

2011

TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this page
- All necessary working should be shown in every question

Total Marks - 120
Attempt Questions 1-8
All questions are of equal value
At the end of the examination, place your writing booklets in order and put this question paper on top. Submit one bundle. The bundle will be separated before marking commences so that anonymity will be maintained.

NAME: \qquad TEACHER: \qquad
NUMBER: \qquad

QUESTION	MARK
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 120$
8	
TOTAL	

BLANK PAGE
Please turn over

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 Marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{6 x}{\sqrt{1+x^{2}}} d x$.
(b) By completing the square, or otherwise, evaluate $\int_{-1}^{5} \frac{d x}{\sqrt{32+4 x-x^{2}}}$.
(c) (i) Use integration by parts to find $\int(t-1) \ln t d t$.
(ii) Using the substitution $t=2 x+1$, evaluate $\int_{0}^{1} 4 x \ln (2 x+1) d x$.
(d) Use the substitution $t=\tan \frac{1}{2} \theta$ to show that $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\cos \theta-2 \sin \theta+3}=\frac{\pi}{4}$.

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $w=2+i$.
(i) Find w^{2} in the form $x+i y$.
(ii) Find $\operatorname{Im}\left(\frac{1}{w}\right)$.
(iii) Find the real numbers x and y such that $x+3 i y=w+4 i \bar{w}$.
(b) (i) If $z=\cos \theta+i \sin \theta$ show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

(ii) Given further that $z+\frac{1}{z}=\sqrt{2}$, find the value of

$$
z^{10}+\frac{1}{z^{10}}
$$

(c) A circle C and a ray L have equations $|z-2 \sqrt{3}-i|=4$ and $\arg (z+i)=\frac{\pi}{6}$ respectively.
(i) Show that:
(1) the circle C passes through the point where $z=-i \quad \mathbf{1}$
(2) the ray L passes through the centre of C.
(ii) Sketch C and L on the same Argand diagram.
(iii) Shade on your sketch the region satisfying both

$$
|z-2 \sqrt{3}-i| \leq 4 \text { and } 0 \leq \arg (z+i) \leq \frac{\pi}{6}
$$

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) The sketch below shows the curve $y=f(x)$ where

$$
f(x)=\frac{x(x-4)}{4}
$$

Without the use of calculus, draw sketches of the following, showing where necessary any intercepts, asymptotes and turning points

Use pages 14 and 15 to complete this question.

(i) $\quad|y|=f(x) \quad \mathbf{1}$
(ii) $y=\sqrt{f(x)}$
(iii) $\quad y=\frac{x}{4}|x-4|$
(iv) $y=\tan ^{-1}[f(x)]$.
(b) (i) If $x \geq 0$, show that $\frac{x}{x^{2}+4} \leq \frac{1}{4}$.
(ii) By integrating both sides of this inequality with respect to x between the limits $x=0$ and $x=\alpha$, show that

$$
e^{\frac{1}{2} \alpha} \geq \frac{1}{4} \alpha^{2}+1 \text { for } \alpha \geq 0
$$

(c) The region between the curve $y=8 x \sqrt{\sin 2 x}$ and the x-axis for $0 \leq x \leq \frac{\pi}{2}$, is rotated about the x-axis.
By using integration by parts twice, find the volume of the solid generated. Leave your answer correct to 3 significant figures.

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$

(i) Write down the coordinates of the focus S and the equation of the associated directrix.
(ii) Show that the equation of the normal to the ellipse at the point $P\left(x_{1}, y_{1}\right)$ is given by

$$
\frac{9 x}{x_{1}}-\frac{5 y}{y_{1}}=4 .
$$

(iii) Let Q be the x-intercept of the normal and let M be the foot of the perpendicular from P to the directrix as shown in the diagram. Show that $Q S=\frac{4}{9} P M$.
(b) A curve has equation $x^{3} y+\cos (\pi y)=7$.

Find the gradient of the curve at the point where $y=1$.
(c) NSGHS is planning to construct an artwork in the Senior Lawn from pre-made panels. One side of each panel needs to be painted.

To determine the amount of paint needed, the area of one side of each panel needs to be calculated.
Each panel is 2 m wide. An artist's sketch of a panel is given below.

Rekrap examines the artist's sketch and decides that the height of each panel can be modeled by the following function:

$$
h(x)=\frac{10 x}{\left(x^{2}+1\right)(3 x+1)}, 0 \leq x \leq 2
$$

(i) Given that $\frac{10 x}{\left(x^{2}+1\right)(3 x+1)}$ can be written in the form $\frac{x+A}{x^{2}+1}+\frac{B}{3 x+1}$,
find the values of A and B.
(ii) Hence, find the area of one of the panels correct to 2 decimal places.

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) The cubic equation $z^{3}+i z^{2}+3 z-i=0$ has roots α, β, and γ.

Write down a polynomial equation that has roots
(i) $\frac{1}{\alpha}, \frac{1}{\beta}$, and $\frac{1}{\gamma}$.
(b) A curve has equation

$$
y=\frac{x^{2}}{(x-1)(x-5)}
$$

(i) Show that, if the curve intersects the line $y=k$, then the x-coordinates of the points of intersection must satisfy the equation

$$
(k-1) x^{2}-6 k x+5 k=0 .
$$

(ii) Show that if the equation in (i) has equal roots then

$$
k(4 k+5)=0 .
$$

(iii) Hence find the coordinates of the two stationary points on the curve.
(iv) Sketch the curve showing intercepts, asymptotes and stationary points.
(c) (i) Differentiate $x(1+x)^{n}$.
(ii) Hence, show that

$$
\binom{n}{0}-2\binom{n}{1}+3\binom{n}{2}-4\binom{n}{3}+\ldots+(-1)^{n}(n+1)\binom{n}{n}=0
$$

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) The cubic equation

$$
2 z^{3}+p z^{2}+q z+16=0
$$

where p and q are real, has roots α, β and γ.
It is given that $\alpha=2+2 \sqrt{3} i$.
(i) Write down another root, β, of the equation.
(ii) Find the third root, γ.
(iii) Find the values of p and q.
(iv) By expressing α in modulus-argument form, show that

$$
(2+2 \sqrt{3} i)^{n}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right) .
$$

(v) Hence, show that

$$
\alpha^{n}+\beta^{n}+\gamma^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}
$$

where n is an integer.
(b) From an external point T, tangents are drawn to a circle with centre O, touching the circle at P and Q. Angle $P T Q$ is acute.
The diameter $P B$ produced meets the tangent $T Q$ at A. Let $\angle A Q B=\theta$.

(i) Copy the diagram above into your answer booklet.
(ii) Prove that $\angle P T Q=2 \theta$.
(iii) Prove that $\triangle P B Q$ and $\triangle T O Q$ are similar.
(iv) Hence show that $B Q \times O T=2 \times O P^{2}$.

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the hyperbola $x y=c^{2}$ and the distinct points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$
(i) Show that the equation of the tangent at $P\left(c p, \frac{c}{p}\right)$, where $p \neq 0$ is 2

$$
x+p^{2} y=2 c p
$$

(ii) Show that the tangents at P and Q intersect at

$$
M\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
$$

(iii) Show that if $p q=k$, where k is a non-zero constant, then the locus of M is a line passing through the origin.
(b) For each integer $n \geq 0$ let

$$
I_{n}=\int_{0}^{1} x\left(x^{2}-1\right)^{n} d x
$$

(i) Using the method of integration by parts, show that for $n \geq 1$

$$
I_{n}=-\frac{n}{n+1} I_{n-1} .
$$

(ii) Hence, or otherwise, show that for $n \geq 0$

$$
I_{n}=\frac{(-1)^{n}}{2(n+1)}
$$

(iii) Show that for n odd that $I_{n}<I_{n+2}$ for all $n \geq 0$.
(iv) Deduce that $-\frac{1}{4 n}<I_{2 n+1}<-\frac{1}{4(n+2)}$.

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2 \text { and } u_{k+1}=2 u_{k}+1
$$

(i) Prove by induction that, for all integers $n \geq 1$,

$$
u_{n}=3 \times 2^{n-1}-1
$$

(ii) Show that

$$
\sum_{r=1}^{n} u_{r}=u_{n+1}-(n+2)
$$

(b) (i) If $a>0, b>0$ and $c>0$, show that $a^{2}+b^{2} \geq 2 a b$ and hence deduce that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
(ii) If $a+b+c=9$, show that $a b+b c+c a \leq 27$ and

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{27}{a b c}
$$

(c) (i) Show that if n is any even positive integer, then

$$
(1+x)^{n}+(1-x)^{n}=2 \sum_{k=0}^{\frac{n}{2}}\binom{n}{2 k} x^{2 k}
$$

(ii) An alphabet consists of the three letters A, B and C.
(1) Show that the number of words of 4 letters containing exactly 2 As is

$$
\binom{4}{2} \times 2^{2}
$$

(2) Hence, or otherwise, show that if n is an even positive integer, 2 then the number of words of n letters with zero or an even number of As is given by

$$
\frac{1}{2}\left(3^{n}+1\right) .
$$

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

\qquad
(i)

(ii)

Turn over for parts (iii) and (iv)

Answer Sheet for Question 3 (a) continued
(iii)

(iv)

Now place this sheet INSIDE your booklet for Question 3

NORTH SYDNEY GIRLS HIGH SCHOOL

2011
TRIAL HSC EXAMINATION

Mathematics Extension 2

2011 Trial HSC Mathematics Extension 2

Sample Answers

Question 1

(a) Find $\int \frac{6 x}{\sqrt{1+x^{2}}} d x$.

Let $u=1+x^{2}$
$\therefore d u=2 x d x$

$$
\begin{aligned}
\int \frac{6 x}{\sqrt{1+x^{2}}} d x & =3 \int \frac{2 x}{\sqrt{1+x^{2}}} d x \\
& =3 \int \frac{d u}{\sqrt{u}}=3 \int u^{-\frac{1}{2}} d u \\
& =3(2 \sqrt{u})+C \\
& =6 \sqrt{1+x^{2}}+C
\end{aligned}
$$

(b) By completing the square, or otherwise, evaluate $\int_{-1}^{5} \frac{d x}{\sqrt{32+4 x-x^{2}}}$.

$$
\begin{aligned}
32+4 x-x^{2} & =-\left(x^{2}-4 x\right)+32 \\
& =-\left(x^{2}-4 x+4\right)+32+4 \\
& =36-(x-2)^{2} \\
& =\left[\sin ^{-1}\left(\frac{x-2}{6}\right)\right]_{-1}^{5} \frac{d x}{\sqrt{32+4 x-x^{2}}}
\end{aligned}=\int_{-1}^{5} \frac{d x}{\sqrt{36-(x-2)^{2}}}
$$

(c) (i) Use integration by parts to find $\int(t-1) \ln t d t$.

Don't expand the brackets

$$
\begin{aligned}
\int(t-1) \ln t d t & =\int \frac{d}{d t}\left(\frac{1}{2} t^{2}-t\right) \ln t d t \\
& =\left(\frac{1}{2} t^{2}-t\right) \ln t-\int\left(\frac{1}{2} t^{2}-t\right) \times \frac{1}{t} d t \\
& =\left(\frac{1}{2} t^{2}-t\right) \ln t-\int\left(\frac{1}{2} t-1\right) d t \\
& =\left(\frac{1}{2} t^{2}-t\right) \ln t-\frac{1}{4} t^{2}+t+C
\end{aligned}
$$

* An alternative would be to start with $\int \frac{d}{d t}\left[\frac{1}{2}(t-1)^{2}\right] \ln t d t$

$$
\begin{aligned}
\int \frac{d}{d t}\left[\frac{1}{2}(t-1)^{2}\right] \ln t d t & =\frac{1}{2}(t-1)^{2} \ln t-\int \frac{1}{2}(t-1)^{2} \times \frac{1}{t} d t \\
& =\frac{1}{2}(t-1)^{2} \ln t-\frac{1}{2} \int\left(t-2+\frac{1}{t}\right) d t \\
& =\frac{1}{2}(t-1)^{2} \ln t-\frac{1}{4} t^{2}+t-\frac{1}{4} \ln |t|+C
\end{aligned}
$$

(c) (ii) Using the substitution $t=2 x+1$, evaluate $\int_{0}^{1} 4 x \ln (2 x+1) d x$.
$t=2 x+1$
$\therefore d t=2 d x$
$\therefore d x=\frac{1}{2} d t$
$t=2 x+1 \Rightarrow 2 x=t-1$
$\therefore 4 x=2(t-1)$
$x=0 \Rightarrow t=1$
$x=1 \Rightarrow t=3$

$$
\begin{aligned}
\int_{0}^{1} 4 x \ln (2 x+1) d x & =\int_{1}^{3}(t-1) \ln t d t \\
& =\left[\left(\frac{1}{2} t^{2}-t\right) \ln t-\frac{1}{4} t^{2}+t\right]_{1}^{3} \\
& =\left[\left(\frac{1}{2} \times 9-3\right) \ln 3-\frac{1}{4} \times 9+3\right]-\left(-\frac{1}{4}+1\right) \\
& =\frac{3}{2} \ln 3
\end{aligned}
$$

(d) Use the substitution $t=\tan \frac{1}{2} \theta$ to show that $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\cos \theta-2 \sin \theta+3}=\frac{\pi}{4}$.

$$
\begin{aligned}
& t=\tan \frac{1}{2} \theta \\
& \therefore \theta=2 \tan ^{-1} t \\
& \therefore d \theta=\frac{2 d t}{1+t^{2}} \\
& \theta=0 \Rightarrow t=0 \\
& x=\frac{\pi}{2} \Rightarrow t=1 \\
& \begin{aligned}
\cos \theta-2 \sin \theta+3 & =\frac{1-t^{2}}{1+t^{2}}-2\left(\frac{2 t}{1+t^{2}}\right)+3 \\
& =\frac{1-t^{2}-4 t+3\left(1+t^{2}\right)}{1+t^{2}} \\
& =\frac{2 t^{2}-4 t+4}{1+t^{2}} \\
& =\frac{2\left(t^{2}-2 t+2\right)}{1+t^{2}}
\end{aligned}
\end{aligned}
$$

End of Question 1 Solutions

Question 2

(a) Let $w=2+i$.
(i) Find w^{2} in the form $x+i y$.

$$
w^{2}=(2+i)^{2}=4-1+4 i=3+4 i
$$

(ii) Find $\operatorname{Im}\left(\frac{1}{w}\right)$.

$$
\begin{aligned}
& \frac{1}{w}=\frac{1}{2+i} \times \frac{2-i}{2-i}=\frac{2-i}{5} \\
& \therefore \operatorname{Im}\left(\frac{1}{w}\right)=-\frac{1}{5}
\end{aligned}
$$

(iii) Find the real numbers x and y such that $x+3 i y=w+4 i \bar{w}$.

$$
\begin{aligned}
x+3 i y & =w+4 i \bar{w} \\
& =2+i+4 i(2-i) \\
& =2+i+8 i+4 \\
& =6+9 i \\
\therefore x+3 i y & =6+9 i \\
\therefore x=6, y & =3 \quad \text { [Equating real and imaginary terms] }
\end{aligned}
$$

(b) (i) If $z=\cos \theta+i \sin \theta$ show that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$
$z=\cos \theta+i \sin \theta \Rightarrow z^{n}=\cos n \theta+i \sin n \theta$
$\therefore \frac{1}{z^{n}}=z^{-n}=\cos (-n \theta)+i \sin (-n \theta)=\cos n \theta-\sin n \theta$
$\therefore z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$
(ii) Given further that $z+\frac{1}{z}=\sqrt{2}$, find the value of $z^{10}+\frac{1}{z^{10}}$

$$
z+\frac{1}{z}=\sqrt{2} \Rightarrow 2 \cos \theta=\sqrt{2}
$$

$$
\therefore \cos \theta=\frac{\sqrt{2}}{2} \Rightarrow \theta= \pm \frac{\pi}{4}
$$

$$
[-\pi<\theta \leq \pi]
$$

$$
z^{10}+\frac{1}{z^{10}}=2 \cos 10 \theta=2 \cos 10\left(\pm \frac{\pi}{4}\right)=2 \cos \left(\pm \frac{5 \pi}{2}\right)=0
$$

(c) A circle C and a ray L have equations $|z-2 \sqrt{3}-i|=4$ and $\arg (z+i)=\frac{\pi}{6}$ respectively.
(i) Show that:
(1) the circle C passes through the point where $z=-i$

Substitute $z=-i$ into the equation for C.
LHS $=|-i-2 \sqrt{3}-i|=|-2 \sqrt{3}-2 i|=|2 \sqrt{3}+2 i|=4=$ RHS
So the circle C passes through $z=-i$.
(2) the ray L passes through the centre of C.

The centre of the circle is $2 \sqrt{3}+i$.
Substitute $2 \sqrt{3}+i$ into the equation for L.
LHS $=\arg (z+i)=\arg (2 \sqrt{3}+2 i)=\frac{\pi}{6}=$ RHS
So the ray L passes through the centre of C.
(ii) Sketch C and L on the same Argand diagram.

(iii) Shade on your sketch the region satisfying both

$$
|z-2 \sqrt{3}-i| \leq 4 \text { and } 0 \leq \arg (z+i) \leq \frac{\pi}{6}
$$

End of Question 2 Solutions

Question 3

(a) The sketch below shows the curve $y=f(x)$ where

$$
f(x)=\frac{x(x-4)}{4}
$$

(i) $\quad|y|=f(x)$
(ii) $y=\sqrt{f(x)}$
(iii) $\quad y=\frac{x}{4}|x-4|$
(iv) $y=\tan ^{-1}[f(x)]$.

See pages 23 and 24 for solutions
(b) (i) If $x \geq 0$, show that $\frac{x}{x^{2}+4} \leq \frac{1}{4}$.
$\frac{x}{x^{2}+4}-\frac{1}{4}=\frac{4-\left(x^{2}+4\right)}{4\left(x^{2}+4\right)}=-\frac{x^{2}}{4\left(x^{2}+4\right)} \leq 0$
$\therefore \frac{x}{x^{2}+4}-\frac{1}{4} \leq 0$
$\therefore \frac{x}{x^{2}+4} \leq \frac{1}{4}$
(ii) By integrating both sides of this inequality with respect to x between the limits $x=0$ and $x=\alpha$, show that $e^{\frac{1}{2} \alpha} \geq \frac{1}{4} \alpha^{2}+1$ for $\alpha \geq 0$.
$\int_{0}^{\alpha} \frac{x}{x^{2}+4} d x \leq \int_{0}^{\alpha} \frac{1}{4} d x$
$\therefore\left[\frac{\ln \left(x^{2}+4\right)}{2}\right]_{0}^{\alpha} \leq\left[\frac{x}{4}\right]_{0}^{\alpha} \Rightarrow \ln \left(\alpha^{2}+4\right)-\ln 4 \leq 2 \times \frac{\alpha}{4}=\frac{\alpha}{2}$
$\therefore \ln \left(\frac{\alpha^{2}+4}{4}\right) \leq \frac{\alpha}{2} \Rightarrow \frac{\alpha^{2}+4}{4} \leq e^{\frac{\alpha}{2}}$
$\therefore e^{\frac{\alpha}{2}} \geq \frac{\alpha^{2}+4}{4}=\frac{1}{4} \alpha^{2}+1$
(c) The region between the curve $y=8 x \sqrt{\sin 2 x}$ and the x-axis for $0 \leq x \leq \frac{\pi}{2}$, is rotated about the x-axis.
By using integration by parts twice, find the volume of the solid generated. Leave your answer correct to 3 significant figures.

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{2}} 64 x^{2} \sin 2 x d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} 32 x^{2} \frac{d}{d x}(-\cos 2 x) d x \\
& =\pi\left[-32 x^{2} \cos 2 x\right]_{0}^{\frac{\pi}{2}}-\pi \int_{0}^{\frac{\pi}{2}} 64 x(-\cos 2 x) d x \\
& =\pi \times 32\left(\frac{\pi}{2}\right)^{2}+\pi \int_{0}^{\frac{\pi}{2}} 32 x \frac{d}{d x}(\sin 2 x) d x \\
& =8 \pi^{3}+\pi[32 x \sin 2 x]_{0}^{\frac{\pi}{2}}-\pi \int_{0}^{\frac{\pi}{2}} 32 \sin 2 x d x \\
& =8 \pi^{3}+16 \pi[\cos 2 x]_{0}^{\frac{\pi}{2}} \\
& =8 \pi^{3}+16 \pi(-1-1) \\
& =8 \pi^{3}-32 \pi
\end{aligned}
$$

So the volume is approximately 148 c.u.

End of Question 3 Solutions

Question 4

(a) Consider the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$

(i) Write down the coordinates of the focus S and the equation of the associated directrix.

$$
\begin{array}{l|l}
\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \Rightarrow a=3, b=\sqrt{5} & \text { The associated directrix is } x=\frac{a}{e} . \\
e^{2}=1-\frac{b^{2}}{a^{2}} \Rightarrow a^{2} e^{2}=a^{2}-b^{2}=9-5=4 & a^{2} e^{2}=4 \Rightarrow a e=2 \\
\therefore S(a e, 0)=(2,0) & \therefore x=\frac{a}{e}=\frac{a^{2}}{a e}=\frac{9}{2}=4 \frac{1}{2}
\end{array}
$$

(ii) Show that the equation of the normal to the ellipse at the point $P\left(x_{1}, y_{1}\right)$ is given by $\frac{9 x}{x_{1}}-\frac{5 y}{y_{1}}=4$.

$$
\begin{aligned}
& \frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \Rightarrow \frac{2 x}{9}+\frac{2 y y^{\prime}}{5}=0 \\
& \therefore \frac{2 y y^{\prime}}{5}=-\frac{2 x}{9} \Rightarrow y^{\prime}=-\frac{5 x}{9 y}
\end{aligned}
$$

\therefore The normal at $P\left(x_{1}, y_{1}\right)$ has gradient $\frac{9 y_{1}}{5 x_{1}}$.
$\therefore y-y_{1}=\frac{9 y_{1}}{5 x_{1}}\left(x-x_{1}\right)$
$\therefore 5 x_{1} y-5 x_{1} y_{1}=9 y_{1} x-9 x_{1} y_{1}$
$\therefore 9 y_{1} x-5 x_{1} y=4 x_{1} y_{1}$
$\therefore \frac{9 x}{x_{1}}-\frac{5 y}{y_{1}}=4$
(a) (iii) Let Q be the x-intercept of the normal and let M be the foot of the perpendicular from P to the directrix as shown in the diagram.
Show that $Q S=\frac{4}{9} P M$.

$Q:$	$M:$
$\frac{9 x}{x_{1}}=4 \Rightarrow x=\frac{4 x_{1}}{9}$	$\left(\frac{a}{e}, y_{1}\right)=\left(\frac{9}{2}, y_{1}\right)$
$\therefore\left(\frac{4 x_{1}}{9}, 0\right)$	

QS $=2-\frac{4 x_{1}}{9}=\frac{18-4 x_{1}}{9} \quad$ [From diagram: horizontal distance]
$P M=\frac{9}{2}-x_{1}=\frac{9-x_{1}}{2} \quad$ [From diagram: horizontal distance]
$\frac{4}{9} P M=\frac{4}{9}\left(\frac{9-x_{1}}{2}\right)=\frac{18-4 x_{1}}{9}$
$\therefore Q S=\frac{4}{9} P M$
(b) A curve has equation $x^{3} y+\cos (\pi y)=7$.

Find the gradient of the curve at the point where $y=1$.
$y=1 \Rightarrow x^{3}+\cos \pi=7$
$\therefore x^{3}=8$
$\therefore x=2$
Differentiating implicitly:
$\therefore 3 x^{2} y+x^{3} y^{\prime}-\pi \sin (\pi y) y^{\prime}=0$
Substitute $(2,1)$
$\therefore 3 \times 4 \times 1+8 y^{\prime}-0=0$
$\therefore 8 y^{\prime}=-12$
$\therefore y^{\prime}=-\frac{3}{2}$
(C) NSGHS is planning to construct an artwork in the Senior Lawn from pre-made panels.

One side of each panel needs to be painted.
To determine the amount of paint needed, the area of one side of each panel needs to be calculated.
Each panel is 2 m wide. An artist's sketch of a panel is given below.

Rekrap examines the artist's sketch and decides that the height of each panel can be modeled by the following function:

$$
h(x)=\frac{10 x}{\left(x^{2}+1\right)(3 x+1)}, 0 \leq x \leq 2
$$

(i) Given that $\frac{10 x}{\left(x^{2}+1\right)(3 x+1)}$ can be written in the form $\frac{x+A}{x^{2}+1}+\frac{B}{3 x+1}$,
find the values of A and B.

$$
\begin{aligned}
& \frac{10 x}{\left(x^{2}+1\right)(3 x+1)} \equiv \frac{x+A}{x^{2}+1}+\frac{B}{3 x+1} \\
& \therefore 10 x=(x+A)(3 x+1)+B\left(x^{2}+1\right)
\end{aligned}
$$

$$
\therefore A+B=0 \quad \text { (matching constant terms) }
$$

Substitute $x=-\frac{1}{3}: \quad-\frac{10}{3}=0+B \times \frac{10}{9} \Rightarrow B=-3$
$\therefore A=3, B=-3$
(ii) Hence, find the area of one of the panels correct to 2 decimal places.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{2}\left(\frac{x+3}{x^{2}+1}-\frac{3}{3 x+1}\right) d x \\
& =\int_{0}^{2}\left(\frac{x}{x^{2}+1}+\frac{3}{x^{2}+1}-\frac{3}{3 x+1}\right) d x \\
& =\left[\frac{1}{2} \ln \left(x^{2}+1\right)+3 \tan ^{-1} x-\ln |3 x+1|\right]_{0}^{2} \bigcirc \\
& =\frac{1}{2} \ln 5+3 \tan ^{-1} 2-\ln 7 \quad \circ \\
& \approx 2.18 \mathrm{~m}^{2}
\end{aligned}
$$

End of Question 4 Solutions

Question 5

(a) The cubic equation $z^{3}+i z^{2}+3 z-i=0$ has roots α, β, and γ.

Write down a polynomial equation that has roots
(i) $\frac{1}{\alpha}, \frac{1}{\beta}$, and $\frac{1}{\gamma}$.

Let $y=\frac{1}{z} \Rightarrow z=\frac{1}{y}$
$\therefore \frac{1}{z^{3}}+\frac{i}{z^{2}}+\frac{3}{z}-i=0$
$\therefore 1+i z+3 z^{2}-i z^{3}=0$
(ii) α^{2}, β^{2}, and γ^{2}.

Let $y=z^{2}$
$\therefore z\left(z^{2}+3\right)=i\left(z^{2}+1\right)$
$\therefore z^{2}\left(z^{2}+3\right)^{2}=i^{2}\left(z^{2}+1\right)^{2}$
$\therefore y(y+3)^{2}=-(y+1)^{2}$
$\left[\begin{array}{l}y^{3}+6 y^{2}+9 y=-y^{2}-2 y-1 \\ \therefore y^{3}+7 y^{2}+11 y+1=0\end{array}\right]$
(b) A curve has equation

$$
y=\frac{x^{2}}{(x-1)(x-5)}
$$

(i) Show that, if the curve intersects the line $y=k$, then the x-coordinates of the points of intersection must satisfy the equation

$$
\begin{aligned}
& \frac{x^{2}}{(x-1)(x-5)}=k \Rightarrow x^{2}=k(x-1)(x-5) x^{2}-6 k x+5 k=0 . \\
& \therefore x^{2}=k x^{2}-6 k x+5 k \\
& \therefore(k-1) x^{2}-6 k x+5 k=0
\end{aligned}
$$

(ii) Show that if the equation in (i) has equal roots then

$$
k(4 k+5)=0 .
$$

$$
\begin{aligned}
\Delta & =36 k^{2}-4 \times(k-1) \times 5 k \\
& =36 k^{2}-20 k^{2}+20 k \\
& =4 k(4 k+5)
\end{aligned}
$$

For equal roots then $\Delta=0$.

$$
\therefore k(4 k+5)=0 \text {. }
$$

(iii) Hence find the coordinates of the two stationary points on the curve.

The stationary points will occur when the intersection of $y=k$ and $y=\frac{x^{2}}{(x-1)(x-5)}$
produce equal roots i.e. $y=k$ is a tangent.
$\therefore k(4 k+5)=0$
$\therefore k=0,-\frac{5}{4}$
$\mathbf{N B} k$ is the y-coordinate of the turning points.

$$
\begin{array}{ll}
k=0: & -x^{2}=0 \Rightarrow x=0 \\
& \therefore(0,0) \\
k=-\frac{5}{4}: \quad & \left(-\frac{5}{4}-1\right) x^{2}-6\left(-\frac{5}{4}\right) x+5\left(-\frac{5}{4}\right)=0 \\
& \therefore-9 x^{2}+30 x-25=0 \\
& \therefore-(3 x-5)^{2}=0 \\
& \therefore x=\frac{5}{3} \\
& \therefore\left(\frac{5}{3},-\frac{5}{4}\right)
\end{array}
$$

(iv) Sketch the curve showing intercepts, asymptotes and stationary points.
$y=\frac{x^{2}}{(x-1)(x-5)}$
Intercepts: \quad Double root at $x=0 ; y$-intercept 0
Asymptotes:

$$
x=1,5 ; y=1
$$

In order to find where the graph is positive or negative sketch FIRST the polynomial $y=x^{2}(x-1)(x-5)$.

(c) (i) Differentiate $x(1+x)^{n}$.

$$
\frac{d}{d x}\left[x(1+x)^{n}\right]=(1+x)^{n}+n x(1+x)^{n-1}
$$

(ii) Hence, show that $\binom{n}{0}-2\binom{n}{1}+3\binom{n}{2}+\ldots+(n+1)\binom{n}{n}(-1)^{n}=0$

$$
\begin{aligned}
& x(1+x)^{n}=x \sum_{r=0}^{n}\binom{n}{r} x^{r} \\
&=\sum_{r=0}^{n}\binom{n}{r} x^{r+1} \\
& \frac{d}{d x}\left[x(1+x)^{n}\right]=\sum_{r=0}^{n}\binom{n}{r}(r+1) x^{r} \\
& \therefore \frac{d}{d x}\left[x(1+x)^{n}\right]=\binom{n}{0}+2\binom{n}{1} x+3\binom{n}{2} x^{2}+\ldots+(n+1)\binom{n}{n} x^{n} \\
& \therefore\binom{n}{0}+2\binom{n}{1} x+3\binom{n}{2} x^{2}+\ldots+(n+1)\binom{n}{n} x^{n}=(1+x)^{n}+n x(1+x)^{n-1}
\end{aligned}
$$

Substitute $x=-1$:

$$
\begin{aligned}
\therefore\binom{n}{0}-2\binom{n}{1}+3\binom{n}{2}+\ldots+(n+1)\binom{n}{n}(-1)^{n} & =(0)^{n}+n x(0)^{n-1} \\
& =0
\end{aligned}
$$

End of Question 5 Solutions

Question 6

(a) The cubic equation $2 z^{3}+p z^{2}+q z+16=0$ where p and q are real, has roots α, β and γ. It is given that $\alpha=2+2 \sqrt{3} i$.
(i) Write down another root, β, of the equation.

$$
\beta=\bar{\alpha}=2-2 \sqrt{3} i \quad[\text { real coefficients }]
$$

(ii) Find the third root, γ.

$$
\begin{aligned}
\alpha \beta \gamma & =-8 \quad \text { [product of roots] } \\
& =(2+2 \sqrt{3} i)(2-2 \sqrt{3} i) \gamma \\
& =16 \gamma \\
\therefore \gamma & =-\frac{1}{2}
\end{aligned}
$$

(iii) Find the values of p and q.

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{p}{2} \quad \text { [sum of roots] } \quad \alpha \beta+\beta \gamma+\gamma \alpha=\frac{q}{2} \quad \text { [sum of roots } 2 \text { at a time] } \\
& =2+2 \sqrt{3} i+2-2 \sqrt{3} i+\left(-\frac{1}{2}\right) \\
& =\frac{7}{2} \\
& \therefore-\frac{p}{2}=\frac{7}{2} \\
& \therefore p=-7 \\
& =\alpha \beta+\gamma(\alpha+\beta) \\
& =\alpha \bar{\alpha}+\left[-\frac{1}{2} \times 2 \operatorname{Re} \alpha\right] \\
& =16-\operatorname{Re} \alpha=16-2 \\
& =14 \\
& \therefore \frac{q}{2}=14 \\
& \therefore q=28
\end{aligned}
$$

(iv) By expressing α in modulus-argument form, show that

$$
(2+2 \sqrt{3} i)^{n}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)
$$

$\alpha=2+2 \sqrt{3} i=4 \operatorname{cis} \frac{\pi}{3}$
$\therefore \alpha^{n}=\left(4 \operatorname{cis} \frac{\pi}{3}\right)^{n}=4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)$
(v) Hence, show that $\alpha^{n}+\beta^{n}+\gamma^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}$
where n is an integer.
Similarly $\beta^{n}=4^{n}\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)$

$$
\begin{aligned}
\alpha^{n}+\beta^{n}+\gamma^{n} & =4^{n}\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)+4^{n}\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)+\left(-\frac{1}{2}\right)^{n} \\
& =4^{n}\left(2 \cos \frac{n \pi}{3}\right)+\left(-\frac{1}{2}\right)^{n}=2^{2 n+1} \cos \frac{n \pi}{3}+\left(-\frac{1}{2}\right)^{n}
\end{aligned}
$$

(b) From an external point T, tangents are drawn to a circle with centre O, touching the circle at P and Q. Angle $P T Q$ is acute.
The diameter $P B$ produced meets the tangent $T Q$ at A. Let $\angle A Q B=\theta$.

(i) Copy the diagram above into your answer booklet.
(ii) Prove that $\angle P T Q=2 \theta$.
$T P O Q$ is a cyclic quadrilateral as $\angle T P O+\angle T Q O=180^{\circ} \quad$ [tangents perp.radius]
$\angle O Q B=90^{\circ}-\theta$
$[O Q \perp T A]$
$\angle O B Q=90^{\circ}-\theta$
[$\triangle O B Q$ isos.]
$\therefore \angle P O Q=180^{\circ}-2 \theta$
[ext. angle $\triangle O B Q$]
$\therefore \angle T P Q=2 \theta$
[opp. angles cyclic quad. $T P O Q$]
(iii) Prove that $\triangle P B Q$ and $\triangle T O Q$ are similar.

In $\triangle P B Q$:
$\angle P Q B=90^{\circ}$
[angle in semicircle]
$\angle Q P B=\theta$
[angles alt. segment]
$\therefore \angle Q T O=\theta$
[angles same segment]
$\therefore \angle Q T O=\angle Q P B$
$\angle O Q T=\angle P Q B=90^{\circ}$
[proven above]
$\therefore \triangle T O Q \| \mid \triangle P B Q$
[equiangular]
(iv) Hence show that $B Q \times O T=2 \times O P^{2}$.
$\therefore \frac{O T}{P B}=\frac{O Q}{B Q}=\frac{T Q}{P Q}$
[matching sides sim. $\Delta \mathrm{s}$]
$\therefore \frac{O T}{2 \times O P}=\frac{O P}{B Q}$
$[P B=2 O P=2 O Q$; diameter $]$
$\therefore B Q \times O T=2 \times O P^{2}$

Question 7

(a) Consider the hyperbola $x y=c^{2}$ and the distinct points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$
(i) Show that the equation of the tangent at $P\left(c p, \frac{c}{p}\right)$, where $p \neq 0$ is

$$
\begin{array}{rl|l}
y & =c^{2} x^{-1} & \\
\therefore y^{\prime} & =-c^{2} x^{-2} & \therefore y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p) \\
& =-\frac{c^{2}}{x^{2}} & \therefore p^{2} y-c p=-x+c p \\
\therefore y_{P}^{\prime} & =-\frac{c^{2}}{c^{2} p^{2}}=-\frac{1}{p^{2}} & \therefore x+p^{2} y=2 c p
\end{array}
$$

$$
x+p^{2} y=2 c p
$$

(ii) Show that the tangents at P and Q intersect at

$$
M\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
$$

Similarly, the tangent at Q is $x+q^{2} y=2 c q$

$$
\begin{array}{l|l}
x+p^{2} y=2 c p & -(1) \\
x+q^{2} y=2 c q & \text { Sub into (1) } \tag{2}\\
(1)-(2) & \therefore x+p^{2}\left(\frac{2 c}{p+q}\right)=2 c p \\
\therefore\left(p^{2}-q^{2}\right) y=2 c(p-q) & \therefore(p+q) x+2 c p^{2}=2 c p(p+q) \\
\therefore y=\frac{2 c(p-q)}{p^{2}-q^{2}}=\frac{2 c}{p+q} & \therefore(p+q) x=2 c p q \\
\therefore M\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)
\end{array}
$$

(iii) Show that if $p q=k$, where k is a non-zero constant, then the locus of M is a line passing through the origin.

$$
\begin{aligned}
& p q=k \Rightarrow M\left(\frac{2 c k}{p+q}, \frac{2 c}{p+q}\right) \\
& x=\frac{2 c k}{p+q}, y=\frac{2 c}{p+q} \Rightarrow \frac{y}{x}=\frac{1}{k}
\end{aligned}
$$

$\therefore y=\frac{1}{k} x \quad$ [This is a straight line passing through the origin]
(b) For each integer $n \geq 0$ let

$$
I_{n}=\int_{0}^{1} x\left(x^{2}-1\right)^{n} d x
$$

(i) Using the method of integration by parts, show that for $n \geq 1$,

$$
\begin{aligned}
& I_{n}=-\frac{n}{n+1} I_{n-1} . \\
& \begin{aligned}
& I_{n}=\int_{0}^{1} \frac{d}{d x}\left(\frac{x^{2}}{2}\right)\left(x^{2}-1\right)^{n} d x \\
&=\left[\frac{1}{2} x^{2}\left(x^{2}-1\right)^{n}\right]_{0}^{1}-\int_{0}^{1}\left(\frac{x^{2}}{2}\right) \times n\left(x^{2}-1\right)^{n-1} \times 2 x d x \\
&=-n \int_{0}^{1} x^{2} \times x\left(x^{2}-1\right)^{n-1} d x \\
&=-n \int\left[\left(x^{2}-1\right)+1\right] x\left(x^{2}-1\right)^{n-1} d x \\
&=-n \int\left[x\left(x^{2}-1\right)^{n}+x\left(x^{2}-1\right)^{n-1}\right] d x \\
& I_{n}=-n I_{n}-n I_{n-1} \\
& \therefore(n+1) I_{n}=-n I_{n-1} \\
& \therefore I_{n}=-\frac{n}{n+1} I_{n-1}
\end{aligned}
\end{aligned}
$$

(ii) Hence, or otherwise, show that for $n \geq 0, I_{n}=\frac{(-1)^{n}}{2(n+1)}$.

Hence

$$
\begin{aligned}
I_{n} & =-\frac{n}{n+1} I_{n-1} \\
& =-\left(\frac{n}{n+1}\right) \times\left[-\left(\frac{n-1}{n}\right)\right] I_{n-2} \\
& =(-1)^{3}\left(\frac{n}{n+1}\right) \times\left(\frac{n-1}{n}\right) \times\left(\frac{n-2}{n-1}\right) I_{n-3} \\
& \vdots \\
& =(-1)^{n}\left(\frac{n}{n+1}\right) \times\left(\frac{n-1}{n}\right) \times\left(\frac{n-2}{n-1}\right) \times \ldots \times \frac{1}{2} I_{0} \\
& =(-1)^{n}\left(\frac{n}{n+1}\right) \times\left(\frac{n-1}{\not n}\right) \times\left(\frac{n-2}{n-1}\right) \times \ldots \times \frac{1}{22} \times \frac{1}{2} \\
& =\frac{(-1)^{n}}{2(n+1)}
\end{aligned}
$$

$$
\begin{aligned}
I_{0} & =\int_{0}^{1} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

Otherwise

$$
\begin{array}{rlr}
I_{n} & =\frac{1}{2} \int_{0}^{1} 2 x\left(x^{2}-1\right)^{n} d x \\
& =\frac{1}{2}\left[\frac{\left(x^{2}-1\right)^{n+1}}{n+1}\right]_{0}^{1} \\
& =\frac{1}{2(n+1)}\left[0-(-1)^{n+1}\right] & {\left[(-1)^{n+2}=(-1)^{2} \times(-1)^{n}\right]}
\end{array}
$$

(iii) Show that for n odd that $I_{n}<I_{n+2}$ for all $n \geq 0$.

For n odd: $\quad I_{n}=\frac{(-1)^{n}}{2(n+1)}=-\frac{1}{2(n+1)}$.

$$
I_{n+2}=\frac{(-1)^{n+2}}{2(n+3)}=-\frac{1}{2(n+3)}
$$

As $-2(n+1)>-2(n+3)$ then $\frac{1}{-2(n+1)}<\frac{1}{-2(n+3)}$ i.e. $I_{n}<I_{n+2}$.
(iv) Deduce that $-\frac{1}{4 n}<I_{2 n+1}<-\frac{1}{4(n+2)}$.

From (iii) $I_{2 n-1}<I_{2 n+1}<I_{2 n+3}$
$I_{2 n-1}=-\frac{1}{2(2 n-1+1)}=-\frac{1}{4 n}$
$I_{2 n+3}=-\frac{1}{2(2 n+3+1)}=-\frac{1}{4(n+2)}$
$\therefore-\frac{1}{4 n}<I_{2 n+1}<-\frac{1}{4(n+2)}$

End of Question 7 Solutions

Question 8

(a) The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=2 \text { and } u_{k+1}=2 u_{k}+1
$$

(i) Prove by induction that, for all integers $n \geq 1$,

$$
u_{n}=3 \times 2^{n-1}-1
$$

Test $n=1$:
LHS $=u_{1}=2$
RHS $=3 \times 2^{1-1}-1=3-1=2$
So true for $n=1$.
Assume true for $n=k$ i.e. $u_{k}=3 \times 2^{k-1}-1$.
Need to prove true for $n=k+1$ i.e. $u_{k+1}=3 \times 2^{k}-1$.

$$
\begin{aligned}
\text { LHS } & =u_{k+1} \\
& =2 u_{k}+1 \\
& =2\left(3 \times 2^{k-1}-1\right)+1 \\
& =3 \times 2^{k}-2+1 \\
& =3 \times 2^{k}-1 \\
& =\text { RHS }
\end{aligned}
$$

So $n=k+1$ is true if $n=k$ is true.
So by the principle of mathematical induction the formula is true for all integers $n \geq 1$.
(ii) Show that

$$
\begin{array}{rlr}
\text { LHS } & =\sum_{r=1}^{n} u_{r} & \\
& =\sum_{r=1}^{n}\left(3 \times 2^{r-1}-1\right) & \\
& =\sum_{r=1}^{n}\left(3 \times 2^{r-1}\right)-\sum_{r=1}^{n} 1 & \\
& =3 \sum_{r=1}^{n}\left(2^{r-1}\right)-n & \\
& =3 \times \frac{1 \times\left(2^{n}-1\right)}{2-1}-n & \\
& =3 \times\left(2^{n}-1\right)-n & \\
& =3 \times 2^{n}-1-(n+2) & \\
& =u_{n+1}-(n+2) & \\
& =\text { RHS } &
\end{array}
$$

(b) (i) If $a>0, b>0$ and $c>0$, show that $a^{2}+b^{2} \geq 2 a b$ and hence deduce that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$.
$(a-b)^{2} \geq 0$ $[a, b \in \mathbb{R}]$
$\therefore a^{2}-2 a b+b^{2} \geq 0$
$\therefore a^{2}+b^{2} \geq 2 a b$
So for $a, b, c \in \mathbb{R}$
$\left.\begin{array}{l}a^{2}+b^{2} \geq 2 a b \\ b^{2}+c^{2} \geq 2 b c \\ c^{2}+a^{2} \geq 2 c a\end{array}\right\}+$
$\therefore 2\left(a^{2}+b^{2}+c^{2}\right) \geq 2(a b+b c+c a)$
$\therefore a^{2}+b^{2}+c^{2} \geq a b+b c+c a$
(ii) If $a+b+c=9$, show that $a b+b c+c a \leq 27$ and

$$
\begin{aligned}
& \text { 81 } \begin{aligned}
&(a+b+c)^{2} \\
&=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \\
& \geq a b+b c+c a+2(a b+b c+c a) \\
&=3(a b+b c+c a) \\
& \therefore a b+b c+c a \leq 27 \\
& \quad[\text { from (i) }] \\
& \begin{array}{ll}
\frac{1}{a} & +\frac{1}{b}+\frac{1}{c}
\end{array} \\
& \quad \leq \frac{a b+b c+c a}{a b c} \\
& \quad \leq \frac{27}{a b c}
\end{aligned}
\end{aligned}
$$

(c) (i) Show that if n is any even positive integer, then $(1+x)^{n}+(1-x)^{n}=2 \sum_{k=0}^{\frac{n}{2}}\binom{n}{2 k} x^{2 k}$.

$$
\begin{aligned}
\text { LHS } & =(1+x)^{n}+(1-x)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}+\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k}\left[1+(-1)^{k}\right] \\
& =2\binom{n}{0}+2\binom{n}{2} x^{2}+\ldots+2\binom{n}{n} x^{n} \quad\left[\begin{array}{l}
n \text { even } \\
k \text { odd }: 1+(-1)^{k}=0
\end{array}\right] \\
& =2 \sum_{k=0}^{\frac{n}{2}}\binom{n}{2 k} x^{2 k} \\
& =\text { RHS }
\end{aligned}
$$

(ii) An alphabet consists of the three letters A, B and C.
(1) Show that the number of words of 4 letters containing exactly 2 As is $\binom{4}{2} \times 2^{2}$.

There are 4 places for letters i.e.
Choose 2 of these for the As i.e. $\quad-\underline{A} \underline{A}-$. This can be done in $\binom{4}{2}$ ways.
The remaining 2 spots can be filled with B or C. So this can be done in 2^{2} ways. So there are $\binom{4}{2} \times 2^{2}$ ways of doing this.
(2) Hence, or otherwise, show that if n is an even positive integer,
then the number of words of n letters with zero or an even number of As is given by

$$
\frac{1}{2}\left(3^{n}+1\right) .
$$

If there are words of n letters then the number of words with
0 As is $\binom{n}{0} \times 2^{0} ; 2$ As is $\binom{n}{2} \times 2^{2} ; 4$ As is $\binom{n}{4} \times 2^{4}$ and so on until n As is $\binom{n}{n} \times 2^{n}$.

So the total number is $\binom{n}{0} \times 2^{0}+\binom{n}{2} \times 2^{2}+\ldots+\binom{n}{n} \times 2^{n}=\frac{1}{2} \sum_{k=0}^{\frac{n}{2}}\binom{n}{2 k} 2^{2 k}$.
$\therefore\binom{n}{0} \times 2^{0}+\binom{n}{2} \times 2^{2}+\ldots+\binom{n}{n} \times 2^{n}=\frac{1}{2}\left[(2+1)^{n}+(2-1)^{n}\right]=\frac{1}{2}\left(3^{n}+1\right)$.

End of Solutions

Number SOLUTIONS

(i) $\quad|y|=f(x)$

Where $f(x)>0$ reflect in the x-axis.
Erase where $f(x)<0$.

(ii) $y=\sqrt{f(x)}$

NB when $0<f(x)<1$ then $f(x)<\sqrt{f(x)}$
At $x=0,4$ there are critical points (vertical tangents).

Turn over for parts (iii) and (iv)

Answer Sheet for Question 3 (a) continued

(iii) $y=\frac{x}{4}|x-4|$

When $x>4$, then $y=\frac{x}{4}|x-4|=\frac{x(x-4)}{4}$.
When $x<4$, then $y=\frac{x}{4}|x-4|=-\frac{x(x-4)}{4}$.

(iv) $\quad y=\tan ^{-1} f(x)$

Symmetrical around $x=2$. The minimum is $\left(2,-\frac{\pi}{4}\right)$. Horizontal asymptote of $y=\frac{\pi}{2}$

