

2008
 TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this page
- All necessary working should be shown in every question

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value

At the end of the examination, place your solution booklets in order and put this question paper on top. Submit one bundle. The bundle will be separated before marking commences so that anonymity will be maintained.

Student Number: \qquad Teacher: \qquad

Student Name:

\qquad

QUESTION	MARK
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 15$
8	$/ 120$
TOTAL	$\%$

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{e^{\tan x}}{\cos ^{2} x} d x$

1
(b) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\cos x}$.
(c) (i) Express $\frac{3 x^{2}+x+6}{\left(x^{2}+9\right)(x-1)}$ in the form $\frac{A x+B}{x^{2}+9}+\frac{C}{x-1}$.
(ii) Hence find $\int \frac{3 x^{2}+x+6}{\left(x^{2}+9\right)(x-1)} d x$

1
(d) State whether each of the following is true or false giving brief reasons.
(i) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan ^{2} x d x=0$
(ii) $\int_{-a}^{a} e^{-x^{2}} d x \leq 2 a$
(e) (i) Show that $\tan \left(\sin ^{-1} e^{x}\right)=\frac{e^{x}}{\sqrt{1-e^{2 x}}}, x<0$
(ii) Hence or otherwise find $\int \tan \left(\sin ^{-1} e^{x}\right) d x$

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Given $z=\frac{1}{2}(1+i)$
(i) Find the values of
(α) $|z| \quad 1$
($\left.\mathrm{\beta}^{\prime}\right) \arg z$
(γ) $\quad\left|z^{2}\right|$
($\delta) \quad \arg \left(z^{2}\right)$
(ii) On an Argand diagram, show the complex number which represents

$$
\overline{1+z+z^{2}}
$$

(b) Solve the equation $z \bar{z}-2 z+2 \bar{z}=5-4 i$ given $z=x+i y$.
(c) On separate Argand diagrams, sketch the loci of z where
(i) $\quad|z-1|>|z|$

2
(ii) $\quad|z+1|+|z-1|=4 \quad$ [Show the important features on the x-axis only]
(d) Let α and β be the roots of the equation $x^{2}-2 x+4=0$. Prove that

$$
\alpha^{n}+\beta^{n}=2^{n+1} \cos \frac{n \pi}{3}
$$

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) The graph of $y=f(x)$ is illustrated. The line $y=-1$ is a horizontal asymptote.

Using the separate page of graphs provided, sketch each of the graphs below. In each case, clearly label any maxima or minima, intercepts and the equations of any asymptotes.
(i) $y=f(-x)$
(ii) $\quad y=f(|x|)$
(iii) $y=[f(x)]^{2}$
(iv) $y=\tan ^{-1}\{f(x)\}$
(v) $y=e^{f(x)}$
(b) Consider the function $f(x)=\cos \left(2 \sin ^{-1} \frac{x}{2}\right)$.
(i) Express $f(x)$ in the form of a polynomial function
(ii) Sketch the graph of $y=f(x)$
(c) The polynomial $1+B X^{n}+A X^{n+1}$ is divisible by $(X-1)^{2}$. Show that
(i) $\quad A=n$
(ii) $B+n+1=0$

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) The area enclosed by the curve $y=e^{x}$, the y-axis and the line $y=2$ is rotated about the y-axis to form a solid.
(i) Draw a diagram to illustrate the region.
(ii) By taking strips parallel to the y-axis and using the method of cylindrical shells, show that the volume of a shell of the solid is given by

$$
\Delta V \doteqdot 2 \pi x\left(2-e^{x}\right) \Delta x
$$

(iii) Hence, find the volume of the solid correct to 2 significant figures.
(b) (i) Prove by Mathematical Induction for integers $n \geq 1$ that

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots . .+\frac{1}{n^{2}} \leq \frac{2 n-1}{n} .
$$

(ii) Hence show that

$$
1 \frac{12}{25} \leq 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots .+\frac{1}{49^{2}} \leq 1 \frac{48}{49} .
$$

(c) (i) If $I_{n}=\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$, show that $I_{n}=\frac{2 n}{2 n+1} I_{n-1}, n \geq 1$.

Hint: In your response, you may use the fact that $x^{2}=1-\left(1-x^{2}\right)$.
(ii) Hence find $\int_{0}^{1}\left(1-x^{2}\right)^{3} d x$.

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) A barge of side length 11 metres is moored so that it touches the edge of a river bank. The barge has an extendable yet rigid rope $A B$ which attaches it to the river bank at a point $B, 5$ metres further down the bank from C as shown below. The point C is fixed.

As the barge steadily sways, the area of the triangular region $A B C$ varies as angle θ increases at a rate of $0 \cdot 1$ radians per day.

(i) Show that the area of $\triangle A B C$ is given by $A=\frac{55 \sin \theta}{2}$.
(ii) Find an expression for $\frac{d A}{d t}$, the rate of change of the area of $\triangle A B C$.
(iii) Show that when $\theta=\frac{\pi}{4}, \frac{d A}{d t}$ is $\frac{11 \sqrt{2}}{8} \mathrm{~m}^{2}$ per day.
(b) Given that $a^{2}+b^{2} \geq 2 a b$ prove that for a, b and c positive
(i) $a^{3}+b^{3} \geq a b(a+b)$

2
(ii) $(a+b)(b+c)(c+a) \geq 8 a b c$
(c) (i) Prove from first principles that, in general, a function $f(x)$ which is ODD and differentiable for all x has a gradient function, $f^{\prime}(x)$ which is EVEN.
(ii) Explain with the help of a graph why the function $f(x)$, which is odd and continuous for all x satisfies the equality

$$
\int_{-a}^{b} f(x) d x=\int_{a}^{b} f(x) d x
$$

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that $x^{3}-9 x-12=0$ can be transformed into the equation $Y^{6}-12 Y^{3}+27=0$ by using the substitution $x=Y+\frac{3}{Y}$.
(ii) Hence solve for Y^{3}.
(iii) Show that $x=Y+Y^{2}$ for one of the solutions of Y^{3}
(iv) Hence, or otherwise, show that one of the roots of $x^{3}-9 x-12=0$ is $\sqrt[3]{3}(1+\sqrt[3]{3})$.
(b) The region bounded by $y=\cos ^{-1} x, x=\frac{1}{2}$ and the x-axis is rotated about the y-axis to generate a solid S as shown below.

(i) Show that an annular cross-section of the solid, parallel to the x-axis, with height Δy has its volume given by

$$
\Delta V \doteqdot \pi\left(\cos ^{2} y-\frac{1}{4}\right) \Delta y
$$

(ii) Hence find the volume of the solid S.

Question 6 continues on page 8

Question 6 (continued)
(c) The diagram of the emblem below is composed of a sector inscribed in a square. The square has side length L and the circular sector has an angle of 2θ.
$\triangle O A X \equiv \triangle O C Y$. The area of sector $O X Y$ is $\frac{L^{2}}{2}$.

Show that
(i) The radius of the sector is $L \sec \left(\frac{\pi}{4}-\theta\right)$.
(ii) $\quad 2 \theta=\cos ^{2}\left(\frac{\pi}{4}-\theta\right)$.

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) Eight children wish to take seats in an eight seated merry -go-round. There are four boys and four girls in this group. One girl does not want to sit next to any boy and one boy does not want to sit next to any girl. How many seating arrangements are possible?
(b) Prove that
(i) $\tan x>x$ for $0<x<\frac{\pi}{2}$
(ii) $\frac{2 x}{\pi}<\sin x$ for $0<x<\frac{\pi}{2}$

4
(c) Farmer Jee plants wheat in a field. By evenly spreading q kilograms of fertiliser over the wheat, a yield of Y kilograms of wheat per hectare, is produced.

The amount of wheat produced, $Y \mathrm{~kg}$, is a function the amount of fertiliser, $q \mathrm{~kg}$, spread and is given by the growth equation:

$$
Y=1650-A e^{k q}
$$

After 10 kg of fertiliser was spread, a yield of 550 kg of wheat was produced.
[Assume when $q=0, Y=0$]
(i) Show that $Y=1650\left(1-e^{-0.0405 q}\right)$.

2
(ii) Show that $\frac{d Y}{d q}=0 \cdot 0405(1650-Y)$.
(iii) When the 550 kg of wheat was produced, it was noted that the fertiliser had been spread at a rate of 10 kilograms per hour to achieve this yield. Find the corresponding rate of increase of the yield of wheat over this time.

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the rectangular hyperbola with equation $x y=16$.
(i) Show that the equation of the tangent to the point $P\left(4 p, \frac{4}{p}\right)$

2 on $x y=16$ is given by $x+p^{2} y=8 p$.
(ii) If the tangents at $P\left(4 p, \frac{4}{p}\right)$ and $Q\left(4 q, \frac{4}{q}\right)$ meet at $R\left(x_{0}, y_{0}\right)$ prove that $p q=\frac{x_{0}}{y_{0}}$ and that $p+q=\frac{8}{y_{0}}$.
(iii) Show that $P Q^{2}=16(p-q)^{2}\left[1+\frac{1}{p^{2} q^{2}}\right]$.
(iv) If the length of chord $P Q$ is 8 units deduce that the locus of R is given by $\left(x^{2}+y^{2}\right)(16-x y)=x^{2} y^{2}$.
(b) Circle centre O has a diameter $A B$ which intersects the chord $Q R$ at P at an angle of 45°, as shown.

(i) Copy or trace the diagram onto your page and construct $O T \perp A B$ given that T lies on $Q P$.
(ii) Use congruent triangles to show that $Q T=P R$.
(iii) Show that $\left(\frac{A B}{2}-O P\right)\left(\frac{A B}{2}+O P\right)=P Q \times P R$.
(iv) By considering the expansion of $(P Q-P R)^{2}$ and the results from (ii) and (iii) above show that $A B^{2}=2\left(P Q^{2}+P R^{2}\right)$.

End of paper

Student Number: \qquad
Use this page for your answers to Question 3a)
i)

ii)

iii)

iv)

v)

Insert this page in your booklet for Question 3

NSGHS THALASC EXATINATONN MOO\& ERTENSONZ

$$
\begin{aligned}
& t=\int c^{+4} A \omega \\
& =e^{\tan x} C \\
& \text { 6) } I=\int_{0}^{\pi} \frac{\pi}{1+\cos x} \\
& \cot t=\tan x \\
& \frac{2}{2}=t \cdot \cos ^{-r} t \\
& z=2+4 \\
& d x=2 \\
& \cos x=\frac{t-t^{2}}{t^{2}} \\
& \text { Nrame } 2=\frac{\pi}{2}, ~ t=7 \\
& \text { 픈 } \quad E=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int \frac{2 x t}{0-\frac{2 t^{2}}{2}+t^{2}} \\
& =\int a t \\
& =[t]_{0} \\
& =\text { } / \\
& \text { (c) } 1 \\
& \frac{3 x^{2}+x+6}{\left(x^{2}+9\right)(x+6)}=\frac{9 x+B}{x^{2}+9}+\frac{6}{x-\gamma} \\
& \begin{array}{c}
x x^{2}+x+6 \quad(A x+5)(x-g)+C\left(x^{2}+y\right) \\
C x=1
\end{array} \\
& \angle \cos x=1
\end{aligned}
$$

$$
\begin{aligned}
& 6=-B+7 C \\
& 6=-B+9 \\
& B^{6}=5^{7} \\
& \begin{array}{l}
A+C=3 \\
A+C=3
\end{array} \\
& +7=3 \\
& \text { (i) } I=\int\left(\frac{x+3}{x+1}+9+\frac{1}{x}\right) d x \\
& \frac{3 x^{2}+x-6}{\left(x^{2}+4 y-1\right.}=\frac{2 x+3}{x^{2}-7}+\frac{1}{x-7} \\
& =\left(\frac{x^{3} x}{x^{3} 9}+\frac{3}{x^{2}+9}+\frac{1}{x}\right) d x \\
& =\ln \left(x^{2}+q\right)+\frac{1}{3} \frac{\operatorname{con}}{} \frac{x}{3}+\operatorname{tn}\left(x^{4}\right)+c \\
& \left.=\ln \left(x^{2}+q\right) y x-6\right)+x^{3}+C
\end{aligned}
$$

e' (i) $\Delta \lim ^{-1} c^{x}=x^{\prime}$

$=\frac{6 c}{\sqrt{-e^{3}}} \quad \sqrt{\text { Note }} 1-e^{2 \pi}>C$
(1) $I=\{$, ana $4+2 c$
whe whent prew we
$=\left\{\frac{e^{x}}{\sqrt{1-e^{i x}}}\right.$
Letarem
$d_{x}=\dot{x} x^{x}$
$\frac{T}{2} \frac{d u}{\sqrt{1-u}}$
$=\cdots \cos ^{-1} C^{2}+C$

Quijhon 3

$$
Z=t(1+i)
$$

$$
=\frac{t}{2}+\frac{1}{2}
$$

3)
4) $31 \cdot \sqrt{(2)^{2}(2)}$

$$
=\sqrt{\frac{1}{2}+\frac{1}{4}}
$$

$$
=\frac{12}{12}
$$

(3) $\operatorname{ang}_{3}=\pi$
(1) $1 z^{3}=\frac{1}{2}$
(

$$
\begin{aligned}
& \text { 6) } 3 \bar{y}-2 z+2 \bar{y}=44 \\
& \alpha e t_{y}=x+y \\
& \frac{3}{y}=x \text { (} y \\
& \alpha / 5 x^{2}+x^{2} 2 y= \\
& =x^{2}+y+4 y c \\
& \text { RHE } 5.42 \\
& \begin{array}{l}
\left.\therefore x^{2}+y^{3}=5\right\} 0 \\
20 y
\end{array} \\
& \begin{aligned}
x^{2}+1 & =5 \\
x^{2} & =4
\end{aligned} \\
& x= \pm 2 \\
& z^{2}=2, i \\
& z^{-2 x}
\end{aligned}
$$

$$
\varepsilon_{0}, 1 ; 1>1
$$

$$
B(\})<\frac{1}{2}
$$

$$
\begin{equation*}
\therefore \quad \text { ir } \tag{F}
\end{equation*}
$$

$S_{0}^{2}=\sin \sec \operatorname{ExAPS}$

$$
\begin{array}{r}
2 a=4 \\
a=2
\end{array}
$$

$$
\begin{aligned}
& \text { a) } \\
& x^{2}-2 x+4 \leq 0 \\
& x=\frac{2 \pm \sqrt{-72}}{2} \\
& =\frac{2+2 \sqrt{3}}{2} \\
& =1 \pm \sqrt{3} \% \\
& A c \alpha=1+\sqrt{3} i \quad \beta^{x}-\sqrt{2} \dot{b}
\end{aligned}
$$

$$
\begin{aligned}
& =2^{n+1} \cos _{-2 \pi}^{3}
\end{aligned}
$$

(i)

Sthicent Numter
is

iii)

iii)

h
©

Insen this para in your bootite far Quction 3
$\left.(1),(x)=\cos \left(x_{2}\right) \sin \frac{\alpha}{2}\right)$
$\operatorname{tec} \alpha-a-a^{-1}$

$$
\begin{aligned}
& \frac{x}{2}=\sqrt{2} \alpha \\
& \cos \alpha=\frac{\sqrt{4-x^{2}}}{2}
\end{aligned}
$$

$$
f(x)-\cos \alpha \infty
$$

$=\alpha \cos ^{2} \alpha-$
$=2\left(\sqrt{\frac{4-x^{2}}{2}}\right)^{2}-1$
$=2 \cdot \frac{4-x^{2}}{4}=\frac{4}{2}$
$=\frac{4-2 x^{2}}{4}$

(

$$
\rho(x)=+2 x^{n-1}+A(n+1) x^{w+1}
$$

$$
p(1) \sin \theta+A(r+t) \quad a)
$$

$$
\text { Oimec } p(\beta)=0
$$

$$
\alpha \beta+\infty A+A=\varnothing\}
$$

$$
m(A+B)+A=0
$$

$$
A \operatorname{mon}<A+B=-7
$$

$$
-\cos A=0
$$

(it)

$x, B+\cdots x^{2}+\infty=0$

(1) $\Delta v z \operatorname{Ti}(R+r)(R-r)\left(a^{2}-e^{x}\right)$
$=\pi(x+\Delta x+x)(\Delta x)\left(2-e^{x}\right)$
$=\mathrm{F}\left(2 x \Delta x+A x^{2}\right)\left(2-P^{x}\right)$
$=2 \operatorname{rac}\left(2-e^{2}\right) \Delta x$
$V=2 d\left(2 x-x e^{x}\right) d x$
$\sin ^{0}\left[x^{2}=x^{x}+e^{x}\right]^{\operatorname{ta}}$
w $\int e^{2 x} x=\int x x_{0} d x d x$
$=x e^{x}-1 c x$
$=x e^{x}-e^{x}$

$$
V=a^{\pi} T\left((2+2)^{2}+\operatorname{Len} \cdot 2+\alpha\right)-(1)^{1 \pi}
$$

$$
=2 \pi\left[(4+2)^{2}+4+4+1\right]
$$

$$
\therefore 0.59
$$

b) (1)

LCoI
$\overline{\operatorname{Lec} x}=1$
$A H S=\frac{1}{7}$
$=1$
$P H S=\frac{\pi i-1}{1}$
$A t g^{2}+4 x=\dot{A}$

$\frac{1}{2}+\frac{L}{2}+\frac{1}{3^{2}}+\frac{h}{2}=\frac{2 A-1}{2}$
ptreser

Afraw dat
 $A+5=\frac{2}{2}+\frac{2}{2}+\frac{1}{3}+\frac{1}{2 x}+\frac{3}{2+1}$
$\leqslant \frac{2 n-1}{2}+\frac{1}{k+j}$
$=(\alpha, j)(L+c)^{2} \cdot \bar{L}$
$=2 A^{2}+R^{2}-1+A$
$\leqslant 2 S^{2}+3 k^{2}+k$
$\operatorname{kr}\left(A_{1}\right)^{2}$
$=\frac{\alpha(2 \alpha+)^{2}+4}{2(x+)^{2}}$

An wostif the tomek
 for $x, 1+4$
(II) $\langle P x+4 ?$

$+\frac{27}{4}$
A6-r

$=1+\frac{1}{2}-\frac{1}{5}$
$=\frac{1}{25}$
$\frac{10}{25}-1-\frac{1}{2^{2}}+\frac{1}{3}+\frac{4}{4} g \leqslant 1 \frac{4 x}{m^{2}}$

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
f_{n} & =\int_{0}^{1}\left(1-x^{2}\right)^{n} d x \\
& -\int_{0}\left[x _ { x } x \left[\left(1-x^{2}\right)^{n} d x .\right.\right.
\end{aligned} \\
& =\left[x\left(1-x^{2} 0^{0}\right]^{\prime}+2_{n} y^{\prime} x^{2}\left(i-x^{2}\right)^{n-1} d x\right. \\
& =2 \operatorname{Lr}^{1}\left(1-\left(1-x^{2}\right)\left(1-x^{2}\right)^{n-1} d x\right. \\
& \left.=-2 n f\left(x-x^{2} y+x^{n}\right)^{n-i}+(1-x)^{x+1}\right]^{2 x} \\
& I_{n}=-a_{n} \int\left(x x^{2}\right)^{n} d x-d x(1-x)^{n-1} d x \\
& =-2 n I_{n}-2_{n} I_{n}{ }^{\circ} \\
& \left(2 n+0 I_{n}=2 n I_{n-1}\right. \\
& I_{n}=\frac{2 n I_{n+1}}{2 n+!} \\
& \text { (1) }\left(1-x^{2}\right) d x \\
& \text { a } \\
& T_{3}-I_{7} I_{2} \\
& =\frac{6}{7} \frac{4}{5} 7 \text {. } \\
& =\frac{6}{7} \frac{4}{5} \frac{2}{3} Z_{0} \\
& \begin{aligned}
I_{c} & =\int\left(1-x^{2}\right)^{b} d x\left(=\int_{b}^{\prime} d x\right) \\
& {[x]_{0}^{\prime} }
\end{aligned} \\
& =1 \\
& I_{3}=\frac{4}{7}+\frac{4}{5}+\frac{2}{3}+1 \\
& =\frac{16}{35}
\end{aligned}
$$

fi］ 6

Quertion: 6
i. $y^{3}+\frac{\partial^{\prime}}{y}-1 \alpha-0$

$$
y^{6}+27^{\prime}-2 y^{3}=0
$$

(6) $\left(y^{3}-9\right)(y-3)=0$

$$
y^{3}=3 n-9
$$

$$
\begin{aligned}
\Delta V & =\pi\left(\alpha^{2}-2\right) \Delta Z \lambda \\
& =\pi\left(\cos ^{2} y-\frac{1}{2}\right) \Delta y
\end{aligned}
$$

$y=\cos ^{-1} x \geqslant x \cos y$

<

$$
y^{6}-2 y^{3}+\alpha>=0
$$

(w) if $y^{3}=3$

$$
V=\pi \int_{a}^{\frac{4}{4}}\left(\sec ^{2} y \frac{y}{4}\right) d y
$$

$$
t_{1-2} x=y+\frac{x}{y}
$$

$=\pi \sqrt{2}\left(\frac{1}{2}\left(x a^{2} y+j\right)-\frac{x}{4}\right) d y$
$-y+3 y^{2}$
$=y+\frac{y^{2}}{z}$

$$
=y+y^{2}
$$

(1) as root is

$$
\begin{aligned}
& =\pi \int\left(\frac{1}{x} \cos \alpha y+\frac{1}{4}\right) \alpha_{y} \\
& =\pi\left[\frac{1}{4} \operatorname{son} 2 \pi+\frac{k}{4}\right]_{c}
\end{aligned}
$$

$\left(\kappa^{\prime}\right.$

$$
=7\left[\left(\frac{\sin 2 \pi}{4}+\frac{\pi}{1}\right)-c^{7}\right.
$$

$$
\begin{aligned}
y+y^{2} & =y\left(1, y^{-1}\right. \\
& -\sqrt[3]{x}\left(1+h^{3}\right)
\end{aligned}
$$

$$
\left.=\pi\left(\frac{-4}{3}+\frac{\pi}{2}\right] \quad \cos ^{3}\right)
$$

oxin

$$
\begin{aligned}
& x^{3}-9 x-12=0 \\
& \operatorname{Lox} x=y+\frac{3}{y} \\
& \operatorname{dis}=\left(\frac{1}{3}+\frac{j}{y}\right)^{3}-q\left(y+\frac{j}{y}\right) \cdot \alpha
\end{aligned}
$$

$$
\begin{aligned}
& =y^{3}+y+\frac{d z}{x}+\frac{y}{y}+4-\frac{d y}{4}-12 \\
& =y^{3}+\frac{2 y}{y}-12
\end{aligned}
$$

Depat brotworyby

St $\frac{a_{0}}{d o}<0 \quad a_{0} \alpha$
a dowaong thmituon

$$
\begin{aligned}
& \text { ox } x, 0,4 \cos \rightarrow 1 \\
& a_{n} a+\left(\frac{\pi}{2}\right)=\frac{2}{\pi} \\
& \frac{2}{7}<\frac{2}{x}<\frac{2 x}{7} \times A+n
\end{aligned}
$$

(\%) whan ge\% $\begin{array}{cc}e^{\theta} / 0 \\ y=3 & y=50\end{array}$

> Fhow

$$
\gamma=160-1 e^{4 p}
$$

$$
\begin{aligned}
& y=160-19 \\
& 0=1650-7
\end{aligned}
$$

6) Condido

$$
A=\| \Delta C
$$

$\frac{a E}{2 x}=2 \cos z-1$

$$
\begin{aligned}
& A=1450 \\
& y=1650 \cdot 1650 e^{4 \theta} \\
& \text { thom }(t)
\end{aligned}
$$

$$
\begin{gathered}
7 \operatorname{son} \theta \\
50=160-60 t^{t y}
\end{gathered}
$$

$$
\text { Ahac } o \cos ^{2} x>/ 4-b+x+\frac{\pi}{2}
$$

$$
650 e^{60}=1100
$$

$$
\frac{d E}{d x}>0 a_{m} \alpha
$$

$$
c^{00}=180
$$

$$
A=-0.0405
$$

$$
\text { Ance coten } x=0
$$

$$
\text { pince }=0
$$

$$
a_{n} \alpha E \text { is inche } \begin{gathered}
E \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& A=-0.0900 \\
\because= & 1650.1650 e^{0.04056} \\
= & 1650\left(-e^{-0.9402}\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{n} d E \text { invecating } \\
& \text { then th }>0 \text { to } 0 x+\pi
\end{aligned}
$$

$$
\text { \& tan } x>x
$$

(b)

$$
\frac{\sin x}{x}>\frac{2}{7}
$$

$\operatorname{Let} y=\frac{\sin x}{=\cos }$
$\frac{d x}{d x}=\frac{x \cos x-2 x_{1} x}{x}$
Disen $x<\tan x$
(क) $\begin{aligned} d y & =00405 \times 1050 e^{0.040} 9 \\ d \theta & =0.005(160 \%)\end{aligned}$
$\theta_{1} \frac{d y}{d T}=\frac{d y}{d q} \times \frac{d q}{d z}$
$d y=0.0408(765 y)+10)$
$d t=0.405(1650-y$
$\overrightarrow{d t}=0.405(1650-y)$

$$
\therefore 0.405 / 1610-10)
$$

$a b$
$=4465$
$44454 / 4$

> 1080.
> $\therefore A^{+} \mathrm{C}=\frac{1 p l}{x}$
> Ftamer(3)
> $y=\frac{8}{\left(\frac{8}{x}\right)}$
> $b^{5}=\frac{\pi}{P}$
> $\frac{x_{0}}{b^{o}}=10$

(36)

A

(i) I A $\triangle O Q T$ TORP

$\angle \$ 70=1090=125^{\circ}$

$\angle R p_{0} 135^{\circ}$ (lasatove)

 $=(A O+O P)(O B-O P)$
$=\left(\frac{A B}{2}+Q^{p}\right)\left(\frac{P B}{2}-D\right)(A B+O P)\left(\frac{A B-C L}{2}\right)=P G B R$
$=\rho Q P$
-aHS
N) $(P Q-P R)^{2}=P Q^{2}-2 P Q P R+P R^{2}$

$$
\begin{aligned}
& \begin{aligned}
& =P Q^{2}+P R^{2}-2\left(\frac{4 g}{2}+Q P\right)(A Q-Q) \\
& =P Q^{2}+P R^{2}-2 \gamma B^{2}
\end{aligned} \\
& \left.=P R^{2}+P R^{2}-A S^{2}+2 O P^{2}\right] \quad(D F=P O Q T
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A R^{2}}{2}=A P^{2}+P R^{2} \quad(P=\sqrt{2} O P)
\end{aligned}
$$

