqrt{2})}=\frac{c^{2}}{c^{2} p^{2}(1+\sqrt{2})^{2}}(x-c p(1+\sqrt{2})) \\
y=\frac{1}{p^{2}(3+2 \sqrt{2})} x-\frac{2 c}{p(1+\sqrt{2})} \tag{1}
\end{gather*}
$$

Similarly at B is

$$
\begin{equation*}
y=\frac{1}{p^{2}(3-2 \sqrt{2})} x-\frac{2 c}{p(1-\sqrt{2})} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
(1)-(2) \therefore 0 & =\frac{x}{p^{2}}\left(\frac{1}{3+2 \sqrt{2}}-\frac{1}{3-2 \sqrt{2}}\right)-\frac{2 c}{p}\left(\frac{1}{1+\sqrt{2}}-\frac{1}{1-\sqrt{2}}\right) \\
& =\frac{x}{p^{2}}\left(\frac{-4 \sqrt{2}}{1}\right)-\frac{2 c}{p}\left(\frac{-2 \sqrt{2}}{-1}\right) \\
& =\frac{-4 \sqrt{2}}{p^{2}} x-\frac{4 \sqrt{2} c}{p} \quad \therefore x=-c p
\end{aligned}
$$

(b) contivie

$$
\begin{aligned}
y & =\frac{1}{p^{2}(3+2 \sqrt{2})}(-c p)-\frac{2 c}{p(1+\sqrt{2})} \\
& =\frac{-c}{p} \times \frac{3-2 \sqrt{2}}{9-8}-\frac{2 c(1-\sqrt{2})}{p(1-2)} \\
& =-\frac{c}{p}(3-2 \sqrt{2}-2+2 \sqrt{2})=-\frac{c}{p} \\
& \therefore Q(-c p,-c / p) \quad \text { as requined. }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A B & =\sqrt{[c p(1+\sqrt{2})-c p(1-\sqrt{2})]^{2}+\left[\frac{-c}{p(1+\sqrt{2})}-\frac{-c}{p(1-\sqrt{2})}\right]^{2}} \\
& =\sqrt{8 p^{2} c^{2}+\frac{8 c^{2}}{p^{2}}} \\
& =2 \sqrt{2} c \sqrt{p^{2}+\frac{1}{p^{2}}}
\end{aligned}
$$

Equation of $A B$ is $x^{2}+p^{2} y-2 c p=0$
perpendicular distance from Q to $A B$ is

$$
\begin{aligned}
& \frac{\left|-c p+p^{2}(-c / p)-2 c p\right|}{\sqrt{1+p^{4}}}=\frac{4 c p}{\sqrt{p^{4}+1}} \\
& \text { Anea of } A B Q=\frac{1}{2} \times \frac{4 c p}{\sqrt{p^{4}+1}} \times 2 \sqrt{2} c \sqrt{p^{2}+\frac{1}{p^{2}}} \\
&=4 c^{2} \sqrt{2}
\end{aligned}
$$

is independent of p as requined.
(6)

$$
\begin{aligned}
& \text { (6) (1) } \begin{aligned}
I_{n} & =\int_{0}^{1} \frac{x^{n}}{\sqrt{x+1}} d x \\
I_{n-1} & =\int_{0}^{1} \frac{x^{n-1}}{\sqrt{x+1}} d x \\
I_{n}+I_{n-1} & =\int_{0}^{1} x^{n-1} \frac{(1+x)}{\sqrt{x+1}} d x \\
& =\int_{0}^{1} x^{n-1} \sqrt{1+x} d x
\end{aligned} .
\end{aligned}
$$

(ii) Let $x^{n-1} d x=d v \quad \therefore \quad v=\frac{1}{n} x^{n}$

$$
\begin{aligned}
u & =\sqrt{1+x} \therefore d u=\frac{1}{2 \sqrt{1+x}} d x \\
\int_{0}^{1} x^{n-1} \sqrt{1+x} d x & =\left[\frac{1}{n} x^{n} \sqrt{1+x} \int_{0}^{1}-\frac{1}{2 n} \int_{0}^{1} \frac{x^{n}}{\sqrt{1+x}} d x\right. \\
& =\frac{1}{n} \sqrt{2}-\frac{1}{2 n} I_{n} \\
I_{n}+I_{n-1} & =\frac{1}{n} \sqrt{2}-\frac{1}{2 n} I_{n} \\
2 n I_{n}+2 n I_{n-1} & =2 \sqrt{2}-I_{n} \\
(2 n+1) I_{n} & =-2 n I_{n-1}+2 \sqrt{2} \\
I_{n} & =\frac{-2 n}{2 n+1} I_{n-1}+\frac{2 \sqrt{2}}{2 n+1}
\end{aligned}
$$

(15):
(i)

$$
\begin{aligned}
& \omega^{3}+\omega^{2}-2 \omega-2 \\
= & \omega^{2}(\omega+1)-2(\omega+1) \\
= & (\omega+1)\left(\omega^{2}-2\right) \\
= & \left(z+\frac{1}{2}+1\right)\left(\left(z+\frac{1}{2}\right)^{2}-2\right) \\
= & \left(z+\frac{1}{2}+1\right)\left(z^{2}+\frac{1}{z^{2}}\right) \\
= & z^{3}+\frac{1}{2}+z+\frac{1}{z^{3}}+z^{2}+\frac{1}{z^{2}} \\
= & z+\frac{1}{z}+z^{2}+\frac{1}{z^{2}}+z^{3}+\frac{1}{z^{3}} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z+\frac{1}{z}=2 \cos \alpha \\
& z^{2}+\frac{1}{z^{2}}=2 \cos ^{2} \alpha \\
& z^{3}+\frac{1}{z^{3}}=2 \cos 3 \alpha \\
& \omega^{3}+\omega^{2}-2 \omega-2=(\omega+1)\left(\omega^{2}-2\right) \\
& =(2 \cos \alpha+1)(2 \cos 2 \alpha) \\
& =2 \cos ^{2} \alpha(2 \cos \alpha+1) \\
& \cos \alpha+\cos 2 \alpha+\cos \alpha=0 \therefore \frac{1}{2}\left[z+\frac{1}{z}+z^{2}+\frac{1}{z^{2}}+z^{2}+\frac{1}{z^{3}}\right]=0 \\
& \therefore \frac{1}{2}(\omega+1)\left(\omega^{2}-2\right)=0 \\
& \therefore \quad \cos \alpha(2 \cos \alpha+1)=0 \\
& \cos \alpha=0 \text { or } 2 \cos \alpha+1=0 \\
& 2 \alpha=\pi / 2 \text { or } \frac{3 \pi}{2} \text { or } \cos \alpha=-1 / 2 \quad \therefore \alpha=2 \pi / 3 \text { or } 4 \pi / 3 \\
& \frac{5 \pi}{2} \text { or } \frac{7 \pi}{2} \\
& \alpha=\pi / 4, \frac{3 \pi}{4}, \frac{5 \pi}{4}, 7 / 4, \frac{2 \pi}{3}, \frac{4 \pi}{3} \text {. }
\end{aligned}
$$

(b) $x_{0}=a^{0+1}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{0}+\left(\frac{-1-\sqrt{5}}{2}\right)^{0}\right]=a(1+1)=2 a$

$$
x_{1}=a^{2}\left[\frac{-1+\sqrt{5}}{2}+\frac{-1-\sqrt{5}}{2}\right]=a^{2}\left(\frac{-1}{2}-\frac{1}{2}\right)=-a^{2} .
$$

Assue it is true for $n=k-1$ and $n=k$

$$
\left.\begin{array}{l}
x_{k-1}=a^{k}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k-1}+\left(\frac{-1-\sqrt{5}}{2}\right)^{k-1}\right] \\
x_{k}=a^{k+1}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k}+\left(\frac{-1-\sqrt{5}}{2}\right)^{k}\right]
\end{array}\right\}(t)\binom{\text { induction }}{\text { hyposthesis }}
$$

prove if true for $n=k+1$.

$$
\begin{aligned}
x_{k+1} & =-a x_{k}+a^{2} k_{k}^{k-1} \\
& =-a a^{k+1}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k}+\left(\frac{-1-\sqrt{5}}{2}\right)^{k}\right]+a^{2} a^{k}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k-1}+\left(\frac{(-1-\sqrt{5}}{2}\right)^{k-1}\right] \\
& =a^{k+2}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k-1}\left(1-\frac{-1+\sqrt{5}}{2}\right)+\left(\frac{-1-\sqrt{5}}{2}\right)^{k-1}\left(1-\frac{-1-\sqrt{5}}{2}\right)\right] \\
& \left.=a^{k+2}\left[\frac{(-1+\sqrt{5}}{2}\right)^{k-1}\left(\frac{3-\sqrt{5}}{2}\right)+\left(\frac{-1-\sqrt{5}}{2}\right)^{k-1}\left(\frac{3+\sqrt{5}}{2}\right)\right] \\
\left(\frac{(-1+\sqrt{5}}{2}\right)^{2} & =\frac{1+5-2 \sqrt{5}}{4}=\frac{6-2 \sqrt{5}}{4}=\frac{3-\sqrt{5}}{2} \\
\left(\frac{-1-\sqrt{5}}{2}\right)^{2} & \left.=\frac{1+5+2 \sqrt{5}}{4}=\frac{6+2 \sqrt{5}}{4}=\frac{3+\sqrt{5}}{2}\right] \\
x_{n+1} & =a^{k+2}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k-1}\left(\frac{-1+\sqrt{5}}{2}\right)^{2}+\left(\frac{-1-\sqrt{5}}{2}\right)^{k-1}\left(\frac{-1-\sqrt{5}}{2}\right)^{2}\right] \\
& =a^{k+2}\left[\left(\frac{-1+\sqrt{5}}{2}\right)^{k+1}+\left(\frac{-1-\sqrt{5}}{2}\right)^{k+1}\right]
\end{aligned}
$$

Hence by mathematical induction, ito is true for all $n \geqslant 0$.
(c) $\quad x^{2}+y^{2} \geqslant 2 k y$
(i) $a^{2}+(b c)^{2} \geqslant 2 a(b c)=2 a b c$.
(ii)

$$
\left.\begin{array}{l}
a^{2}+b^{2} \geqslant 2 a b \\
a^{2}+c^{2} \geqslant 2 a c \\
b^{2}+c^{2} \geqslant 2 b c
\end{array}\right\} \quad a^{2}+b^{2}+c^{2} \geqslant a b+b c+c a .
$$

(iii)

$$
\begin{aligned}
& a^{2}\left(1+b^{2}\right)+b^{2}\left(1+c^{2}\right)+c^{2}\left(1+a^{2}\right) \\
& =a^{2}+a^{2} b^{2}+b^{2}+b^{2} c^{2}+c^{2}+c^{2} a^{2} \\
& =a^{2}+b^{2}+c^{2}+a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}
\end{aligned}
$$

$$
\geqslant 6 a b c .
$$

$$
\begin{aligned}
& a^{2}+b^{2} c^{2} \geqslant 2 a b c \\
& b^{2}+a^{2} c^{2} \geqslant 2 a b c \\
& c^{2}+a^{2} b^{2} \geqslant 2 a b c
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& a^{4}+b^{4}+c^{4}+a^{2}+b^{2}+c^{2} \\
& \geqslant a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}+a^{2}+b^{2}+c^{2} \\
& \geqslant 6 a b c .
\end{aligned}
$$

Question 16:

$$
\begin{aligned}
& T_{0}(x)=2, T_{1}(x)=2 \sec x, T_{2}(x)=4 \sec ^{2} x-2 \\
& T_{K}(x)=2 \sec x T_{K-1}(x)-T_{K-2}(x) \quad k \geqslant 2, \quad 0 \leq x<\pi / 2-(*)
\end{aligned}
$$

(i)

$$
\begin{aligned}
T_{3}(x) & =2 \sec x T_{2}(x)-T_{1}(x) \\
& =2 \sec x\left(4 \sec ^{2} x-2\right)-2 \sec x \\
& =8 \sec ^{3} x-4 \sec x-2 \sec x \\
& =8 \sec ^{3} x-6 \sec x \\
T_{4}(x) & =2 \sec x T_{3}(x)-T_{2}(x) \\
& =2 \sec x\left(8 \sec ^{3} x-6 \sec x\right)-4 \sec ^{2} x+2 \\
& =16 \sec ^{4} x-12 \sec ^{2} x-4 \sec ^{2} x+2 \\
& =16 \sec ^{4} x-16 \sec ^{2} x+2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \quad F(z)=2+2 \sec x z+\left(4 \sec ^{2} x-2\right) z^{2}+\cdots+T_{k}(x) z^{k}+\ldots \\
& -2 \sec x z \quad F(z)=-4 \sec x z-4 \sec ^{2} x z^{2}-2 \sec x z^{3} T_{2}(x)-\ldots-2 \sec x T_{k}(x) z_{1}^{k_{1}} \ldots \\
& Z^{2} F(z)=\quad 2 z^{2}+T_{1}(x) z^{3}+\cdots+T_{k-2}^{(x)} z^{k}+\cdots \\
& \left(1-2 \sec x Z+Z^{2}\right) F(z)=2-2 \sec x Z+0 Z^{2}+\left(T_{3}(x)-2 \sec x T_{2}\left(\psi T_{1}(z)\right) z^{3}+\cdots\right. \\
& +\left(T_{k}(x)-2 \sec x T_{k-1}(x)+T_{k-2}(x)\right) Z^{k}+\cdots \\
& =2-2 \sec x z
\end{aligned}
$$

Cotficierts of $z^{k}, k \geqslant 3$ are zero because they satisfy the recurrence formula ($*$)

$$
\therefore \quad F(z)=\frac{2-2 \sec x z}{1-2 \sec z+z^{2}}
$$

(iii) α, β are the roots of $1-2 \sec z+z^{2}=0 \quad \therefore \alpha \beta=1$

$$
\begin{aligned}
1-2 \sec z+z^{2} & =(2-\alpha)(z-\beta)=\frac{(2-\alpha)(2-\beta)}{\alpha \beta} \\
& =\left(\frac{2}{\alpha}-1\right)\left(\frac{2}{\beta}-1\right) \\
& =\left(1-\frac{2}{\alpha}\right)\left(1-\frac{z}{\beta}\right) .
\end{aligned}
$$

using partial fraction.
(i)

$$
\begin{align*}
& F(z)=\frac{2-2 \sec x z}{1-2 \sec x z+z^{2}}=\frac{2-2 \sec x z}{\left(1-\frac{2}{\alpha}\right)\left(1-\frac{z}{\beta}\right)}=\frac{A}{1-\frac{z}{\alpha}}+\frac{B}{1-\frac{z}{\beta}} \\
& =\frac{A\left(1-\frac{2}{A}\right)+B\left(1-\frac{2}{\alpha}\right)}{\left(1-\frac{2}{\alpha}\right)\left(1-\frac{2}{\beta}\right)}=\frac{A+B-\left(\frac{A}{\beta}+\frac{B}{\alpha}\right) Z}{\left(1-\frac{2}{\alpha}\right)\left(1-\frac{2}{\beta}\right)} \\
& \therefore \quad A+B=2 \therefore B=2-A \tag{1}\\
& \frac{A}{\beta}+\frac{B}{\alpha}=2 \sec x \quad \therefore \quad \alpha A+\beta B=2 \sec x(\alpha)(\alpha=1) \\
& \alpha_{+\beta}=2 \sec x \text { (sem of roots) } \\
& \therefore \quad A=B=1 .
\end{align*}
$$

(V). $\mid z 1 \ll, \frac{1}{1-\frac{2}{\alpha}}$ is the limiting tom of the infinite geometric teri

$$
\begin{gathered}
F(z)=\frac{A}{1-\frac{2}{\alpha}}+\frac{B}{1-\frac{2}{\beta}}=A\left(1+\frac{2}{\alpha}+\left(\frac{2}{\alpha}\right)^{2}+\cdots+\left(\frac{2}{\alpha}\right)^{2}+\cdots+\cdots\right) \\
B\left(1+\frac{2}{\beta}+\left(\frac{2}{\beta}\right)^{2}+\cdots+\left(\frac{2}{\rho}\right)^{k}+\cdots\right) \\
\text { But } A=B=1
\end{gathered}
$$

$$
\begin{aligned}
& =2+\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{2}+\left(\frac{1}{\alpha^{2}}+\frac{1}{\rho^{2}}\right)^{2}+\cdots+\left(\left(\frac{1}{\alpha}\right)^{k}+\left(\frac{1}{\beta}\right)^{k}\right) z^{k}+\cdots \\
& \therefore \quad T_{k}(x)=\left(\frac{1}{\alpha}\right)^{k}+\left(\frac{1}{\beta}\right)^{k}
\end{aligned}
$$

(vi) From the quadratic equation 1-2secs $z+z^{2}=0$

$$
\begin{aligned}
& \alpha=\frac{2 \sec x+\sqrt{4 \sec ^{2} x-4}}{2}=\frac{\sec x+\tan x}{2}=\frac{2 \sec x-\sqrt{4 \sec ^{2}-4}}{2}=\sec x-\tan x
\end{aligned}
$$

$$
\begin{aligned}
& T_{k}(x)=\left(\frac{1}{\sec x+\tan x}\right)^{k}+\left(\frac{1}{\sec x-\tan x}\right)^{k} \\
& =(\sec x-\tan x)^{k}+(\sec x+\tan x)^{k} \\
& \text { (Vii) } \lim _{n \rightarrow \infty} \frac{T_{n+1}(n)}{T_{n}(n)} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{\operatorname{sen}+\tan }\right)^{n+1}+\left(\frac{1}{\sec x-\tan n}\right)^{n+1}}{\left(\frac{1}{\operatorname{sen}+\tan x}\right)^{n}+\left(\frac{1}{\sec x-\tan x}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(\sec x+\tan x)^{n+1}+(\sec n-\tan x)^{n+1}}{(\sec x+\tan)^{n}+(\sec x-\tan x)^{n}} \\
& =\lim _{n \rightarrow-} \frac{(\operatorname{sen}+\tan)^{n+1}\left[1+\left(\frac{(\operatorname{sen}-\tan n}{\operatorname{sen}+\tan n}\right)^{n+1}\right]}{(\operatorname{sen}+\tan)^{n}\left[1+\left(\frac{\operatorname{sen}-\tan }{\operatorname{sen}+\tan }\right)^{n}\right]}
\end{aligned}
$$

$\frac{\sec x+\tan x}{\operatorname{sen}+\tan x}<1$, As $n \rightarrow \infty,\left(\frac{\operatorname{sen}-\tan n}{\operatorname{sen} x+\tan x}\right)^{n} \rightarrow 0$

$$
\therefore \lim _{n \rightarrow \infty} \frac{T_{n+1}(n)}{T_{n}(n)}=\sec n+\tan x .
$$

