

2006

TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this page
- All necessary working should be shown in every question
Total Marks - 120
Attempt Questions 1-8
All questions are of equal value

NAME: \qquad TEACHER: \qquad

NUMBER:

QUESTION	MARK
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 15$
8	$/ 15$
TOTAL	

```
Total Marks - 120
Attempt Questions 1-8
All questions are of equal value
```

Begin each question in a NEW BOOKLET.

Question 1 (15 marks)
Marks
a) Evaluate
i) $\int_{0}^{\frac{\pi}{4}} \frac{\cos x}{1+\sin ^{2} x} d x$.
ii) $\quad \int_{0}^{\sqrt{2}} \sqrt{4-x^{2}} d x$ using the substitution $x=2 \sin \theta$.
b) Find $\int x^{2} e^{x} d x$.
c) i) Write $\frac{4 x^{2}+11 x-8}{(x+2)\left(x^{2}-x+1\right)}$ in the form $\frac{A}{x+2}+\frac{B x+C}{x^{2}-x+1}$
ii) Hence evaluate $\int_{-1}^{0} \frac{4 x^{2}+11 x-8}{(x+2)\left(x^{2}-x+1\right)} d x$.
d) i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
ii) Hence find $\int_{0}^{1} x(1-x)^{99} d x$.
a) If $z=2+3 i$ and $w=1-i$, find each of the following, expressing your answer in the form $x+i y$:
i) $z+\bar{w}$
ii) $\frac{z-2}{w}$
b) Write $-\sqrt{3}+i$ in modulus-argument form and hence evaluate $(-\sqrt{3}+i)^{12}$.
c) i) On the Argand diagram, clearly indicate the region containing all points representing the complex number z which satisfies the following conditions:

$$
0 \leq \arg [z-(1+i)] \leq \frac{3 \pi}{4},|z-1| \leq|z-3| \text { and } \operatorname{Re} z \geq 0
$$

ii) Hence find the range of values for $\arg z$ when z lies in the region shaded in i) above.
d) Let z be a complex number such that $|z|=1$ and $\arg z=\theta$, where $0 \leq \theta \leq \frac{\pi}{2}$.
i) On an Argand diagram, illustrate the points P and Q which represent z and z^{2} respectively, clearly indicating their relationship.
ii) Evaluate, in terms of θ,
$\alpha) \quad\left|\frac{2}{1-z^{2}}\right|$
1
$\beta) \quad \arg \left(\frac{2}{1-z}\right)$
e) \quad Suppose that w is the complex number $a+i b$. For what conditions on a and b is $w+\frac{1}{w}$ purely real?
a) The graph of $y=f(x)$ is illustrated. The line $y=0$ is a horizontal asymptote and $x=5$ is a vertical asymptote.

Using the separate page of graphs provided, sketch each of the graphs below. In each case, clearly label any maxima or minima, intercepts and the equations of any asymptotes.
i) $y=\frac{1}{f(x)}$
ii) $\quad y^{2}=f(x)$
iii) $\quad y=f(|x|)$
iv) $y=[f(x)]^{3}$

2
v) $\quad y=e^{f(x)}$

2
b) Consider the function $f(x)=x-\ln \left(x^{2}+1\right)$ for $x \geq 0$.
i) Show that $f^{\prime}(x) \geq 0$ for $x \geq 0$

1
ii) Hence deduce that $x>\ln \left(x^{2}+1\right)$ for $x>0$. 1
c) Two sides of a triangle are in the ratio 3:1 and the angles opposite these sides differ by $\frac{\pi}{6}$. Show that the smaller of the two angles is $\tan ^{-1}\left(\frac{1}{6-\sqrt{3}}\right)$.
a) The area enclosed by the curve $x y=4$ and the line $y=5-x$ is rotated about the line $y=5$ to form a solid.
i) Draw a diagram to illustrate the region.
ii) By taking slices of the solid perpendicular to the axis of rotation, show that the volume of the solid is given by

$$
\begin{equation*}
V=\pi \int_{1}^{4}\left\{\left(5-\frac{4}{x}\right)^{2}-x^{2}\right\} d x \tag{3}
\end{equation*}
$$

iii) Hence, find the volume of the solid correct to 2 significant figures.
b) i) Prove by Mathematical Induction that if n is a positive integer, then

$$
2^{(n+4)}>(n+4)^{2} .
$$

ii) By choosing a suitable substitution, or otherwise, show that if a is a positive integer, then $2^{3(a+4)}>9(a+4)^{2}$.
c) if If $I_{n}=\int \tan ^{n} x \sec x d x$ for integral values of $n \geq 0$, show that

$$
n I_{n}=\tan ^{n-1} x \sec x-(n-1) I_{n-2} \text { for } n \geq 2 .
$$

ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{3} x}{\cos ^{4} x} d x$.

Question 5: Begin a new booklet (15 marks)

a) The diagram shows part of the curve whose parametric equations are given by $\quad x=t+3$ and $y=\frac{20}{\sqrt{t^{2}+16}}$.

i) Find the values of t that correspond to each of the points A and B on the curve.
ii) A solid is formed by rotating the region $O A B C$ about the y-axis.

Use the method of cylindrical shells to express the volume in the form

$$
V=40 \pi \int_{-3}^{0} \frac{t+3}{\sqrt{t^{2}+16}} d t
$$

iii) Hence show that the volume of the solid is $40 \pi(3 \ln 2-1)$ unit 3.
b) The base of a solid is the semi-circular region of radius 1 unit in the $x-y$ plane as illustrated in the diagram below.

Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two equal sides three quarters the length of the third side.
i) Show that the area of the triangular cross-section at $x=a$ is $\frac{\sqrt{5}}{2}\left(1-a^{2}\right)$.
ii) Hence find the volume of the solid.
c) i) Find the sum of the series $1+x+x^{2}+x^{3}+\ldots+x^{n} \quad \mathbf{1}$
ii) Hence find the sum of the series $x+2 x^{2}+3 x^{3}+\ldots+n x^{n}$

Question 6: Begin a new booklet (15 marks)

a) The velocity, $v \mathrm{~ms}^{-1}$, of a particle moving on the x-axis is given by

$$
v^{2}=7+20 x-3 x^{2}
$$

i) Show that the particle is moving in simple harmonic motion and find the centre of the motion.
b) A particle P is thrown downwards in a medium where the resistive force is proportional to the speed.
i) Taking the downward direction as positive, explain why $\ddot{x}=g-k v$, where g is the acceleration due to gravity and $k>0$.

The initial speed is $U \mathrm{~ms}^{-1}$ and the particle is thrown from a point T which is d metres above a fixed point O, which is taken as the origin.
ii) Show that the velocity, $v \mathrm{~ms}^{-1}$, at any time, t seconds, is given by

$$
v=\frac{g}{k}-\left(\frac{g-k U}{k}\right) e^{-k t}
$$

2
iii) Show that the displacement, x metres, at any time, t seconds, is given by $x=\frac{g t-k d}{k}+\left(\frac{g-k U}{k^{2}}\right)\left(e^{-k t}-1\right)$
iv) An identical particle Q is dropped from O at the same instant that P is thrown down from T. Use the above results to write down expressions for v and x as functions of t for the particle Q.
v) The particles P and Q collide. Show that the speed at which the particles collide is $|U-k d| \mathrm{ms}^{-1}$.
(Note: the speed of collision is the difference between the two speeds.)
a) The points A, B, C and D lie on the circle C_{1}. From the exterior point T, a tangent is drawn to point A on C_{1}. The line $C T$ passes through D and $T C$ is parallel to $A B$.

i) Copy or trace the diagram onto your page.
ii) Prove that $\triangle A D T$ is similar to $\triangle A B C$.

The line $B A$ is produced through A to point M, which lies on a second circle C_{2}.
The points A, D, T also lie on C_{2} and the line $D M$ crosses $A T$ at O.
iii) Show that $\triangle O M A$ is isosceles.
iv) Show that $T M=B C$.
b) i) Prove that the normal to the hyperbola $x y=4$ at the point $P\left(2 p, \frac{2}{p}\right)$ is given by $p^{3} x-p y=2\left(p^{4}-1\right)$.
ii) If the normal meets the hyperbola again at $Q\left(2 q, \frac{2}{q}\right)$ prove that $p^{3} q=-1$.
iii) Hence prove that there exists only one chord which is normal to the hyperbola at both ends and find its equation.
a) i) Find in modulus-argument form, the four roots of -16 and illustrate these on the Argand diagram.
ii) Hence or otherwise, write $z^{4}+16$ as a product of two quadratic factors with real coefficients.

2
iii) Let α be the root of $z^{4}=-16$ which has a principal argument between 0 and $\frac{\pi}{2}$. Show that $\alpha+\frac{\alpha^{3}}{4}+\frac{\alpha^{5}}{16}+\frac{\alpha^{7}}{64}=0$.

3
b) If one root of the equation $x^{3}-p x^{2}+q x-r=0$ is equal to the product of the other two roots, show that $r(p+1)^{2}=(q+r)^{2}$.
c) If $f(x y)=f(x)+f(y)$ for all $x, y \neq 0$ prove that
i) $\quad f\left(x^{3}\right)=3 f(x)$

1
ii) $\quad f(1)=f(-1)=0$
iii) $\quad f(x)$ is an even function

End of paper

$$
\text { Question : } \begin{aligned}
\text { ai) } \int_{0}^{\pi / 4} & \frac{\cos x}{1+\sin ^{2} x} d x \\
& =\left[\tan ^{-1}(\sin x)\right]_{0}^{\pi / 4} \\
& \left.=\tan ^{-1}(\sin \pi / 4)-\tan ^{-1}(\sin)\right) \\
& =\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

ii) $\begin{aligned} \int_{0}^{\sqrt{2}} \sqrt{4-x^{2}} d x \quad \text { let } x & =2 \sin \theta \\ \frac{d x}{d x} & =2 \cos \theta\end{aligned}$

$$
\frac{d \theta}{d x-200} 0 d \theta
$$

$$
\text { If } x=0, \theta=0
$$

$$
x=\sqrt{2}, \theta=\frac{\pi}{7}
$$

$$
\begin{aligned}
& \therefore \int_{0}^{\sqrt{2}} \sqrt{4-x^{2}} d x \\
& =\int_{0}^{\pi / 4} \sqrt{4-4 x^{2} \theta} \\
& =\int_{0}^{\pi / 4} 4 \cos ^{2} \theta d \theta
\end{aligned}
$$

$$
=2 \int_{0}^{\pi / 4}(\cos 2 \theta+1) d \theta
$$

$$
=2\left[\frac{1}{2} \sin 2 \theta+\theta\right]_{0}^{\pi / 4}
$$

$$
=2\left[\frac{1}{2} \sin \frac{\pi}{2}+\frac{\pi}{4}-\left(\frac{1}{2} \sin \theta+0\right)\right]
$$

$$
=2\left[\frac{1}{2}+\frac{\pi}{4}\right]
$$

$$
=1+\frac{\pi}{2}
$$

b) $\int x^{2} e^{x} d x$
$=\int x^{2} \frac{d\left(e^{x}\right)}{d x} \cdot d x$
$=e^{x} x^{2}-\int e^{x} \frac{d\left(x^{2}\right)}{d x} d x$
$=e^{x} x^{2}-2 \int x e^{x} d x$
$=e^{x} x^{2}-2 \int x \frac{d\left(e^{x}\right)}{d x} d x$
$=e^{x}-x^{2}-2 x e^{x}+2 \int e^{x} d x$
$=x^{2} e^{x}-2 x e^{x}+2 e^{x}+c$
(1) $\frac{4 x^{2}+11 x-8}{(x+2)\left(x^{2}-x+1\right)}=\frac{A}{x+2}+\frac{B x+c}{x^{2}-x+1}$
$\therefore 4 x^{2}+11 x-8 \equiv N\left(x^{2}-x+1\right)+(B x+c)(x+2)$
If $x=-2$:
$16-22-8=A(4+2+1)$

$$
-14=7 A
$$

$$
A=-2
$$

If $x=0:-8=A+2 C$ but $A=-2$

$$
\begin{aligned}
-8 & =-2+2 c \\
2 c & =-6 \\
c & =-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } x=1: \\
& \quad 4+11-8=A(1-1+1)+(B+c)(3) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 11-8=A(1-1+1)+(B+8 \\
& 7=-2+3(B)-9 \\
& 18=3 B
\end{aligned}
$$

$$
B=6
$$

$$
\therefore \frac{B x^{2}+11 x-8}{(x+2)\left(x^{2}-x+1\right)}=\frac{-2}{x+2}+\frac{6 x-3}{x^{2}-x+1}
$$

$$
\text { ii) } \int_{-1}^{0} \frac{4 x^{2}+11 x-8}{(x+2)\left(x^{2}-x+1\right)} d x
$$

$$
=\int_{-1}^{0}\left(\frac{-2}{x+2}+\frac{3(2 x-1)}{x^{2}-x+1}\right) d x
$$

$$
=\left[-2 \ln (x+2)+3 \ln \left(x^{2}-x+1\right)\right]_{-1}^{0}
$$

$$
=-2 \ln 2+2 \ln 1-(-2 \ln 1+3 \ln 3)
$$

$$
=-2 \ln 2-3 \ln 3
$$

$$
=-\ln 108
$$

$$
=\int_{0}^{a} f(a-u) d u
$$

$$
=\int_{0}^{a} f(a-x) d x \text { os required. }
$$

$$
\text { ii) } \begin{aligned}
& \int_{0}^{1} x(1-x)^{99} d x \\
= & \int_{0}^{1}(1-x) x^{99} d x \\
= & \int_{0}^{1}\left(x^{99}-x^{100}\right) d x \\
= & {\left[\frac{x^{00}}{100}-\frac{x^{001}}{101}\right]_{0}^{1} } \\
= & \frac{1}{100}-\frac{1}{101} \\
= & \frac{1}{10100}
\end{aligned}
$$

Question 2:
a) $\begin{aligned} 2+\bar{n} & =2+3 i+1+i \\ & =3+4 i\end{aligned}$
i) $\frac{z-2}{\omega}=\frac{2+3 x-2}{1-i}$

$$
\begin{aligned}
& =\frac{3 i(1+i)}{(1-i)(1+i)} \\
& =\frac{3 i-3}{1+1} \\
& =-\frac{3}{2}+\frac{3 i}{2}
\end{aligned}
$$

b) $|-\sqrt{3}+i|=2$

$$
\arg (-\sqrt{3}+i)=\frac{5 \pi}{6}
$$

$\therefore-\sqrt{3}+i=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
$\operatorname{Now}(-\sqrt{3}+i)^{12}$
$=\left[2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)\right]^{i 2}$
$=2^{12}\left(\cos \left(\frac{5 \pi}{6} \times 12\right)+i \sin \left(\frac{5 \pi}{6} \times 12\right)\right)$
$=2^{12}(\cos 10 \pi+\cos 10 \pi)$
$=2^{12}(1+0 i)$
$=2^{12}$
di)

2 Required region
(l) $\tan ^{-1}\left(\frac{1}{2}\right)<\arg z \leqslant \frac{\pi}{2}$
d) i)

ii) $\alpha)\left|\frac{2}{1-z^{2}}\right|=\frac{|2|}{\left|1-z^{2}\right|}$

Now $1-z^{2}$ is the vector $\overrightarrow{Q A A_{A}}$
$\therefore\left|1-z^{2}\right|^{2}=1^{2}+1^{2}-2(2(1) \cos 2 \theta$

$$
\begin{aligned}
& =2-2 \cos 2 \theta \\
& =2-2\left(1-2 \sin ^{2} \theta\right)
\end{aligned}
$$

$$
=4 \sin ^{2} \theta
$$

$$
\therefore\left|1-z^{2}\right|=2 \sin \theta \quad \cos 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

$$
\therefore\left|\frac{2}{1-2}\right|=\frac{2}{2 \sin \theta}
$$

$$
=\operatorname{cecec} \theta
$$

$$
\beta) \operatorname{ag}\left(\frac{2}{1-z}\right)=\operatorname{ag} 2-\arg (1-z)
$$

Now $1-z=P A$
$\begin{aligned} \operatorname{ag}(1-z) & =-\angle P A O \\ & =-\left(\frac{\pi-\theta}{2}\right)\end{aligned}$
$\arg 2=0^{2}$
$\therefore \arg \left(\frac{2}{1-2}\right)=0-\left(\theta \frac{\theta-\pi}{2}\right)=\frac{\pi-\theta}{2}$

$$
\text { e) } \begin{aligned}
\omega+\frac{1}{\omega} & =a+i b+\frac{1}{a+i b} \\
& =a+i b+\frac{a-i b}{a^{2}+b^{2}}
\end{aligned}
$$

Gor thi to bo pure real

$$
\begin{aligned}
& \operatorname{Im}\left(w+\frac{1}{\omega}\right)=0 \\
& b-\frac{b}{a^{2}+b^{2}}=0, a^{2}+b^{2} \neq 0 \\
& b\left(a^{2}+b^{2}-1\right)=0 \\
& \therefore=0 \text { or } a^{2}+b^{2}=1 \\
& (a+0)
\end{aligned}
$$

Quetion 3:

a) See stparate sheet.
b) i) $f(x)=x-\ln \left(x^{2}+1\right) \quad x \geqslant 0$

$$
\begin{aligned}
f(x) & =1-\frac{2 x}{x^{2}+1} \\
& =\frac{x^{2}+1-2 x}{x+1} \\
& =\frac{(x-1)^{2}}{x^{2}+1}
\end{aligned}
$$

$$
\infty(x-1)^{2} \geqslant 0 \text { if } x \geqslant 0 \text { and } x^{2}+1 \geqslant 0
$$

$$
\text { fo al } x \text { than } \frac{(x-1)^{2}}{x^{2}+1} \geqslant 0-6 x \geqslant 0
$$

$$
\therefore f^{\prime}(x) \geqslant 0
$$

ia) $I f x=0 \quad f(0)=0-\ln (04)$

$$
=0
$$

as $f^{\prime}(x) \geqslant 0$ fs all $x \geqslant 0$ the
function $f(x)$ is increasigor-3cherey whind mimata value of O at $x>0$

$$
\begin{aligned}
& \therefore \quad(x) \geqslant 0 \quad \& \quad x \geqslant 0 \\
& \therefore \quad x-\ln \left(x^{2}+1\right)>0 \quad-x>0 \\
& \text { is } x>\ln \left(x^{2}+1\right) \& x>0
\end{aligned}
$$

$$
\begin{aligned}
& \sin \alpha=\sin \left(\alpha+\frac{\pi}{6}\right) \\
&=\sin \alpha \cdot \frac{\sqrt{3}}{2}+\cos \alpha \cdot \frac{1}{2} \\
& \cos \alpha-\sqrt{3} \cos \alpha+\cos \alpha \\
& \sin \alpha \cdot(6-\sqrt{3})=\cos \alpha \\
& \tan \alpha=\frac{1}{6-\sqrt{3}} \\
& \alpha=\tan ^{-1}\left(\frac{1}{6-\sqrt{3}}\right) \cos \alpha i \\
& \text { acte }
\end{aligned}
$$

Quedincin

thich, porperctione to $y=5$
at (x, y) on $x y=4$. This wowher-
how volme

$$
\begin{aligned}
\Delta V & =\pi\left(R^{2}-r^{2}\right) \Delta x \\
& =\pi\left(\left(5-\frac{4}{x}\right)^{2}-x^{2}\right) \Delta x
\end{aligned}
$$

Val. of solid in sm of all such ehices
$\therefore V \div \sum_{x=1}^{4} \pi\left(\left(s-\frac{1}{x}\right)^{2}-x^{2}\right) \Delta x$

$$
\begin{aligned}
& =\lim _{\Delta x \rightarrow 0} \sum_{x=1}^{4} \pi\left(\left(5-\frac{1}{3}\right)^{2}-x^{2}\right) \Delta x \\
& =\pi \int_{1}^{1}\left[\left(5-\frac{1}{4}\right)^{2}-x^{2}\right] d x \sigma_{\text {requed }}
\end{aligned}
$$

vi) $=\pi \int_{1}^{4}\left(25-\frac{10}{x^{2}}+\frac{160}{x^{2}}-x^{2}\right) d x$ $\pi\left[25 x-\sin x-\frac{16}{x}-\frac{x^{3}}{2}\right]_{1}^{4}$
$=\pi\left[100-4 \operatorname{sen} 4-4-\frac{64}{3}-\left(25-16 \frac{11}{3}\right]\right.$
$=33.138$.
$=33$ (2 s.gg fg)
\therefore Volme is 33 abic units.

Student Number:

\qquad Use this page for your answers to Question 3a)
i)

$$
y=\frac{1}{f(x)}
$$

ii)

iii)

5.
iv)

$y=[f(x)]^{3}$

bi) To prove $2^{n+4}>(n+x)^{2}$ of $n \in 3^{+}$ Teat when $n=1$

HS	$=2^{14}$	RHEe	$(1+4)^{2}$
	$=2^{3}$		$=5^{2}$
	$=32$		$=25$

$L H S>R H S \therefore$ TuE F $n=1$
Assume toe fo $n=k$
is $2^{k+t}>(k+1)^{2}$ is the
is $2^{k+k}-(k+4)^{2}>0$
Tent if two $\& \quad n=t+1$
iE Topore $2^{k+5}>(k+k+4)^{2}$
$\therefore \quad 2^{k+5}>(k+5)^{2}$
Now $2^{k+5}-(k+5)^{2}$

$$
\begin{aligned}
& =2\left(2^{k+4}\right)-\left(k^{2}+10 k+25\right) \\
& =2\left(2^{k+k}-k^{2}-8 k-16\right)+k^{2}+6 k+7 \\
& =2\left(2^{k+4}-(k+4)^{2}\right)+k^{2}+6 k+7
\end{aligned}
$$

but $2^{k+4}-(k+A)^{2}>0$ b, the
assumption and $k^{2}+6 k+7>0$ if $k>0$ $\therefore \quad 2\left(2^{k+1}-(k+4)^{2}\right)+k^{2}+6 x+7>0$

$$
\therefore \quad 2^{k+3}-(k+5)^{2}>0
$$

$$
\therefore 2^{k+5}>(k+5)^{2}
$$

\therefore the fo $n=k+1$ when assumed the for $n=k$. Twa e $G_{0} n=1 \therefore$ true for $n=1+1=2$ then $n=2+1=3$ and so on
B. $a, n \in J^{+}$
i) let $n+4=3(a+4)$

$$
\begin{aligned}
& =3 a+12 \\
n & =3 a+8
\end{aligned}
$$

sbohtiong int
$2^{n+4}>(n+4)^{2}$
gree $2^{3(a+4}>(3 a+8+4)^{2}$ $=(3(a+4))^{2}$
$=9(a+4)^{2}$
$\therefore 2^{3(a+a)}>9(a+1)^{2}$
∞ required.
ci) $I_{n}=\int \tan ^{n} x \sec x d x \quad n \geqslant 0$ $=\int \tan ^{n-1} x \frac{d(\cos x)}{d x} d x$
$I_{n}=\sec x \tan ^{n-1} x-\int \sec x(n-1) \tan ^{n-1} x$. $\sec ^{2} x d x$
$=\sec x \tan ^{-1} x-(n-1) \int \sec x \tan ^{n-2} x(1+\tan x) d$
$=\sec x \tan ^{n-1} x-(n-1)\left[I_{n}+I_{n-2}\right]$
$(n-1) I_{n}+I_{n}=\sec x \tan ^{n-1} x-(n-1) I_{n-2}$
$n I_{n}=\sec x \tan ^{n-1} x-(n \rightarrow) I_{n-2}$
$I_{n}=\frac{1}{n} \sec ^{x}+\tan ^{n}-x-\frac{n-1}{n} I_{n-2}$
ii) $\int_{0}^{\pi / 4} \frac{\sin ^{3} x}{\cos 4} d x$

- $\int_{0}^{\pi / 4} \tan ^{3} x \sec x d x$
$=\left[\frac{1}{3} \sec x+0^{2} x\right]_{0}^{\pi / 4}-\frac{2}{3} \int_{0}^{\pi / 4} \sec x \tan x d x$

$$
=\frac{1}{3} \sec \frac{\pi}{4} \cdot 1^{2}-0-\frac{2}{3}[\sec x]_{0}^{\pi / 4}
$$

$$
=\frac{1}{3} \cdot \sqrt{2}-\frac{2}{3}[\sqrt{2}-1]
$$

$$
=\frac{2}{3}-\frac{\sqrt{2}}{3}
$$

$$
=\frac{1}{3}(2-\sqrt{2})
$$

Question 5

a)i) $A=(0,4)$
$\therefore O=t+3$ and $A=\frac{20}{\sqrt{t^{2}+16}}$
$\therefore t=-3$ at $A \quad t=-3$

$$
\begin{aligned}
& B=(3,5) \\
& \therefore 3=t+3 \text { and } 5=\frac{20}{\sqrt{t^{2}+6}} \\
& \therefore t=0 \text { at } B, \quad \text { is the } 6-t=0
\end{aligned}
$$

ii) Take a ski of the area at (x, y) on the curve, with width Δx this hoo volume

$$
\Delta v \div 2 \pi m \Delta x
$$

$=2 \pi x-4 \Delta x$

Vol of stob is the sui of all sash shell $\therefore V=\sum_{t=-3}^{0} 2 \pi x y<x$
$=\lim _{\Delta x \rightarrow 0} \sum_{t=-3}^{0} 2 \pi x y \Delta x$
but as $\Delta x \rightarrow 0, \Delta t \rightarrow 0$
$\therefore V=\operatorname{lin}_{\Delta t \rightarrow 0} \sum_{t=-3}^{9} 2 \pi x y \Delta t$
$=\int_{-3}^{0} 2 \pi(t+3) \cdot \frac{20}{\sqrt{t^{2}+16}} d t$
$=40 \pi \int_{-3}^{0} \frac{t+3}{\sqrt{t^{2}+16}} d t \operatorname{cochard}_{\text {a }}^{0}$
iii) $V=\cos \int_{-3}^{0}\left(\frac{t}{\sqrt{t^{2}+16}}+\frac{3}{\sqrt{t^{2}+16}}\right) d t$

$$
\begin{aligned}
& =40 \pi\left[\left(t^{2}+16\right)^{\frac{1}{2}}+3 \ln \left(t+\sqrt{t^{2}+10}\right)\right]_{-3}^{0} \\
& =40 \pi\left[16^{\frac{1}{2}}+3 \ln \sqrt{16}-25^{\frac{1}{2}}-3 \ln (-3+2)\right] \\
& =40 \pi[3 \ln 4-3 \ln 2-1] \\
& =40 \pi(3 \ln 2-1)
\end{aligned}
$$

\therefore Vol of Solich it $400(3 \ln 2-1)^{3}$.
b)

At $x=a, y=\sqrt{1-a^{2}}$
Pres of croes-sechor
$=\frac{1}{2}(2 y) h$ bit $n^{2}=\left(\frac{x}{2} y\right)^{2}-y^{2}$
$=y \cdot \frac{\sqrt{5}}{2} y$
$=\frac{\sqrt{3}}{2}\left(\sqrt{1-a^{2}}\right)^{2}$
$=\sqrt{\frac{\sqrt{5}}{1}}\left(1-a^{2}\right)$ as required
ii) Vol. of alice is

$$
\Delta v \div \frac{\sqrt{2}}{2}\left(1-x^{2}\right) \Delta x
$$

\therefore Vol. of solid is

$$
\begin{aligned}
\text { v. of } & =\sum_{x=0}^{1} \frac{\sqrt{5}}{2}\left(1-x^{2}\right) \Delta x \\
& =\lim _{\Delta x \rightarrow 0} \sum_{x=0}^{1} \frac{\sqrt{5}}{2}\left(1-x^{2}\right) \Delta x \\
& =\frac{\sqrt{5}}{2} \int_{0}^{1}\left(1-x^{2}\right) d x \\
& =\frac{\sqrt{5}}{2}\left[x-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{\sqrt{5}}{2}\left[1-\frac{1}{3}-0\right] \\
& =\frac{\sqrt{5}}{3}
\end{aligned}
$$

\therefore Vat of solid is $\frac{\sqrt{5}}{3}$ nit?
c) i) $1+x+x^{2}+x^{3}+\cdots+x^{n}$

$$
\begin{aligned}
& =\frac{a\left(1-r^{N}\right)}{1-r} \text { where } \quad \begin{aligned}
a & =1 \\
r & =x \\
N & =n+1
\end{aligned} \\
& =\frac{1\left(1-x^{n+1}\right)}{1-x} \\
& =\frac{1-x^{n+1}}{1-x}
\end{aligned}
$$

i) $1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}$

Diffeentialieg both sides wist x

$$
\begin{aligned}
1+2 x & +2 x^{2}+\cdots+n x^{n-1} \\
& =\frac{(1-x)\left[-(n+1) x^{n}\right]-\left(1-x^{n+1}\right)(-1)}{(1-x)^{2}} \\
& =\frac{-(n+1) x^{n}+(n+1) x^{n+1}+1-x^{n+1}}{(1-x)^{2}} \\
& =\frac{1-n x^{n}-x^{n}+n x^{n+1}}{(1-x)^{2}}
\end{aligned}
$$

molt-pting both sucker by x
$x+2 x^{2}+3 x^{3}+\ldots+n x^{n}$
$=\frac{x-n x^{n+1}-x^{n+1}+n x^{n+2}}{(1-x)^{2}}$
$=\frac{-x^{n+1}(1+n)+x\left(1+n x^{n+1}\right)}{(1-x)^{2}}$

$Q=3$ no 6:

a) $v^{2}-7+20 x-3 x^{2}$
$\therefore \frac{d\left(\frac{1}{2} v^{2}\right)}{d x^{2}}=\frac{d}{d x}\left(\frac{1}{2}\left(7+20 x-3 x^{2}\right)\right)$

$$
=\frac{1}{2}(20-6 x)
$$

$$
=10-3 x
$$

$$
=-3\left(x-\frac{10}{3}\right)
$$

thesis of the form
$\ddot{x}=n^{2}(x-b)$
\therefore the particle exhibits SHM
about the pain where $x=\frac{10}{3}$
ii) fraises $=\frac{2 \pi}{n}$ but $n=\sqrt{3}$,
\therefore period $-\frac{2 \pi}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \mathrm{sec}$

$$
=\frac{2 \sqrt{3} \pi}{3} \sec
$$

The partick stops if $v=0$ ic $7+20 x-3 x^{2}=0$

$$
3 x^{2}-20 x-7=0
$$

$$
(3 x+1)(x-7)=0
$$

$$
x=-\frac{1}{3}, 7
$$

$\therefore 2 a=\frac{1}{3}+7$
$a=\frac{11}{3}$
is the amplitude is $\frac{11}{3} m$
b) i) $x=0$
$+\downarrow$
$i_{m g} \uparrow_{R}=m k v \quad k>0$ Resultant free actry on particle is

$$
F=m g-m k v
$$

$\therefore m \ddot{x}=m g-r a k v$
$\ddot{z}=g$-kN where $k>0$
ii) $t=0, v=u, x--d$
$\begin{array}{ll}x=d T h & \text { then } \\ +\downarrow & \frac{d v}{d t}=g-l v \\ x=0 & \frac{d t}{d r t}=\frac{1}{g-k v}\end{array}$

$$
\begin{aligned}
t & =\int \frac{1}{g-k v} d v \\
& =-\frac{1}{k} \ln (g-k v)+c
\end{aligned}
$$

If $t=0, v=u$
$\therefore 0=\frac{-1}{k} \ln (g-t u)+C$
$C=\frac{1}{k} \ln (g-k u)$
$\therefore t=-\frac{1}{k} \ln (g-v)+\frac{1}{x} \ln (g-k u)$
$-k t=\ln \left(\frac{g-k v}{g-k u}\right)$
$(g-k u) e^{-k t}=g-k v$
$v=\frac{g}{k}-\left(\frac{g-k u}{k}\right) e^{-k t}$ as required
ii) : $\frac{d x}{d t}=\frac{9}{k}-\left(\frac{9-k u}{k}\right) e^{-k t}$ $x=\frac{g t}{k}-\frac{g-k u}{k(t)} e^{-k t}+c_{2}$
If $t=0, x=-d$
$\therefore c_{2}=-d+\frac{g-k u}{\left(-k^{2}\right)} e^{0}$
$=-d+\frac{k u-g}{k^{2}}$
$x=\frac{q^{t}}{k}+\frac{g-k u}{k^{2}} e^{-k t}-d+\frac{k u-g}{k^{2}}$
$x=\frac{g t-k d}{k}+\left(\frac{g-k u}{k^{2}}\right)\left(e^{-k t}-1\right)$
oo required
(iv) $x=0$

$$
i v=0
$$

fo $Q: v=\frac{9}{k}-\frac{9}{k} e^{-k t}$

$$
x=\frac{g t}{k}+\frac{g}{k^{2}}\left(e^{-k t}-1\right)
$$

```
v) Rortictes collick if \(x\)-values are equsi
\(\therefore \frac{g t-k d}{k}+\frac{g k u}{k^{2}}\left(e^{-k t}-1\right)=\frac{g t}{k}+\frac{g}{k^{2}}\left(e^{-t t}\right)\) Question 7:
    \(d+\frac{k u}{k^{2}}\left(e^{-k t}-1\right)=0\)
        \(\frac{u}{k}\left(e^{-x t}-1\right)=-d\)
            \(e^{-k t}-1=-\frac{d k}{u}\)
                        \(e^{-k t}=1-\frac{d t}{u}\)
\[
-k t=\ln \left(1-\frac{d t}{U}\right)
\]
ii) In \(\triangle A D T \& \triangle A B C\)
\[
t=-\frac{1}{k} \ln \left(l-\frac{d k}{u}\right)
\]
```



```
\[
=\frac{1}{k} \ln \left(\frac{u}{u-k} d\right)
\]
\(=\angle C A B\) (alterate \(\angle T ; C D \mid B \alpha\)
2. \(\angle T O A=\angle C B A\left(\begin{array}{c}\text { ert } \angle \circ \text { of getic }\end{array}\right.\)
At that time
\(p\) tewels at a veloaty of \(v\), where
\[
v=\frac{g}{k}-\left(\frac{g-k u}{k}\right) e^{-k\left(\frac{1}{k} \ln \left(\frac{u}{u}+d\right)\right.}
\]
\[
=\frac{g}{k}-\left(\frac{g-k u}{k}\right)\left(\frac{u-k d}{u}\right)
\]
a tavels at a velocily of in where
\[
v_{2}=\frac{g}{k}-\frac{g}{k}\left(\frac{u-k d}{u}\right)
\]
eppeed of colliston is
\[
\begin{aligned}
& \left|v_{1}-v_{2}\right| \\
= & \left\lvert\,-\frac{k u}{k}\left(\left.\frac{u-k-d)}{u} \right\rvert\,\right.\right. \\
= & |u-k d|
\end{aligned}
\]
\(\therefore\) Epeed of cotheion is
\[
|u-k d| m s^{-1}
\]
```

b)

(1) $x y-4$
$p=\left(2 p, \frac{2}{p}\right)$
Defferentiaky w.r.t. x

$$
\begin{aligned}
x \frac{d y}{d x}+y & =0 \\
x \frac{d y}{d x} & =-y \\
\frac{d y}{d x} & =\frac{-y}{x}
\end{aligned}
$$

at $p: \frac{d y}{d x}-\frac{-\frac{2}{p}}{2 p}$

$$
=-\frac{1}{p^{2}}
$$

\therefore grot of nounal of $P=P^{2}$ equn of normal is

$$
\begin{aligned}
& y-\frac{2}{p}=p^{2}(x-2 p) \\
& p y-2-p^{3} x-2 p^{4} \\
& p^{3} x-p y-2\left(p^{4}-1\right)
\end{aligned}
$$

ii) $Q\left(2 q, \frac{2}{q}\right)$ sati vies thin equator
$\therefore p^{3}(2 q)-p\left(\frac{2}{q}\right)=2\left(p^{4}-1\right)$

$$
\begin{aligned}
& 2 p^{3} q^{2}-2 p=2 p^{4} q-2 q \\
& p^{3} q^{2}-p=p^{4} q-q \\
& p^{*} q(q-p)=p-q \\
& p q=-1 \quad \infty p+q \\
& \quad p \& d \text { distress. }
\end{aligned}
$$

iii) Let $P C$ be chord which is normal to the hyporbita at both
then $p_{3}^{3} x-p y=2\left(p^{4}-1\right)$ and then $\begin{aligned} p^{3} x-p y & =2\left(p^{4}-1\right) \text { and } \\ q^{3} x-q y & =2\left(q^{4}-1\right)\end{aligned}$

$$
\begin{align*}
& \text { alto then } \tag{1}\\
& p^{3} p=-1 \text { and } \tag{2}\\
& q^{2} p=-1
\end{align*}
$$

for (1) $q=-\frac{1}{p^{3}}$

If $p=1, q=-1$ and the
chord is $x-y=0$

$$
\text { If } p=-1, q=1 \text { and tore chord }
$$

$$
\text { is } \quad \begin{aligned}
-x+y & =0 \\
x-y & =0
\end{aligned}
$$

\Rightarrow there is ont one such chord one it is $x-y=0$ ic $y=x$.

Gushing 8 :

ai) let $z^{4}=-16$
and $z=r(\cos \theta+i \sin \theta)$
hen $z^{A}=r^{A}(\cos 4 \theta+i \sin 4 \theta)$
bet $\left|z^{+}\right|=|z|^{4}$
$=|-16|$
$=16$
$\therefore|z|=2=r$
Also
$r^{4}(\cos 4 \theta+i \sin 4 \theta)=-16$
$\therefore N\left(\cos 49+\cos 40^{\circ}\right)=-16$
$\cos 40+i=n 49=-1$
equal g reak/imognaito
$\cos 4 \theta=-1 \quad$ a $\sin 4 \theta=0$
$4 \theta=\pi, 3 \pi$, sit, 70 (we mead
$\therefore \theta=\pi$, $\frac{7 \pi}{7}, \frac{\cos }{4}$, $\frac{74}{4}$

$b+\gamma$ is a cos of $x^{3}-p x^{2}+q x-r=0$ \therefore if $\gamma=\sqrt{r}$

$$
\begin{aligned}
& =v r \\
& r \\
& r
\end{aligned}-p r+q \sqrt{r}-r+0
$$

$$
(r+q) \sqrt{r}=r(p+1)
$$

$$
=\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{-}\right)\left(z-z_{4}\right)
$$

$$
(r+q)^{2} r=r^{2}(p+1)^{2}
$$

$$
\begin{aligned}
& =\left(z-z_{1}\right)\left(z-z_{2}\right) \\
& =\left(z^{2}-\left(z_{1}+z_{4}\right) z+z_{1} z_{4}\right)\left(z^{2}-\left(z_{2}+z_{3}\right) z+z_{2} z_{3}\right)
\end{aligned}
$$

$$
=\left(z^{2}-2 \sqrt{2} z+4\right)\left(z^{2}+2 \sqrt{2} z+4\right)
$$

ii) Now $\alpha=2\left(\cos \frac{\pi}{4}+\cos n \frac{\pi}{4}\right)$ by de mowre:

$$
\begin{aligned}
\alpha^{3} & =8\left(\cos \frac{2 \pi}{7}+i \sin \frac{3 i \pi}{i}\right) \\
& =8\left(-\cos \frac{\pi}{4}+i x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { amilaty if } \gamma=-\sqrt{r} \\
& -r \sqrt{r}-p r-q \sqrt{r}-r=0 \\
& -r(p+1)=\sqrt{r}(r+q) \\
& r(p+1)^{2}=(r+q)^{2}
\end{aligned}
$$

$\therefore(q+r)^{2}=r(p+t)^{2}$ co requared

$$
\begin{align*}
& \alpha^{5}=32\left(\cos \frac{5 \pi}{x}+i \sin \frac{5 \pi}{\lambda}\right) \\
& =32\left(-\cos \frac{\pi}{2}-\left(\sin \frac{\pi}{2}\right)\right. \\
& \alpha^{7}=128\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right) \\
& =128\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{4}\right) \\
& \therefore \alpha+\frac{\alpha^{3}}{4}+\frac{\alpha^{3}}{16}+\frac{\alpha^{7}}{64} \\
& -2\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{2}\right) \\
& +2\left(-\cos \frac{\pi}{x}+i \sin \frac{\pi}{2}\right) \\
& +2\left(-\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right) \\
& +2\left(\text { (बT) } \frac{1}{4}-\left(\text { (-n } \frac{\pi}{4}\right)\right. \\
& =2(0) \\
& =0 \text { as requirad. } \\
& \text { (b) let the post be } \alpha \beta, \gamma \\
& \text { and } \gamma=\alpha \beta \\
& \text { then } \alpha+\beta+\gamma=p \quad \omega \\
& \alpha \beta+\alpha \gamma+\beta \gamma=q^{(2)} \\
& \alpha \beta \gamma=\sigma \tag{3}\\
& \text { sbr }=\alpha \beta \text { int } \text { cal: } \\
& \begin{array}{l}
\gamma^{2}=r \\
\gamma= \pm \sqrt{r}
\end{array}
\end{align*}
$$

C) $f(x y)=f(x) * f(y) \quad x, y \neq 0$
i) $f\left(x^{3}\right)=f\left(x x^{2}\right)$

$$
\begin{aligned}
& =f(x)+f\left(x^{2}\right) \\
& =f(x)+f(x)+f(x) \\
& =3 f(x) \text { os required }
\end{aligned}
$$

ii) $f(1)=f(|x|)$

$$
=f(1)+f(1)
$$

$\therefore f(1)=0$
but $f(1)=f(-1 \times-1)$
$=f(-)+f(-)$
$\therefore \quad 0=2 f(-1) \quad \circ f(1)=0$
$\therefore f(-4)=0$
ic $f(1)=f(-1)=0$ as required.
iii) $f(-x)=f(-1 \times x)$

$$
\begin{aligned}
& =f(-1)+f(x) \\
& =0+f(x) \quad \text { co } f(-1)=0 \\
& =f(x)
\end{aligned}
$$

\therefore the friction is even.

Student Number:
Use this page for your answers to Question 3a)
i)

ii)

iii)

iv)

v)

Insert this page in your booklet for Question 3

