

2010
 TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this page
- All necessary working should be shown in every question

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value
At the end of the examination, place your solution booklets in order and put this question paper on top. Submit one bundle. The bundle will be separated before marking commences so that anonymity will be maintained.

NAME: TEACHER:

NUMBER: \qquad

QUESTION	MARK
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 120$
8	

BLANK PAGE
Please turn over

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value
Begin each question in a NEW BOOKLET.

Question 1 (15 marks)
Marks
(a) Find $\int \frac{\cos ^{2} x}{1-\sin x} d x$.

2
(b) Use the method of partial fractions to find $\int \frac{1}{x^{2}+x} d x$.

$$
\int \frac{d x}{\sqrt{4 x^{2}-1}}
$$

(ii) Is the following statement true or false? Justify your answer.

$$
\int_{-1}^{1} \frac{d x}{\sqrt{4 x^{2}-1}}=2 \int_{0}^{1} \frac{d x}{\sqrt{4 x^{2}-1}}
$$

(d) By using the substitution, $t=\tan \frac{\theta}{2}$, evaluate

$$
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\sin \theta}
$$

(e) (i) Show that $\int_{0}^{1} x^{n} e^{-x} d x=n I_{n-1}-\frac{1}{e}$ where $I_{n}=\int_{0}^{1} x^{n} e^{-x} d x$.
(ii) Hence deduce that $\int_{0}^{1} x^{3} e^{-x} d x=6-\frac{16}{e}$.
(a) Given the complex number $z=-7+2 i$, find
(i) \bar{Z}
(ii) $\arg \bar{z}$ giving your answer to one decimal place.
(iii) $\arg i z+\arg \overline{i z}$

$$
|z|<2 \text { and } \frac{2 \pi}{3} \leq \arg z \leq \frac{5 \pi}{6}
$$

(d) In the diagram below $O X Y Z$ is a parallelogram with $O X=\frac{1}{2} O Z$

The point X represents the complex number $-\frac{1}{2}+\frac{\sqrt{3}}{2} i$

If $\angle X O Z=60^{\circ}$, what complex number does Z represent?
(e) Given that $z=\cos \theta+i \sin \theta$
(i) Show that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$.
(ii) Hence, or otherwise, solve the equation $2 z^{4}-z^{3}+3 z^{2}-z+2=0$.

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) The graph of $y=f(x)$ is displayed below. The lines $y=1, x=0$ and $y=0$ are asymptotes.

Using the separate page of graphs provided, sketch each of the graphs below. In each case, clearly label any maxima or minima, intercepts and the equations of any asymptotes.
(i) $y=f(|x|)$
(ii) $y^{2}=f(x)$
(iii) $y=e^{f(x)}$
(iv) $\quad y=\sin ^{-1}[f(x)]$
(b) (i) On the same set of axes, sketch the graphs of $y=e^{x}$ and $y=\sqrt[3]{x}$.
(ii) On another set of axes sketch, using the graphs in (i), the graph of

$$
y=\sqrt[3]{x} e^{x}
$$

(iii) Use the last sketch to determine the values of k for which the equation $\sqrt[3]{x}=\frac{k x+2}{e^{x}}$ has exactly one solution.

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the equation of the conic below

$$
\frac{x^{2}}{29-\lambda}-\frac{y^{2}}{4-\lambda}=1
$$

(i) Find the values of λ for which this conic defines an ellipse.
(ii) If the equation represents an hyperbola, show that the focus of the hyperbola is independent of λ.
(iii) Sketch the conic defined by $\lambda=13$.
(b) A sequence $\mu_{1}, \mu_{2}, \mu_{3} \ldots \mu_{n}$ is such that any three consecutive terms are related by the equation $\mu_{n+3}=6 \mu_{n+2}-5 \mu_{n+1}$. It is given that $\mu_{1}=2$ and $\mu_{2}=6$.

Use mathematical induction to prove that $\mu_{n}=5^{n-1}+1$.
(c) The roots of the equation $x^{3}+2 x-8=0$ are α, β and γ. Find the polynomial equation whose roots are given by
(i) $1-\alpha, 1-\beta$ and $1-\gamma$.
(ii) $\frac{\alpha+\beta}{\gamma}, \frac{\beta+\gamma}{\alpha}$ and $\frac{\alpha+\gamma}{\beta}$.
[In part (ii) consider the relationship between the coefficients and the roots]
(a) Five lines are drawn in a plane. No two lines are parallel and no three lines are concurrent.
(i) Show that there are 10 points of intersection giving a reason for your answer.
(ii) If three of the points are chosen at random, find the probability that they all lie on one of the given lines
(b) Consider the rectangular hyperbola with equation $x y=c^{2}$ with points A and B which is shown below. The normal through A on the hyperbola meets the other branch at B.

(i) Show that the equation of the normal is given by

$$
y=a^{2} x+\frac{c}{a}\left(1-a^{4}\right)
$$

(ii) If B has co-ordinates $\left(c b, \frac{c}{b}\right)$, show that $b=-\frac{1}{a^{3}}$
(iii) If this hyperbola is rotated clockwise through 45°, show that the equation becomes $x^{2}-y^{2}=2 c^{2}$.
(c) If x and y are positive numbers such that $x+y=1$, prove that
(i) $\frac{1}{x}+\frac{1}{y} \geq 4$
(ii) $\quad x^{2}+y^{2} \geq \frac{1}{2}$
(a) A solid shape has an elliptical base on the $x y$-plane as shown below.

Sections of the solid taken perpendicular to the x-axis are equilateral triangles.
The major and minor axes of the ellipse are of lengths 6 metres and 2 metres respectively.

(i) Write down the equation of the ellipse.
(ii) Show that the volume ΔV of a slice taken at $x=d$ is given by

$$
\Delta V \doteqdot \frac{\sqrt{3}\left(9-d^{2}\right)}{9} \Delta x
$$

(iii) Find the volume of this solid.
(b) (i) Use graphs, or otherwise, to show that $\log _{e}(1+x)<x$ for $x>0$.
(ii) Sketch the graphs of $y=\frac{x}{1+x}$ and $y=\log _{e}(1+x)$ on the same set of axes and explain why $\frac{x}{1+x}<\log _{e}(1+x)$ for $x>0$.
(iii) Using the inequalities in part (i) and (ii), show that

$$
\begin{gathered}
\frac{\pi}{8}-\frac{1}{4} \log _{e} 2<\int_{0}^{1} \frac{\log _{e}(1+x)}{1+x^{2}} d x<\log _{e} \sqrt{2} \\
\text { You may assume that } \int \frac{x d x}{(1+x)\left(1+x^{2}\right)}=\frac{\tan ^{-1} x}{2}+\frac{\ln \left(x^{2}+1\right)}{4}-\frac{\ln (x+1)}{2} .
\end{gathered}
$$

(a) In the diagram, $P C Q$ is a straight line joining P and Q, the centres of the circles. $A B$ and $D C$ are common tangents.

(i) Copy the diagram into your answer booklet.
(ii) Explain why $P A D C$ and $C D B Q$ are cyclic quadrilaterals.
(iii) Show that $\triangle A D C$ is similar to $\triangle B Q C$.
(iv) Show that $P D$ is parallel to $C B$.
(b) (i) Sketch the region which is enclosed by the curve $y=8 x-x^{2}$ and the lines $x=2$ and $x=4$.
(ii) This region is rotated about the y-axis to generate a solid.

Represent this situation on a number plane and use the method of cylindrical shells to find the volume of the solid formed.
(c) (i) Show that the function $G(x)$ where $G(x)=\frac{1}{2}[f(x)+f(-x)]$ is even and that the function $H(x)$ where $H(x)=\frac{1}{2}[f(x)-f(-x)]$ is odd.
(ii) Deduce that the function $f(x)$ can be written as the sum of an even function and an odd function.
(iii) If $f(x)=2^{x}+\tan x$, express $f(x)$ as the sum of an even function and an odd function.

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) The sketch below shows the graph of $y=\log _{e} x$ for $x \geq 1$.

(i) Explain why this curve is always concave downwards.
(ii) Show that the area under $y=\log _{e} x$ from $x=1$ to $x=n$ is given by

$$
n \ln n-n+1
$$

(iii) By adding the areas of the trapezia from $x=1$ to $x=n$, show that

$$
n!<\frac{e e^{n+\frac{1}{2}}}{e^{n}}
$$

(b) $\quad P(x)$ is a polynomial of degree at least 2 , such that $P^{\prime}(a)=0$. Show that when $P(x)$ is divided by $(x-a)^{2}$ the remainder is $P(a)$.
(c) Use mathematical induction to show that

$$
1 \times 1!+2 \times 2!+3 \times 3!+\ldots+n \times n!=(n+1)!-1 \text { for } n \geq 1
$$

(d) (i) Show that $\operatorname{cosec} 2 \theta+\cot 2 \theta=\cot \theta$.
(ii) Hence find the value of $\cot \frac{\pi}{8}$ and $\cot \frac{\pi}{12}$ and show that

$$
\operatorname{cosec} \frac{2 \pi}{15}+\operatorname{cosec} \frac{4 \pi}{15}+\operatorname{cosec} \frac{8 \pi}{15}+\operatorname{cosec} \frac{16 \pi}{15}=0
$$

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

BLANK PAGE
Please turn over

Student Number: \qquad

Use this page for your answers to Question 3a)

Insert this page in your booklet for Question 3

Q
a)

$$
\begin{aligned}
I & =\int \frac{\cos ^{2} x d x}{1-\sin ^{2} x} \\
& =\int \frac{1-\sin ^{2} x}{1-\sin ^{x} x} d x \\
& =\int(1+\sin x) d x \\
& =x-\cos x+C
\end{aligned}
$$

b)

$$
\frac{\text { b) }}{I}=\int \frac{1}{x(x+1)}
$$

Let $\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}$

$$
1=A(x+1)+B x
$$

d) If

$$
\operatorname{Let} x=-1
$$

$$
1=-B
$$

$$
B=-1
$$

Let $x=0$

$$
1=A
$$

$$
I=\int\left(\frac{1}{x}-\frac{1}{x+1}\right) d x
$$

$$
=\ln x-\ln (x+1)+C
$$

$$
=\ln \frac{x}{x+1}+C
$$

(c) $I=\int \frac{d x}{\sqrt{4 x^{2}-1}}$

$$
=\int \frac{d x}{2 \sqrt{x^{2}-\frac{1}{4}}}
$$

$$
=\frac{1}{2} \int \frac{d x}{\sqrt{x^{2}-\frac{1}{4}}}
$$

$$
=\frac{1}{2} \ln \left(x+\sqrt{x^{2}-\frac{1}{4}}\right)+C=\frac{\pi}{3 \sqrt{3}}
$$

(ii) False as $4 x^{2}-1>0$ ie $x<-\frac{1}{2}$ or $-x>\frac{1}{2}$ and the limits of integral are between $-10-1$

$$
\theta=2 \tan ^{-1} t
$$

$$
d \theta=\frac{2 d t}{1+t^{2}}
$$

$$
\begin{aligned}
& I=\int_{0}^{\pi} \frac{d t}{2+\Delta \operatorname{mit} \theta} \\
&=\int_{0}^{1+t^{2}} \frac{2 d t}{1+\tau^{2}} \\
& 2+\frac{2 t}{1+\tau^{2}}
\end{aligned}
$$

$=\int_{0}^{2} \frac{2 t}{2\left(1+t^{2}\right)+2 t}$
$=\int \frac{d t}{t^{2}+t+1}$
$=\int \frac{d t}{t^{2}+t+\frac{1}{4}+\frac{3}{4}}$
$=\int_{0}^{1} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{2\left(t+\frac{1}{2}\right)}{\sqrt{3}}\right]_{0}^{1}$
$=\frac{2}{\sqrt{3}}\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} \frac{1}{\sqrt{3}}\right]$

$$
=\frac{2}{\sqrt{3}}(\pi / 3-\pi / 6)
$$

Q 2

$$
\text { a) ii) } \begin{align*}
I & =\int_{0}^{1} x^{n} e^{-x} d x \\
& =\int_{0}^{1}\left(d x-e^{-x}\right) x^{n} d x \tag{38}\\
& =-\left[e^{-x} x^{n}\right]_{0}^{1}+n \int e^{-x} x^{n-1} d x \tag{-53}\\
& =-\left[\frac{1}{e}-0\right]+n I_{n-1} \\
& =\sim I_{n-1}-\frac{1}{e}
\end{align*}
$$

(iI)
(1)2a)
(1) $-7-2 i$
(II) $\tan ^{-1} \frac{2}{7}-\pi$
(III) $\operatorname{ang}(c z \cdot c \bar{y})=\operatorname{ang}$

$$
=0
$$

b) $1-\sqrt{3 i}=2 \cos (-\pi / 6)$

$$
\begin{aligned}
(1-\sqrt{3 c})^{9} & =[2 \cos (-\pi / 6)]^{9} \\
& =2^{9}(\cos (-3 \pi)) \\
& =2^{9} \pi \cos (-3 \pi)+\sin \pi \\
& =2^{9}(-1) \\
& =-2^{9}
\end{aligned}
$$

$$
I_{3}=3 I_{2}-\frac{1}{e}
$$

$$
I_{0}=\int_{0}^{1} e^{-x} d x
$$

c)

$$
=\left[-e^{-x}\right]_{0}^{1}
$$

$$
=\left[-e^{-1}+1\right]
$$

$$
I_{1}=I_{0}-\frac{1}{e}
$$

$$
=-e^{-1}+1-\frac{1}{e}
$$

d)

$$
=1-\frac{2}{e}
$$

$$
I_{2}=2 \frac{I_{1}}{I_{1}} \frac{1}{e}
$$

$$
=2\left(1-\frac{z}{e}\right)-\frac{1}{e}
$$

$$
=2-\frac{4}{e}-\frac{1}{\frac{1}{2}}
$$

$$
=2-\frac{s}{e}
$$

$$
\text { 1) } \begin{aligned}
& O Z=2 \times O X^{\times} \operatorname{cis}\left(-\frac{\pi}{3}\right) \\
&=2 \times \cos 2 \pi / 3 \times \operatorname{cis}\left(\frac{-\pi}{3}\right) \\
&=2 \operatorname{cis} \pi / 3 \\
&=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
&=1+i \sqrt{3} \\
&)(1) z^{n}+z^{-n}=\cos n \theta+\cos n \theta \\
& \quad+\cos n \theta-\sin n \theta
\end{aligned}
$$

e)

$$
I_{3}=3 I_{2}-\frac{1}{e}
$$

$$
=3\left(2-\frac{s}{e}\right)-\frac{1}{e}
$$

(iI)

$$
\begin{aligned}
& =6-\frac{15}{e}-\frac{1}{e} \\
& =6-\frac{16}{e}
\end{aligned}
$$

$$
\cos \theta=\frac{5}{2} \sqrt{\frac{1}{4}}
$$

$$
\begin{aligned}
& z^{4}-z^{3}+3 z^{2}-\cos ^{-2} x=0 \\
& 2 z^{4}+2-z^{3}-z^{3}+3 z^{2}=0 \\
& 2\left(z^{4}+1\right)-\left(z^{2}+z\right)+3 z^{2}=0 \\
& 2\left(f^{2}+\frac{1}{3}-\left(z+\frac{1}{2}\right)+3 \varepsilon^{2}=0\right. \\
& 2(2 \cos 2 \theta-2 \cos \theta+3)=0 \\
& 4 \cos 2 \theta-2 \cos \theta+3=0 \\
& 4\left(2 \cos ^{2} \theta-1\right)-2 \cos \theta+3=0
\end{aligned}
$$

$$
\sin \theta \pm \pm \frac{\sqrt{3}}{2}
$$

3(8)

3 a)

30 m

(III) $\sqrt[3]{x}=\frac{R x+2}{e^{x}}$

$$
\sqrt[3]{x} e^{x}=k x+2
$$

dexives from soloung smuttrineousty

$$
\begin{aligned}
& y=\sqrt[3]{x} e^{x} \text { and } y=k x+2 \\
& \begin{array}{l}
y=x^{3} e^{x} \\
y^{\prime}=x^{-3}
\end{array} \\
& \begin{array}{l}
y=x^{3} e^{x} \\
y^{\prime}=\frac{1}{3} x^{-2} e^{x}+x^{\frac{1}{3}} e^{x}
\end{array} \\
& \left.=e^{x}\left(\frac{1}{3 x^{\frac{2}{3}}}+\frac{x^{\frac{1}{3}}}{1}\right)\right) \\
& =e^{x}\left(\frac{1+3 x^{2}}{3 x^{\frac{3}{3}}}\right)
\end{aligned}
$$

etacting one sotulion

Question 4
a) $\frac{x^{2}}{2 a-1}-y^{2}=$
(1) $29-\lambda$ ule riune

We reque
$4-\lambda<0$
$29-\lambda>0$ AND
त) 4

$$
\lambda<29
$$

$$
\ll 4<\lambda<29
$$

(II) Now Fop

$$
a^{2}-b^{2}=a^{2} e^{2}
$$

$29-\lambda-(4-\lambda)=a^{2} e^{2}$ ELLAPSE

ae = TH THS HWMALYO
$S(\pm 5,0)$ WROLTAENTHE mAREING
(III) $\lambda=13$

$$
\begin{aligned}
& \frac{x^{2}}{16}-\frac{y^{2}}{-9}=1 \\
& \frac{x^{2}}{16}+y^{2}=1
\end{aligned}
$$

b) Mape 1

Tert $n_{1}=1$

$$
\begin{aligned}
u_{1} & =5^{0}+1 \\
& =2 \\
& =u_{1} \text { as give } \\
n=2 & 5^{\prime}+1 \\
u_{2} & =6 \\
& =u_{2} \text { ao give }
\end{aligned}
$$

atoo $u_{a+1}=\sigma^{2}+1$

$$
\begin{aligned}
& u_{k+2}=5^{k+1}+1 \\
& u_{k+3}=5^{k+2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \angle 4 S \text { or } 8 \\
& \alpha H S=U_{k+3} \\
& =5^{k+2}+1 \\
& R H S=6 U_{k+2}-5 U_{k+1} \\
& =6\left(5^{2+1}+1\right)-5\left(5^{2}+1\right) \\
& =6.15^{k+6}-5^{2+1}-5 \\
& =5.5^{\frac{1}{x+1}+1} \\
& =5^{x+2}+1 \\
& \text { Atep3 }
\end{aligned}
$$

Dince the formula in
the tow $n=1, n=2$
and is thae tor $n=k+1$ it the for $n=k$ then thue porall ve $\geqslant 1$

$$
x^{3}+2 x-8=0
$$

1 (c) (1)

$$
\begin{gathered}
\text { Let } x=1-x \\
x=1-x \\
x^{3}+2 x-8=0 \\
(1-x)^{3}+2(1-x)-8=0 \\
(1-x)\left\{(1-x)^{2}+2\right\}-8=0 \\
(1-x)\left(x^{2}-2 x+3\right)-8=0 \\
x^{2}-2 x+3-x^{3}+2 x^{2}-3 x-8=0 \\
-x^{3}+3 x^{2}-5 x-5=0 \\
x^{3}-3 x^{2}+5 x+5=0
\end{gathered}
$$

(II) $\alpha+\beta+\gamma=0$
$\therefore \alpha+\beta=-\phi$

$$
\begin{aligned}
& \beta+\gamma=-\alpha \\
& \alpha+\gamma=-\beta
\end{aligned}
$$

$\frac{\alpha+\beta}{\gamma}, \frac{\beta+\gamma}{\alpha}$ and $\frac{\alpha+\alpha}{\beta}$
becoms

$$
\therefore-\frac{1}{\gamma},-\frac{\alpha}{\alpha},-\frac{\beta}{\beta}
$$

Le tiple soct of -1
ie $(x+1)^{3}=\widehat{0}$
(15aif ${ }^{5} \mathrm{C}_{2}$
(4i) $\begin{aligned} \frac{5 x^{4} C_{3}}{{ }^{10} C_{3}} & =\frac{20}{120} \\ & =\frac{1}{6}\end{aligned}$

$$
\begin{aligned}
& \text { 6) (1) } y=\frac{c^{2}}{x} \\
& \frac{a y}{}=-\frac{c^{2}}{x^{2}} \\
& a t x \\
& a \\
& y^{\prime}
\end{aligned}=-\frac{1}{a^{2}}, ~(O u
$$

Distance fram O is $\sqrt{2 C}$ Now vertices are $(\pm \sqrt{2}, 0) \Rightarrow a=\sqrt{2 c}$ since hyperbola is rectayula $b=\sqrt{2 c}$

$$
\frac{x^{2}}{(\sqrt{2} c)^{2}}+\frac{y^{2}}{(\sqrt{2 c})^{2}}=\frac{y^{2}}{2}-(\sqrt{2}) \frac{y^{2}}{2}=
$$

$$
1 e x^{2}-y^{2}=2 c^{2}
$$

C) $x+y=1$
(1) $\frac{1}{x}+\frac{1}{y} \geqslant 4$
$\angle H S=\frac{1}{x}+\frac{1}{1-x}$
 Lieast velua ${ }_{9}$ $x(t) x)$ is 4
(II) $x^{2}+y^{2} \geqslant \frac{1}{2}$

Flog $\frac{1}{x y} \geq 4 \Rightarrow x y \leq \frac{1}{4}$
Conside- $(x-y)^{2} \geq 0$

$$
x^{2}-2 x y+y^{2} \geq 0
$$

$$
x^{2}+y^{2} \geq 2 x y
$$

Smex $x y \leq \frac{1}{4}$,
$x^{2}+y^{2} \geqslant 2 x^{4} \frac{1}{4}$ $x^{2}+y^{2} \geqslant 1$

6a)
(1) $\frac{x^{2}}{9}+y^{2}=1$
(11)

$$
y^{2}=1-\frac{x^{2}}{9}
$$

$$
y^{2}=\frac{9-\alpha^{2}}{9}
$$

$$
y=\frac{\sqrt{9-a^{2}}}{3}
$$

$$
A=\frac{1}{2} \times \frac{3 \sqrt{9-B^{2}} 2 \sqrt{9-G C^{2}}}{3} \frac{3}{\sqrt{3}}
$$

$$
=\frac{1}{2} \frac{x^{3}}{4\left(-9=d x^{2}\right)} \frac{\sqrt{3}}{2}
$$

$$
=\frac{\sqrt{3}\left(9-x^{2}\right)}{9}
$$

$$
\Delta V=\frac{\sqrt{3}\left(9-a^{2}\right)}{9} \Delta x
$$

b)

$$
\begin{aligned}
V & =\sqrt{3} \int_{-3}^{3} \frac{\left(9-x^{2}\right)}{9} d x \\
& =\frac{2 \sqrt{3}}{9} \int_{0}^{3}\left(9-x^{2}\right) d x \\
& =\frac{2 \sqrt{3}}{9}\left[9 x-\frac{x^{3}}{3}\right]_{0}^{3} \\
& =\frac{2 \sqrt{3}}{9}[(27-9)-0] \\
& =\frac{2 \sqrt{3}}{9} \times 18 \\
& =4 \sqrt{3} \\
& <6 \sqrt{3} \text { culueum }
\end{aligned}
$$

46
(1) $y=\ln (1+x)$
(1) $y^{\prime}=\frac{1}{1+x}$

Gradunt function of $y=\frac{1}{(1+x)^{2}}$ is
lew than $\frac{1}{1+x}$ for $x>0$
Both ane fagintiel to $y=x$ at $x=0$ so becaure $\frac{1}{(1+x)^{2}}\left\langle\frac{1}{1+x}\right.$ \& $x>0$
then the graxk of $y \frac{=x}{1+x}$ shelowe
Wh grait of $y=\log _{0}(1+x)$ fon $x \geq 0$
(1)6)
(iii) Ftam (i) (iI)

$$
\frac{x}{1+x}<\ln (1+x)<x \quad x>0
$$

$$
\begin{aligned}
& \text { Sence } \frac{x}{(1+x)\left(1+x^{2}\right)}<\frac{\ln (1+x)<\frac{x}{1+x^{2}} x+x^{2}}{1+y} \\
& \int \frac{x d x}{(1+x)\left(1+x^{2}\right)}<\int_{0}^{1} \frac{\ln (1+x) d x<\int_{0}^{1} \frac{x}{1+x^{2}} d x}{} \\
& \text { Now } \int_{0}^{1} \frac{x}{1+x^{2}}=\frac{1}{2}[\ln (x+x)]_{0}^{1}
\end{aligned}
$$

$$
\text { and } \int_{0}^{1} \frac{x}{(1+x)(1+x)^{c}}=\int_{0}^{1}\left(\frac{1}{2(x+1)}+\frac{1}{2(x+1)}\right) d x
$$

$$
\text { Integat }=\left[-\frac{1}{2} \ln (1+x)\right]+\left[\frac{1}{4} \ln \left(x^{2}+1\right)\right]
$$

the quictor $+\frac{1}{2}\left(\tan ^{-1} x\right)$

$$
=\frac{1}{2} \ln 2+\frac{1}{4} \ln 2 x-\frac{1}{2} \tan ^{2}
$$

$$
=\pi / \frac{1}{4} \ln 2
$$

Hence $\frac{\pi}{8}-\frac{1}{4} \ln 2<\int_{0}^{1} \frac{\sin (1+x)}{1+x^{2}} d x<\frac{1}{2} \ln 2 \quad x 2$
$\left(90-\frac{e}{2}\right)$
(a)

(1) \angle

$$
\angle P A D=\angle D C D=90^{\circ}
$$

Radius is
perpinancular to
tingental pountol
$\therefore P A D C$ is aglec (opposite andebenta.)
(ii) Let $\angle A D C=\theta$
$\angle B Q_{-}+\theta$ (opp angles \& yghe quadulatud
$D A=D C$ equal tangint fromextenct point
$\therefore \triangle A D C$ in vosceles

$$
\begin{aligned}
& \therefore \angle D A C=\angle D C A=\left(90-\frac{\theta}{2}\right)^{\circ} \\
& B D=S \Phi \text { equal todiv) } \\
& B \Phi=\triangle Q \text { equa }
\end{aligned}
$$

(ii) Fram(1)
$\angle A P C=(180-\theta))^{\circ}(\sigma P P$ arges at PigDC
and $1 P D C=\left(90-\theta_{\Sigma}\right)^{\circ}$ ai $P D$ buecto $2 A P C$

$$
=\angle B C D
$$

$\therefore P D / / C B$ compondy ajly \qquad
\qquad
\qquad

$$
\begin{aligned}
& \left.\left.\angle P A D=90^{\circ}[\text { Tangent } A B \text { is papenducula to } 1)^{\circ} \beta \text { adris } A\right]\right] \\
& \angle D B P=90^{\circ} \text { Reason as above } \\
& \angle D C P=90^{\circ} \text { [Reanan asabove] } \\
& \angle B O C=90^{\circ} \text { [Reason as abock] } \\
& \therefore \angle P A D=\angle D C P=Q O^{\circ} \Rightarrow \text { OPPOETTZ ANGLES OF } \\
& \Rightarrow \text { GYCLIC OUADRLLATETALS }
\end{aligned}
$$

(1) 76

$$
\begin{aligned}
\Delta V= & \left(k^{2}-(k-\Delta k)^{2}\right) y \\
= & \pi\left(2 k \Delta k-(\Delta k)^{2}\right) y \quad \text { Let } \Delta k^{2}=0 \\
& \text { as } \Delta k \rightarrow 0 \text { or } \Delta x \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
V & =2 \pi \int_{2}^{4} x y d x \\
& =2 \pi \int_{2}^{4} x\left(8 x-x^{2}\right) d x \\
& =2 \pi \int_{2}^{4}\left(8 x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{8 x^{3}}{3}-\frac{x^{4}}{44}\right]_{2}^{4} \\
& \left.=2 \pi\left[\frac{512}{3}-64\right)-\left(\frac{64}{3}-4\right)\right] \\
& =2 \pi\left[\frac{248}{3}\right] \\
& =\frac{536}{3}+5 \text { ae } \frac{536 \pi}{3} \text { allue units }
\end{aligned}
$$

$Q 7$

$$
\text { (角) } \begin{aligned}
\text { (1) } f(x) & =\frac{1}{2}[f(x)+f(-x)] \\
G(-x) & =\frac{1}{2}[f(-x)+f(x)] \\
& =G(x) \\
\text { OH } H(H) & =\frac{1}{2}[f(x)-f(-x)] \\
\text { Whe } H(-x) & =\frac{1}{2}[f(-x)-f(x)] \\
& =\frac{2}{2}[f(x)-f(-x)] \\
& =-H(-x)
\end{aligned}
$$

(1)
(III)

$$
\begin{aligned}
& \text { So } \begin{aligned}
f(x) & =\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)] \\
& =f(x)
\end{aligned} \\
& =f(x) \\
& =G(x)+H(x) \\
& f(x)=2^{x}+\tan x \\
& G(x)=\frac{1}{2}\left[2^{x}+\tan x+2^{-x}-\tan x\right] \\
& H(x)=\frac{1}{4}\left[2^{x}+\frac{1}{2}{ }_{2}\right] \\
& =\frac{2}{2}\left[2^{x}+\tan x-\left(2^{x}(\tan x)\right]\right. \\
& =\frac{1}{2}\left[2^{2}-2^{-x}+2-7 \sin \right] \\
& \therefore f(x)=G(x)+H(x) \\
& =\frac{1}{2}\left[2^{x}+\frac{1}{2^{x}}+2^{x}-\frac{1}{2}+2 \tan x\right] \\
& =\frac{1}{2}\left[2^{x+} 2^{x}+2 \tan x^{2}\right] \\
& =2^{x}+\tan x
\end{aligned}
$$

(I)

$$
\begin{aligned}
& y^{\prime}=\frac{1}{x} \\
& y^{\prime \prime}=-\frac{1}{x^{2}} \\
& <0 \text { for } x>0
\end{aligned}
$$

(1)

$$
\begin{aligned}
I & =\int_{1}^{n} \ln x d \alpha \\
& =\int_{1}^{n}(d x x) \ln x d x \\
& =[x \ln x]_{1}^{n}-\int_{1}^{n} d x \\
& =(x \ln x-0)-(n-1) \\
& =n \ln x-m+1
\end{aligned}
$$

(1i) Us-g trapegia

$$
\begin{aligned}
A & \doteq \frac{1}{2}[\ln 1+\ln n+2(\ln 2+\ln 3+\cdots \ln (n-1))] \\
& =\frac{1}{2}[\ln n+2 \ln (n-1)!] \\
& =\frac{1}{2} \ln n+\ln (n-1) 1
\end{aligned}
$$

$\therefore n \ln n-n+1>\frac{1}{2} \ln n+\ln (n-1)_{1}^{\prime}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \ln n+\ln \left(\frac{n!}{n}\right) \\
& =\frac{1}{2} \ln n+\ln n 1-\ln n \\
& =\ln n \cdot-\frac{1}{2} \ln n
\end{aligned}
$$

le $n \operatorname{tin} n-n+1>\ln n!-\frac{1}{2} \ln n$

$$
\begin{aligned}
&\left(n+\frac{1}{2}\right) \ln n-n+1>\ln n! \\
& \ln n^{n+\frac{1}{2}} n+1>\ln n \\
& \therefore \quad e^{\ln n+\frac{1}{2} n+1}>e^{\ln n} \\
& n^{n+\frac{1}{2} e^{-n}} \cdot \gg n! \\
& \therefore n!<e^{n+1} \\
& e^{n}
\end{aligned}
$$

8b)
Divisor in $(x-a)^{2}$
sotemaunder is $c x+d$

$$
\begin{aligned}
& P(x)=(x-a)^{2} \Phi(x)+c x+d \\
& P^{\prime}(x)=2(x-a) D(x)+(x-a)^{2} D^{\prime}(x)+c \\
& P^{\prime}(a)=c \quad \text { Put } P^{\prime}(c)=0 \Rightarrow c=0 \\
& \therefore P(x)=(x-a)^{2} D(x)+d \\
& \quad P(a)=d
\end{aligned}
$$

Do the umamder $c x+\alpha$
is $0 x+P(a)$ ie $P(a)$ is the Remainde-

8 c)

$$
\begin{aligned}
& \text { (c) } \quad(1) \times 21+3 \times 31+\cdots+n+=(n+1) 1 \\
& 1 \times 1+2+2 \\
& \text { Atip1 } \\
& T_{1}=1 \\
& S_{1}=(1+1)-1 \\
& =1
\end{aligned}
$$

1×12 asome true for $n=k$
asomone $1 \times 1+2 \times 21+3 \times 31+\cdots+k \cdot k=(k+1)^{\prime}-1$

$$
\begin{aligned}
& \mid \times 11+2 \times 2!+3 \times 3!+\cdots+k, k!+k+1)(k+1)=(k+2) \mid-1 \\
& \therefore H S=(1+11+2+21+3 \times 31++12, k)+(k+1)(k+1)) \\
& =(k+1) 1-1+(k+1)(k+1) . \\
& =(a+1)![1+k+1]-1 \\
& =(k+2)(k+1)!-1 \\
& =(k+2) \mid-1
\end{aligned}
$$

Ate 3 Since true for $n=$ in α tian for $n=k+1$ If trul for $n=k$ then true for $n=1$ andsoo

Cde

$$
\begin{aligned}
& \operatorname{cosec} 2 \theta+\cot 2 \theta=\cot \theta \\
& \begin{array}{l}
\text { LHS }
\end{array}=\frac{1}{\operatorname{con} 2 \theta}+\frac{\cos 2 \theta}{\sin 2 \theta} \\
& =\frac{1+\cos 2 \theta}{\sin 2 \theta} \\
& = \\
& =\frac{2 \cos 2 \theta}{2 \sin \theta \cos \theta} \\
& =\frac{\cos \theta}{\sin \theta} \\
& =
\end{aligned}
$$

(III)

$$
\begin{aligned}
& \angle H S=\operatorname{cose} \frac{2 \pi}{15}+\operatorname{coscc} \frac{12 \pi}{15}+\operatorname{cosec} 8 \pi+\operatorname{conec} \frac{16}{2 \pi} \\
& \begin{array}{l}
=\left(\cot \frac{1 \pi}{15}-\cot \frac{d \pi}{15}\right)+\left(\cot \frac{2 \pi}{13}-\cos \frac{\pi / \pi \pi}{15}\right)+\left(\cot \frac{4 \pi}{15}-4 \cot \frac{2 \pi}{15}\right) \\
=\cos \pi 1-\cot \frac{16 \pi}{15}
\end{array} \\
& =\cos \frac{1}{15}-\cot \frac{16 \pi}{15} \\
& =\cot \frac{15}{15}-\left(\cot \frac{15}{15}\right) \\
& \text { =RLIS. }
\end{aligned}
$$

