

Mathematics Extension 2 2013 Trial HSC Examination

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen. Black pen is preferred
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100
Section 1 - Pages 2 - 5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - Pages 6-14
90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45
minutes for this section

Class \qquad

Student Number

\qquad

Student Name \qquad

QUESTION	MARK
$1-10$	$/ 10$
11	$/ 15$
12	$/ 15$
13	$/ 15$
14	$/ 15$
15	$/ 15$
16	$/ 15$
TOTAL	$/ 100$

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Let $z=a+i b$ where a and b are real and non-zero. Which of the following is not true?
(A) $z+\bar{z}$ is real
(B) $\frac{Z}{\bar{Z}}$ is non-real
(C) $\quad z^{2}-(\bar{z})^{2}$ is real
(D) $z \bar{z}$ is real and positive

2 Which of the following corresponds to the set of points in the complex plane defined by $|z+2 i|=|z|$?
(A) the point given by $z=-i$
(B) the line $\operatorname{Im}(z)=-1$
(C) the circle with centre $-2 i$ and radius 1
(D) the line $\operatorname{Re}(z)=-1$

3 The equation $9 x^{3}-27 x^{2}+11 x-7=0$ has roots α, β and γ.
What is the value of $\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}+\frac{1}{\alpha \beta}$?
(A) $\frac{27}{7}$
(B) $-\frac{27}{7}$
(C) $-\frac{11}{7}$
(D) $\frac{11}{7}$

4 The polynomial equation $P(x)=0$ has real coefficients, and has roots which include $x=-2+i$ and $x=2$. What is the minimum possible degree of $P(x)$?
(A) 1
(B) 2
(C) 3
(D) 4

5 Using a suitable substitution, what is the correct expression for $\int_{0}^{\frac{\pi}{3}} \sin ^{3} x \cos ^{4} x d x$ in terms of u ?
(A) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{4}-u^{6}\right) d u$
(B) $\int_{1}^{\frac{1}{2}}\left(u^{6}-u^{4}\right) d u$
(C) $\int_{\frac{1}{2}}^{1}\left(u^{6}-u^{4}\right) d u$
(D) $\int_{0}^{\frac{\sqrt{3}}{2}}\left(u^{6}-u^{4}\right) d u$

6 There are 5 pairs of socks in a drawer. Four socks are randomly chosen from the drawer. Which expression represents the probability that all four of the socks come from different pairs?
(A) $\quad 1 \times \frac{1}{9} \times \frac{1}{8} \times \frac{1}{7}$
(B) $1 \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8}$
(C) $1 \times \frac{8}{9} \times \frac{6}{7} \times \frac{4}{5}$
(D) $1 \times \frac{8}{9} \times \frac{6}{8} \times \frac{4}{7}$
$7 \quad$ The equation $x^{3}+y^{3}=3 x y$ is differentiated implicitly with respect to x. Which of the following expressions is $\frac{d y}{d x}$?
(A) $\frac{y-x^{2}}{y^{2}-x}$
(B) $\frac{y^{2}-x}{y-x^{2}}$
(C) $\frac{x^{2}+y^{2}}{x}$
(D) $\frac{x^{2}}{x-y^{2}}$

8 The graph $y=f(x)$ is shown.

Which of the following graphs best represents $y^{2}=f(x)$?
(A)

(D)
(B)

(C)

9 A body is moving in a straight line and, after t seconds, it is x metres from the origin and travelling at $v \mathrm{~ms}^{-1}$. Given that $v=x$ and that $t=3$ where $x=-1$, what is the equation for x in terms of t ?
(A) $x=e^{t-3}$
(B) $x=-e^{t-3}$
(C) $x=\sqrt{2 t-5}$
(D) $x=-\sqrt{2 t-5}$

The region bounded by the x axis, the curve $y=\sqrt{x^{2}-1}$ and the line $x=2$ is rotated around the y axis.
The slice at $P(x, y)$ on the curve is perpendicular to the axis of rotation. What is the volume δV of the annular slice formed?
(A) $\pi\left(3-y^{2}\right) \delta y$
(B) $\pi\left(4-\left(y^{2}+1\right)^{2}\right) \delta y$
(C) $\pi\left(4-x^{2}\right) \delta x$
(D) $\quad \pi(2-x)^{2} \delta x$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=-5-12 i$ and $\omega=2-i$. Find in the form $x+i y$
(i) $(1+i) \bar{\omega}$
(ii) $\frac{z}{2-3 i}$
(b) By first writing $w=-\sqrt{3}+i$ in modulus argument form, show that $w^{3}-8 i=0$.
(c) By completing the square, find $\int \frac{1}{\sqrt{3-2 x-x^{2}}} d x$.
(d) Use the substitution $u=x^{2}+1$ to evaluate $\int_{0}^{\sqrt{3}} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$.
(e) (i) Without using calculus, sketch the curve $y=\frac{x+2}{(x-1)(x+3)}$ showing all important features.
(ii) Find the area bounded by the curve and the x-axis between $x=2$ and $x=5$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
a) Consider the complex number $z=x+i y$ where $z^{2}=a+i b$.
(i) Sketch on the same set of axes, the graphs of $x^{2}-y^{2}=a$ and $2 x y=b$ where both a and b are positive. The foci and directrices of the curves need NOT be found.
(ii) Use the graphs to explain why there are two distinct square roots of the complex number $a+i b$ if $a>0$ and $b>0$.
(iii) Consider how the sketch changes when b is negative. What is the relationship between the new square roots and those found when b was positive?
(b) The region enclosed by the curves $y=\frac{4}{x^{2}+4}$ and $y=\frac{1}{x^{2}+1}$ and the ordinates $x=0$ and $x=2$ is rotated about the y axis. Using the method of cylindrical shells, find the volume of the solid formed.
(c) A particle's acceleration is given by $\ddot{x}=3(1-x)(1+x)$ where x is the displacement in metres. Initially the particle is at the origin with velocity 2 metres per second.
(i) Show that $v^{2}=2(2-x)(x+1)^{2}$.
(ii) Find the velocity and acceleration at $x=2$.
(iii) Describe the motion of the particle.
(iv) Find the maximum speed and where it occurs.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that $x^{2}+y^{2} \geq x y$ where x and y are real numbers.
(ii) If $x+y=3 z$ show that $x^{2}+y^{2} \geq 3 z^{2}$.
(b) The complex numbers z and w each have a modulus of 2 . The arguments of z and w are $\frac{4 \pi}{9}$ and $\frac{7 \pi}{9}$ respectively.
(i) Sketch vectors representing z, w and $z+w$ on the Argand diagram, showing any geometrical relationships between the three vectors.
(ii) Findarg $(z+w)$.
(iii) Evaluate $|z+w|$.
(c) (i) Use the substitution $t=\tan \frac{x}{2}$ to show that $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}=\frac{\pi}{3 \sqrt{3}}$.
(ii) Show that $\int_{0}^{2 a} f(x) d x=\int_{0}^{a}[f(x)+f(2 a-x)] d x$.
(iii) Hence, or otherwise, evaluate $\int_{0}^{\pi} \frac{x}{2+\sin x} d x$.

Blank Page

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram shows the graph of $y=f(x)$ which is only defined over the domain $-3 \leq x \leq 4$.

Draw separate one-third page sketches of the graphs of the following:
(i) $y=f(|x|) \quad 1$
(ii) $y=\ln (f(x))$
(b)

The point $P\left(c t, \frac{c}{t}\right)$ lies on the hyperbola $x y=c^{2}$. The point T lies at the foot of the perpendicular drawn from the origin O to the tangent at P.
(i) Show that the tangent at P has equation $x+t^{2} y=2 c t$.
(ii) If the coordinates of T are $\left(x_{1}, y_{1}\right)$ show that $y_{1}=t^{2} x_{1}$.
(iii) Show that the locus of T is given by $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$.

Question 14 (continued)
(c)

The horizontal base of a solid is an isosceles triangle $O E F$ where $O E=O F=r$ and $E F=b . H A E$ is the parabolic arc with equation $y=r^{2}-x^{2}$ where E lies on the x-axis.
$H B F$ is another parabolic arc, congruent to $H A E$, so that the plane $O H B F$ is vertical.
A rectangular slice $A B C D$ of width δx is taken perpendicular to the base, such that $C D$ lies in the base and $C D \| E F$.
(i) Show that the volume of the slice $A B C D$ is $\frac{b x}{r}\left(r^{2}-x^{2}\right) \delta x$.
(ii) Hence show that the solid $H O E F$ has volume $\frac{b r^{3}}{4}$.
(iii) Suppose now that $\angle E O F=\frac{2 \pi}{n}$ and that n identical solids $H O E F$ are arranged about O as centre with common vertical axis $O H$ to form a solid \boldsymbol{S}. Show that the volume V_{n} of \boldsymbol{S} is given by $V_{n}=\frac{1}{2} r^{4} n \sin \frac{\pi}{n}$.
(iv) When n is large, the solid \boldsymbol{S} approximates the volume of the solid of revolution formed by rotating the region bound by the x axis and the curve $y=r^{2}-x^{2}$ about the y axis.
Using the fact that $\frac{\sin x}{x} \rightarrow 1$ as $x \rightarrow 0$ find $\lim _{n \rightarrow \infty} V_{n}$.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $2 x^{3}-5 x+1=0$ has roots α, β, γ. Find the equation whose roots are $-2 \alpha,-2 \beta$, and -2γ.
(b) (i) For $z=\cos \theta+i \sin \theta$, show that $z^{n}+z^{-n}=2 \cos n \theta$.
(ii) If $z+\frac{1}{z}=u$, find an expression for $z^{3}+\frac{1}{z^{3}}$ in terms of u.
(iii) It can be shown that $z^{5}+\frac{1}{z^{5}}=u^{5}-5 u^{3}+5 u$. (Do not prove this).

Show that

$$
1+\cos 10 \theta=2\left(16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta\right)^{2}
$$

(c)

In the Argand diagram, the points P, Q and R represent the complex numbers p, q and r.
(i) Given that the triangle $P Q R$ is equilateral, explain why

$$
r-q=\operatorname{cis} \frac{2 \pi}{3}(q-p)
$$

(ii) Hence, or otherwise show $2 r=(p+q)+i \sqrt{3}(q-p)$

Question 15 (continued)
(d)

In the diagram, P is any point on the circle $A B C$. The point N lies on $A B$ such that $P N$ is perpendicular to $A B$. Similarly, points M and L lie at the foot of the perpendiculars drawn from P to $C A$ (produced) and $B C$ respectively.
(i) State why BLNP is a cyclic quadrilateral.
(ii) Prove that the points L, M and N are collinear.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Let $P(a \cos \theta, b \sin \theta)$ be a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The focus of the ellipse Is $S(a e, 0)$ where e is the eccentricity and O is the origin.
(i) Find the coordinates of the centre C and the radius of the circle of which $S P$ is a diameter.
(ii) Show that $O C=\frac{a}{2}(e \cos \theta+1)$
(b) (i) Show that the polynomial $P(x)=4 x^{3}+10 x^{2}+8 x+3$ is divisible by $(2 x+3)$.
(ii) Hence express the polynomial in the form $P(x)=A(x) Q(x)$ where $Q(x)$ is a real quadratic polynomial.
(c) Using the fact that $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}$ for $0 \leq x<1$ and $0 \leq y<1$ prove by mathematical induction that for all positive integers n,

$$
\tan ^{-1} \frac{1}{2 \times 1^{2}}+\tan ^{-1} \frac{1}{2 \times 2^{2}}+\tan ^{-1} \frac{1}{2 \times 3^{2}}+\ldots+\tan ^{-1} \frac{1}{2 \times n^{2}}=\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 n+1}
$$

Question 16 continues on page 15

Question 16 (continued)
(d) Consider $f(x)=\log x-x+1$.
(i) Show that $f(x) \leq 0$ for all $x>0$.
(ii) Consider the set of n positive numbers $p_{1}, p_{2}, p_{3}, \ldots p_{n}$ such that

$$
p_{1}+p_{2}+p_{3}+\ldots \ldots . .+p_{n}=1
$$

By using the result in part (i), deduce that

$$
\sum_{r=1}^{n} \log \left(n p_{r}\right) \leq n p_{1}+n p_{2}+n p_{3} \ldots+n p_{n}-n
$$

(iii) Show that $\sum_{r=1}^{n} \log n p_{r} \leq 0$.
(iv) Hence deduce that $0<n^{n} p_{1} p_{2} p_{3} \ldots . . p_{n} \leq 1$ 1

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

2013 Extension 2 Trial HSC Solutions

1. (A) $z+\bar{z}=(a+i b)+(a-i b)$

$$
=2 a \quad \text { (which is real) }
$$

(But you should know that $z+\bar{z}=2 \operatorname{Re} z$)
(B) $\frac{z}{\bar{z}}=\frac{a+i b}{a-i b} \times \frac{a+i b}{a+i b}$

$$
=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i \quad(\text { which is not real since } a, b \neq 0)
$$

Alternatively

$$
\begin{aligned}
\frac{z}{\bar{z}} & =\frac{r \operatorname{cis} \theta}{r \operatorname{cis}(-\theta)} \\
& =\operatorname{cis} 2 \theta
\end{aligned}
$$

which is real if $2 \theta=k \pi \quad$ (where k is an integer)

$$
\left.\theta=\frac{k}{2} \pi \quad \text { (ie. } z \text { is either real or pure imaginary }\right)
$$

But this is not the case, since neither a nor b is zero
(C) $z^{2}-(\bar{z})^{2}=(a+i b)^{2}-(a-i b)^{2}$

$$
\begin{aligned}
& =a^{2}+2 a b i-b^{2}-a^{2}+2 a b i+b^{2} \\
& =4 a b i \quad \quad(\text { which is never real since } a, b \neq 0)
\end{aligned}
$$

(D) $z \bar{z}=|z|^{2} \quad$ which by definition of modulus is real and positive
2. Without doing any algebra, this is the set of point which are equidistant from $(0,-2)$ and $(0,0)$. ie. $y=-1$
3. $\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}+\frac{1}{\alpha \beta}=\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}$
(A)

$$
\begin{aligned}
& =\frac{\frac{27}{9}}{\frac{7}{9}} \\
& =\frac{27}{7}
\end{aligned}
$$

4. Since $P(x)=0$ has real coefficients, the conjugate of the root $x=-2+i$ must also be a root.

So the polynomial must have at least 3 roots (and there is not enough information to conclude more.)
5. $\int_{0}^{\frac{\pi}{3}} \sin ^{3} x \cos ^{4} x d x=\int_{0}^{\frac{\pi}{3}} \cos ^{4} x\left(1-\cos ^{2} x\right) \cdot \sin x d x$

$$
\begin{array}{rlrl}
\text { Let } u & =\cos x & & x=0, u=1 \tag{B}\\
d u & =-\sin x d x & x & =\frac{\pi}{3}, u=\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
& =\int_{1}^{\frac{1}{2}} u^{4}\left(1-u^{2}\right) \cdot(-d u) \\
& =\int_{1}^{\frac{1}{2}}\left(u^{6}-u^{4}\right) d u
\end{aligned}
$$

6. $1^{\text {st }}$ sock can be any of them.
$2^{\text {nd }}$ sock cannot be the only matching sock -8 possibilities of 9 socks remaining
$3^{\text {rd }}$ sock cannot be either of the two matching socks -6 possibilities of the 8 socks remaining
$4^{\text {th }}$ sock cannot be either of the three matching socks -4 possibilities of the 7 socks remaining
7. $x^{3}+y^{3}=3 x y$

$$
\begin{aligned}
\not \partial x^{2}+\not \partial y^{2} \cdot \frac{d y}{d x} & =\not p x \cdot \frac{d y}{d x}+y \cdot \not p \quad(\text { product rule }) \\
\left(y^{2}-x\right) \frac{d y}{d x} & =y-x^{2} \\
\frac{d y}{d x} & =\frac{y-x^{2}}{y^{2}-x}
\end{aligned}
$$

Alternative setting out:

$$
\begin{align*}
x^{3}+y^{3} & =3 x y \tag{A}\\
\not p x^{2} \cdot d x+\not p y^{2} \cdot d y & =\not p(x \cdot d y+y \cdot d x) \\
\left(y^{2}-x\right) d y & =\left(y-x^{2}\right) d x \\
\frac{d y}{d x} & =\frac{y-x^{2}}{y^{2}-x}
\end{align*}
$$

8. Negative root (single root) must become a vertical point.

To the left of the negative root, $f(x)$ is -ve , so can't be square rooted.
Positive root is a multiple root, so we can't determine the nature of the corresponding point on the new graph. (But we are only asked for the best answer.)
$y^{2}=f(x)$ becomes $y= \pm \sqrt{f(x)}$, hence symmetry in the x-axis.
9. Easiest method - check the options by differentiating to get v.

The only options whose derivatives are the function itself (ie. $v=x$) are (A) and (B).
But (B) is the only option that also allows x to equal -1 .
Alternative method:

$$
\begin{aligned}
& \frac{d x}{d t}=x \\
& \frac{d x}{x}=d t \\
& \int \frac{d x}{x}=\int d t \\
& \ln |x|=t+c \\
& (t=3, x=-1) \quad 0=3+c \\
& c=-3
\end{aligned}
$$

$$
\begin{aligned}
\ln |x| & =t-3 \\
|x| & =e^{t-3} \\
x & = \pm e^{t-3}
\end{aligned}
$$

But for x to equal -1 , we need the -ve case:

$$
\begin{equation*}
x=-e^{t-3} \tag{B}
\end{equation*}
$$

10. $\delta V=\pi\left(R^{2}-r^{2}\right) h$

$$
=\pi\left(2^{2}-x^{2}\right) \delta y
$$

But $y=\sqrt{x^{2}-1}$

$$
\begin{aligned}
& y^{2}=x^{2}-1 \\
& x^{2}=y^{2}+1
\end{aligned}
$$

$$
\begin{equation*}
\therefore \delta V=\pi\left[4-\left(y^{2}+1\right)\right] \delta y \tag{A}
\end{equation*}
$$

$$
=\pi\left(3-y^{2}\right) \delta y
$$

Question 11

(a) (i) $(1+i) \bar{\omega}=(1+i)(2+i)$

$$
\begin{aligned}
& =2+i+2 i-1 \\
& =1+3 i
\end{aligned}
$$

(ii) $\frac{z}{2-3 i}=\frac{-5-12 i}{2-3 i} \times \frac{2+3 i}{2+3 i}$

$$
\begin{aligned}
& =\frac{-10-15 i-24 i+36}{4+9} \\
& =\frac{26-39 i}{13} \\
& =2-3 i
\end{aligned}
$$

(b) $\quad w=2 \operatorname{cis} \frac{5 \pi}{6}$

$$
\begin{aligned}
w^{3}-8 i & =\left(2 \operatorname{cis} \frac{5 \pi}{6}\right)^{3}-8 i \\
& =8 \operatorname{cis} \frac{5 \pi}{2}-8 i \\
& \left.=8 i-8 i \quad \quad \quad \text { hopefully you don't need to write } \operatorname{cis} \frac{5 \pi}{2} \text { as } \cos \frac{5 \pi}{2}+i \sin \frac{5 \pi}{2} \text { to see this }\right) \\
& =0
\end{aligned}
$$

(c) $\int \frac{d x}{\sqrt{3-2 x-x^{2}}}=\int \frac{d x}{\sqrt{-\left(x^{2}+2 x+1\right)+3+1}}$

$$
\begin{aligned}
& =\int \frac{d x}{\sqrt{4-(x+1)^{2}}} \\
& =\sin ^{-1} \frac{x+1}{2}+c
\end{aligned}
$$

(d) $\int_{0}^{\sqrt{3}} \frac{x^{3} d x}{\sqrt{x^{2}+1}}=\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{x^{2}}{\sqrt{x^{2}+1}} \cdot 2 x d x$

$$
\begin{aligned}
& =\frac{1}{2} \int_{1}^{4} \frac{u-1}{\sqrt{u}} \cdot d u \\
& =\frac{1}{2} \int_{1}^{4}\left(u^{\frac{1}{2}}-u^{-\frac{1}{2}}\right) d u \\
& =\left[\frac{1}{3} u^{\frac{3}{2}}-u^{\frac{1}{2}}\right]_{1}^{4} \\
& =\frac{8}{3}-2-\frac{1}{3}+1 \\
& =\frac{4}{3}
\end{aligned}
$$

(e) (i)

(ii) $\mathrm{A}=\int_{2}^{5} \frac{(x+2) d x}{(x-1)(x+3)}$

Let $\frac{x+2}{(x-1)(x+3)}=\frac{A}{x-1}+\frac{B}{x+3}$

$$
x+2=A(x+3)+B(x-1)
$$

$$
(x=1) \quad 3=4 A \quad \Rightarrow \quad A=\frac{3}{4}
$$

$$
(x=-3)-1=-4 B \Rightarrow B=\frac{1}{4}
$$

$$
\mathrm{A}=\frac{1}{4} \int_{2}^{5}\left(\frac{3}{x-1}+\frac{1}{x+3}\right) d x
$$

$$
=\frac{1}{4}[3 \ln |x-1|+\ln |x+3|]_{2}^{5}
$$

$$
=\frac{1}{4}(3 \ln 4+\ln 8-0-\ln 8)
$$

$$
=\frac{1}{4} \ln \frac{4^{3} \times 8}{5}
$$

$$
=\frac{1}{4} \ln \frac{512}{5}
$$

Question 12

(a) (i) When $y=x, 2 x^{2}=b \quad(b>0)$

$$
x= \pm \sqrt{\frac{b}{2}}
$$

(ii) Let $z=x+i y$

$$
\begin{aligned}
z^{2} & =a+i b \\
(x+i y)^{2} & =a+i b \\
\left(x^{2}-y^{2}\right)+2 x y i & =a+i b
\end{aligned}
$$

Equating real and imaginary parts: $x^{2}-y^{2}=a$

$$
2 x y=b
$$

Solving simultaneously for x and y, we get the graphs of part (i).
The graphs show that there are two distinct points of intersection $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ corresponding to two distinct complex roots $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ of the complex number $a+i b$.
(iii) When b is negative, the graph of $2 x y=b$ lies in the $2^{\text {nd }}$ and $4^{\text {th }}$ quadrants.

So the points of intersection with $x^{2}-y^{2}=a$ are $\left(x_{1},-y_{1}\right)$ and $\left(x_{2},-y_{2}\right)$. ie. the new square roots are the conjugates of the roots found in part (ii).
(b)

$$
\begin{aligned}
h & =y_{2}-y_{1} \\
& =\frac{4}{x^{2}+4}-\frac{1}{x^{2}+1}
\end{aligned}
$$

Volume of shell $\delta V \approx 2 \pi x h \cdot \delta x$

$$
\begin{aligned}
&=2 \pi x\left(\frac{4}{x^{2}+4}-\frac{1}{x^{2}+1}\right) \delta x \\
& \text { Volume } \begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{2} 2 \pi x\left(\frac{4}{x^{2}+4}-\frac{1}{x^{2}+1}\right) \delta x \\
& =\pi \int_{0}^{2}\left(\frac{8 x}{x^{2}+4}-\frac{2 x}{x^{2}+1}\right) d x \\
& =\pi\left[4 \ln \left(x^{2}+4\right)-\ln \left(x^{2}+1\right)\right]_{0}^{2} \\
& =\pi(4 \ln 8-\ln 5-4 \ln 4+0) \\
& =\pi \ln \frac{8^{4}}{5 \times 4^{4}} \\
& =\pi \ln \frac{16}{5} \text { units }^{3}
\end{aligned} \$ \text {. }
\end{aligned}
$$

(c) (i) $\quad \ddot{x}=3(1-x)(1+x)$

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=3-3 x^{2} \\
\frac{1}{2} v^{2}=3 x-x^{3}+c \\
(x=0, v=2) \quad 2=c \\
\frac{1}{2} v^{2}=3 x-x^{3}+2 \\
v^{2}=6 x-2 x^{3}+4
\end{gathered}
$$

Check RHS: $\quad 2(2-x)(x+1)^{2}=(4-2 x)\left(x^{2}+2 x+1\right)$

$$
\begin{aligned}
& =4 x^{2}+8 x+4-2 x^{3}-4 x^{2}-2 x \\
& =6 x-2 x^{3}+4 \\
& =\text { LHS }
\end{aligned}
$$

$\therefore v^{2}=2(2-x)(x+1)^{2}$
(ii)

$$
\begin{aligned}
x=2: \quad & \quad v \\
& =0 \\
\ddot{x} & =3(1-2)(1+2) \\
& =-9 \mathrm{~ms}^{-2}
\end{aligned}
$$

(iii)

Firstly, the particle cannot ever be to the right of $x=2$, as v^{2} would be -ve .
Secondly, the particle can possibly change direction only when $v=0$, ie. at $x=-1$ and $x=2$.
Initially, the velocity is +2 , so the particle moves to the right, speeding up until it reaches $x=1$, then slowing to a stop at $x=2$.
Since the acceleration at $x=2$ is -ve , it then changes direction, speeds up until it again reaches $x=1$, then slowing to a stop at $x=-1$.
At $x=-1$ the velocity and acceleration are both zero (and dependent only on position, not time), so the particle remains at $x=-1$.
(iv) From the graphs, the max speed (over the restricted domain $-1 \leq x \leq 2$) occurs at $x=1 \quad(\ddot{x}=0)$.

$$
\begin{aligned}
v_{\max }^{2} & =2(2-1)(1+1)^{2} \\
& =8 \\
v_{\max } & =2 \sqrt{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Question 13

(a) (i) $\quad(x-y)^{2} \geq 0 \quad \forall$ real x, y

$$
\begin{aligned}
x^{2}-2 x y+y^{2} & \geq 0 \\
x^{2}+y^{2} & \geq 2 x y
\end{aligned}
$$

If x, y have the same sign, $x y>0$, so $2 x y>x y$, so $x^{2}+y^{2} \geq x y$.
If x, y have opposite sign, $x y<0$, so $x^{2}+y^{2} \geq x y$ as $x^{2}+y^{2} \geq 0$.

OR

$$
\begin{aligned}
x^{2}+y^{2}-x y & =\left(x-\frac{y}{2}\right)^{2}+\frac{3}{4} y^{2} \\
& \geq 0 \quad \quad \text { (sum of } 2 \text { perfect squares) } \\
x^{2}+y^{2} & \geq x y
\end{aligned} \quad .
$$

(ii) $x^{2}+y^{2}-3 z^{2}=x^{2}+y^{2}-3\left(\frac{x+y}{3}\right)^{2}$

$$
\begin{aligned}
& =x^{2}+y^{2}-\frac{x^{2}+2 x y+y^{2}}{3} \\
& =\frac{3 x^{2}+3 y^{2}-x^{2}-2 x y-y^{2}}{3} \\
& =\frac{2 x^{2}+2 y^{2}-2 x y}{3} \\
& =\frac{2}{3}\left(x^{2}+y^{2}-x y\right) \\
& \geq 0 \\
x^{2}+y^{2} & \geq 3 z^{2} \quad\left(\text { since } x^{2}+y^{2} \geq x y \text { from } \mathrm{i}\right)
\end{aligned}
$$

(b) (i)

(ii) Since this shape is a rhombus, the vertex angles are bisected by the diagonals.
$\therefore \arg (z+w)$ is the average of $\frac{4 \pi}{9}$ and $\frac{7 \pi}{9}$

$$
\begin{aligned}
\arg (z+w) & =\frac{1}{2}\left(\frac{4 \pi}{9}+\frac{7 \pi}{9}\right) \quad\left[\text { OR } \arg (z+w)=\frac{4 \pi}{9}+\frac{1}{2}\left(\frac{7 \pi}{9}-\frac{4 \pi}{9}\right)\right] \\
& =\frac{11 \pi}{18}
\end{aligned}
$$

(iii) Since diagonals bisect each other at right angles, $\frac{1}{2}|z+w|=2 \cos 30^{\circ}$

$$
|z+w|=2 \sqrt{3}
$$

(c)
(i) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}=\int_{0}^{1} \frac{\frac{2 d t}{1+t^{2}}}{2+\frac{2 t}{1+t^{2}}} \times \frac{1+t^{2}}{1+t^{2}}$

$$
=\int_{0}^{1} \frac{2 d t}{2\left(1+t^{2}\right)+2 t}
$$

$$
=\int_{0}^{1} \frac{d t}{t^{2}+t+1}
$$

$$
=\int_{0}^{1} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}
$$

$$
=\frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{2\left(t+\frac{1}{2}\right)}{\sqrt{3}}\right]_{0}^{1}
$$

$$
=\frac{2}{\sqrt{3}}\left(\tan ^{-1} \sqrt{3}-\tan ^{-1} \frac{1}{\sqrt{3}}\right)
$$

$$
=\frac{2}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)
$$

$$
=\frac{\pi}{3 \sqrt{3}}
$$

Let $t=\tan \frac{x}{2} \quad x=0, t=0$

$$
\begin{gathered}
\tan ^{-1} t=\frac{x}{2} \\
x=2 \tan ^{-1} t \\
d x=\frac{2}{1+t^{2}} d t
\end{gathered}
$$

$$
x=\frac{\pi}{2}, t=1
$$

(ii) $\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x$ Let $u=2 a-x \quad$ (in $2^{\text {nd }}$ integral)

$$
(\text { so } x=u-2 a)
$$

$$
=\int_{0}^{a} f(x) d x+\int_{a}^{0} f(2 a-u) \cdot(-d u) \quad \begin{aligned}
& d u=-d x \\
& x=0, \quad u=a \\
& x=2 a, u=0
\end{aligned}
$$

$$
=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-u) d u
$$

$$
=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x \quad \text { (since choice of var does not affect def int) }
$$

$$
=\int_{0}^{a}[f(x)+f(2 a-x)] d x
$$

(iii) $\int_{0}^{\pi} \frac{x}{2+\sin x} d x=\int_{0}^{\frac{\pi}{2}}\left(\frac{x}{2+\sin x}+\frac{\pi-x}{2+\sin (\pi-x)}\right) d x$
(by part ii)

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}}\left(\frac{x}{2+\sin x}+\frac{\pi}{2+\sin x}-\frac{x}{2+\sin x}\right) d x \\
& =\pi \int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x} \\
& =\pi \cdot \frac{\pi}{3 \sqrt{3}} \quad(\text { by part } \mathrm{i}) \\
& =\frac{\pi^{2}}{3 \sqrt{3}}
\end{aligned}
$$

Question 14

(a) (i)

(ii)

(b) (i) $\quad x y=c^{2}$

$$
x \cdot \frac{d y}{d x}+y \cdot 1=0
$$

$$
\frac{d y}{d x}=-\frac{y}{x}
$$

at $P\left(c t, \frac{c}{t}\right), m_{\mathrm{T}}=-\frac{\frac{c}{t}}{c t}$

$$
=-\frac{1}{t^{2}}
$$

Tangent: $\quad y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t)$

$$
\begin{aligned}
t^{2} y-c t & =-x+c t \\
x+t^{2} y & =2 c t
\end{aligned}
$$

(ii) $O T$ has gradient $\frac{y_{1}}{x_{1}}$, and $O T \perp P T$.

$$
\text { So } \begin{aligned}
m_{O T} \cdot m_{P T} & =-1 \\
\frac{y_{1}}{x_{1}} \cdot\left(-\frac{1}{t^{2}}\right) & =-1 \\
y_{1} & =t^{2} x_{1}
\end{aligned}
$$

(iii) Since T satisfies equation of tangent:

$$
\begin{aligned}
x_{1}+t^{2} y_{1} & =2 c t \\
x_{1}+\frac{y_{1}}{x_{1}} \cdot y_{1} & =2 c \cdot \sqrt{\frac{y_{1}}{x_{1}}} \quad \text { (from part ii) } \\
\left(\times x_{1}\right) \quad x_{1}^{2}+y_{1}^{2} & =2 c x_{1} \sqrt{\frac{y_{1}}{x_{1}}} \\
& =2 c \sqrt{x_{1} y_{1}}
\end{aligned}
$$

$$
\text { (squaring) } \quad\left(x_{1}^{2}+y_{1}^{2}\right)^{2}=4 c^{2} x_{1} y_{1}
$$

ie. locus of T is $\left(x^{2}+y^{2}\right)^{2}=4 c^{2} x y$
(c) (i) By similar triangles $O C D$ and $O F E$ in the base:

$$
\begin{aligned}
\frac{D C}{E F} & =\frac{O D}{O E} \\
\frac{D C}{b} & =\frac{x}{r} \\
D C & =\frac{b x}{r} \quad \text { (base of rectangular slice) }
\end{aligned}
$$

Height of slice $h=y$

$$
=r^{2}-x^{2}
$$

Thickness of Slice $=\delta x$
\therefore Volume of slice $\delta V=\frac{b x}{r} \cdot\left(r^{2}-x^{2}\right) \cdot \delta x$
(ii) Volume $V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{r} \frac{b x}{r}\left(r^{2}-x^{2}\right) \delta x$

$$
\begin{aligned}
& =\frac{b}{r} \int_{0}^{r}\left(r^{2} x-x^{3}\right) d x \\
& =\frac{b}{4 r}\left[2 r^{2} x^{2}-x^{4}\right]_{0}^{r} \\
& =\frac{b}{4 r}\left(2 r^{4}-r^{4}\right) \\
& =\frac{b r^{3}}{4}
\end{aligned}
$$

(iii)

$$
\sin \frac{\pi}{n}=\frac{b}{2 r}
$$

$$
b=2 r \sin \frac{\pi}{n}
$$

$$
\begin{aligned}
V_{n} & =\frac{1}{4} \cdot b \cdot r^{3} \\
& =n \cdot \frac{1}{4} \cdot 2 r \sin \frac{\pi}{n} \cdot r^{3} \\
& =\frac{1}{2} r^{4} n \sin \frac{\pi}{n}
\end{aligned}
$$

(iv) As $n \rightarrow \infty, \frac{\pi}{n} \rightarrow 0$, so $\sin \frac{\pi}{n} \rightarrow \frac{\pi}{n}$

So $\lim _{n \rightarrow \infty} V_{n}=\frac{1}{2} r^{4} n \cdot \frac{\pi}{n}$

$$
=\frac{1}{2} \pi r^{4}
$$

Question 15

(a) Let $P(x)=2 x^{3}-5 x+1$

$$
\begin{gathered}
P\left(-\frac{x}{2}\right)=0 \text { has roots }-2 \alpha,-2 \beta,-2 \gamma \\
2\left(-\frac{x}{2}\right)^{3}-5\left(-\frac{x}{2}\right)+1=0 \\
-\frac{x^{3}}{4}+\frac{5 x}{2}+1=0 \\
x^{3}-10 x-4=0
\end{gathered}
$$

(b) (i) $z^{n}+z^{-n}=(\cos \theta+i \sin \theta)^{n}+(\cos \theta+i \sin \theta)^{-n}$

$$
\begin{aligned}
& =\cos n \theta+i \sin n \theta+\cos (-n \theta)+i \sin (-n \theta) \\
& =\cos n \theta+i \sin n \theta+\cos n \theta-i \sin n \theta \\
& =2 \cos n \theta
\end{aligned}
$$

(ii) $\left(z+\frac{1}{z}\right)^{3}=z^{3}+3 z+\frac{3}{z}+\frac{1}{z^{3}}$

$$
\begin{aligned}
z^{3}+\frac{1}{z^{3}} & =\left(z+\frac{1}{z}\right)^{3}-3\left(z+\frac{1}{z}\right) \\
& =u^{3}-3 u
\end{aligned}
$$

(iii) IF you HAD to show this result:

$$
\begin{aligned}
& \left(z+\frac{1}{z}\right)^{5}=z^{5}+5 z^{3}+10 z+\frac{10}{z}+\frac{5}{z^{3}}+\frac{1}{z^{5}} \\
& z^{5}+\frac{1}{z^{5}}=\left(z+\frac{1}{z}\right)^{5}-5\left(z^{3}+\frac{1}{z^{3}}\right)-10\left(z+\frac{1}{z}\right) \\
& =u^{5}-5\left(u^{3}-3 u\right)-10 u \\
& =u^{5}-5 u^{3}+5 u \\
& 1+\cos 10 \theta=1+\left(2 \cos ^{2} 5 \theta-1\right) \\
& =2 \cos ^{2} 5 \theta \\
& =\frac{1}{2}(2 \cos 5 \theta)^{2} \\
& =\frac{1}{2}\left(z^{5}+z^{-5}\right)^{2} \quad(\text { from part i) } \\
& =\frac{1}{2}\left(u^{5}-5 u^{3}+5 u\right)^{2} \quad \text { (given) } \\
& =\frac{1}{2}\left[(2 \cos \theta)^{5}-5(2 \cos \theta)^{3}+5(2 \cos \theta)\right]^{2} \\
& =\frac{1}{2}\left(32 \cos ^{5} \theta-40 \cos ^{3} \theta+10 \cos \theta\right)^{2} \\
& =2\left(16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta\right)^{2}
\end{aligned}
$$

(c) (i) $\quad \overrightarrow{Q P}=\overrightarrow{Q R} \cdot \operatorname{cis} \frac{\pi}{3} \quad\left(\right.$ since angle in equilateral triangle is $\left.\frac{\pi}{3}\right)$

$$
\begin{aligned}
& p-q=(r-q) \cdot \operatorname{cis} \frac{\pi}{3} \\
& r-q=(p-q) \cdot \operatorname{cis}\left(-\frac{\pi}{3}\right) \\
& \quad \text { (to divide by a complex number, multiply by its conjugate) } \\
& r-q=(q-p) \cdot \operatorname{cis}\left(\pi-\frac{\pi}{3}\right) \\
& \text { (to multiply by }-1, \text { add } \pi \text { to the argument) } \\
& r-q=\operatorname{cis} \frac{2 \pi}{3}(q-p)
\end{aligned}
$$

OR

$$
\begin{aligned}
& \angle S Q R=\frac{2 \pi}{3} \quad(\text { exterior angle of triangle }=\text { opposite interior angle }) \\
& r-q \\
& = \\
& \\
& =\operatorname{cis} \frac{2 \pi}{3} \cdot \overrightarrow{Q S} \quad\left(\text { anticlockwise rotation by } \frac{2 \pi}{3}\right) \\
& \\
& =\operatorname{cis} \frac{2 \pi}{3} \cdot \overrightarrow{P Q} \\
& \\
& =\operatorname{cis} \frac{2 \pi}{3}(q-p)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
r-q & =\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)(q-p) \\
& =\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)(q-p) \\
2 r-2 q & =(-1+i \sqrt{3})(q-p) \\
2 r-2 q & =-q+p+i q \sqrt{3}-i p \sqrt{3} \\
2 r & =(p+q)+i \sqrt{3}(q-p)
\end{aligned}
$$

(d) (i) $\quad P B$ subtends equal angles at N and L on the same side of $P B$.

OR
$\angle B L P=\angle B N P$ (given)
$\therefore B L N P$ is cyclic (converse of angles in same segment [or angles standing on same arc])
(ii)

NOTE: You may NOT say $\angle B N L=\angle M N A$ (vertically opposite)
OR
$\angle M N P=\angle P B L$ (ext angle of cyclic quad $=$ opposite interior angle) as these assume that $L N M$ is a straight line, WHICH IS WHAT YOU ARE TRYING TO PROVE.
$\angle P M A=\angle P N A=90^{\circ} \quad$ (given)
$\therefore P N A M$ is cyclic (exterior angle of cyclic quad equals opposite interior angle)

$$
\begin{aligned}
\angle M N P & =\angle M A P & & \text { (both angles stand on chord } P M \text { of cyclic quad } P N A M) \\
& =\angle P B C & & \text { (exterior angle of cyclic quad } A P B C=\text { opposite interior angle) }
\end{aligned}
$$

$\therefore \angle M N P$ is the exterior angle of cyclic quad $B L N P \quad$ (it equals the opposite interior angle)
ie. $L N M$ is straight (ie. L, M and N are collinear)

Question 16

(a) (i)

Centre: $\quad C\left(\frac{a e+a \cos \theta}{2}, \frac{b \sin \theta}{2}\right)=C\left(\frac{a(e+\cos \theta)}{2}, \frac{b \sin \theta}{2}\right)$
Diameter: $P S=e P M$

$$
\begin{aligned}
& =e\left(\frac{a}{e}-a \cos \theta\right) \\
& =a(1-e \cos \theta)
\end{aligned}
$$

\therefore radius $=\frac{a}{2}(1-e \cos \theta)$
(ii) [The sneaky way]

Since $O S=\frac{1}{2} S^{\prime} S, C S=\frac{1}{2} P S$ and $\angle O S C=\angle S^{\prime} S C$, then $\triangle O S C$ and $\triangle S^{\prime} S P$ are similar
$\therefore O C=\frac{1}{2} P S^{\prime}$
But $P S+P S^{\prime}=2 a \quad$ (sum of focal lengths = length of major axis)

$$
\begin{aligned}
C S+C O & =a \\
\frac{a}{2}(1-e \cos \theta)+O C & =a \\
O C & =a-\frac{a}{2}+\frac{a}{2} e \cos \theta \\
O C & =\frac{a}{2}(1+e \cos \theta)
\end{aligned}
$$

[The hard slog]

$$
\begin{aligned}
O C^{2} & =\frac{a^{2}}{4}(e+\cos \theta)^{2}+\frac{b^{2}}{4} \sin ^{2} \theta \\
& =\frac{1}{4}\left(a^{2} e^{2}+2 a^{2} e \cos \theta+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right) \\
& =\frac{1}{4}\left(a^{2} e^{2}+2 a^{2} e \cos \theta+a^{2} \cos ^{2} \theta+a^{2}\left(1-e^{2}\right) \sin ^{2} \theta\right) \\
& =\frac{a^{2}}{4}\left(e^{2}\left[1-\sin ^{2} \theta\right]+2 e \cos \theta+\left[\cos ^{2} \theta+\sin ^{2} \theta\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a^{2}}{4}\left(e^{2} \cos ^{2} \theta+2 e \cos \theta+1\right) \\
& =\frac{a^{2}}{4}(e \cos \theta+1)^{2}
\end{aligned}
$$

Since $e<1$ for ellipse
and $|\cos \theta| \leq 1$
then $|e \cos \theta|<1$
So $1+e \cos \theta>0$
$\therefore O C=\frac{a}{2}(e \cos \theta+1)$
(b) (i) $\quad P\left(-\frac{3}{2}\right)=4\left(-\frac{3}{2}\right)^{3}+10\left(-\frac{3}{2}\right)^{2}+8\left(-\frac{3}{2}\right)+3$

$$
\begin{aligned}
& =-\frac{27}{2}+\frac{45}{2}-12+3 \\
& =0
\end{aligned}
$$

$\therefore P(x)$ is divisible by $(2 x+3)$
(ii) Let zeros be $-\frac{3}{2}, \alpha, \beta$

Sum: $\quad-\frac{3}{2}+\alpha+\beta=-\frac{5}{2}$

$$
\alpha+\beta=-1
$$

Product: $\quad-\frac{3}{2} \alpha \beta=-\frac{3}{4}$

$$
\alpha \beta=\frac{1}{2}
$$

\therefore A polynomial with zeros α and β is $x^{2}+x+\frac{1}{2}$.
But to get equal leading coefficients: $\quad P(x)=(2 x+3)\left(2 x^{2}+2 x+1\right)$
[Alternatively: divide]
(c) In case you had to prove the given result:

$$
\begin{aligned}
\tan \left(\tan ^{-1} x+\tan ^{-1} y\right) & =\frac{\tan \left(\tan ^{-1} x\right)+\tan \left(\tan ^{-1} y\right)}{1-\tan \left(\tan ^{-1} x\right) \cdot \tan \left(\tan ^{-1} y\right)} \\
& =\frac{x+y}{1-x y} \\
\tan ^{-1} x+\tan ^{-1} y & =\tan ^{-1} \frac{x+y}{1-x y}
\end{aligned}
$$

The Induction Proof:

$$
\text { RTP } \tan ^{-1} \frac{1}{2 \times 1^{2}}+\tan ^{-1} \frac{1}{2 \times 2^{2}}+\tan ^{-1} \frac{1}{2 \times 3^{2}}+\ldots+\tan ^{-1} \frac{1}{2 n^{2}}=\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 n+1}
$$

Test $n=1$:

$$
\begin{aligned}
& \text { LHS }=\tan ^{-1} \frac{1}{2} \\
& \begin{aligned}
& \text { RHS }=\frac{\pi}{4}-\tan ^{-1} \frac{1}{3} \\
& \text { LHS }- \text { RHS }=\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}-\frac{\pi}{4} \\
&=\tan ^{-1} \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}-\frac{\pi}{4} \quad \text { (using given rule) } \\
&=\tan ^{-1} 1-\frac{\pi}{4} \\
&=\frac{\pi}{4}-\frac{\pi}{4} \\
&=0
\end{aligned} \\
& \text { LHS }
\end{aligned}
$$

Assume true for $n=k$:

$$
\text { ie. } \quad \tan ^{-1} \frac{1}{2 \times 1^{2}}+\tan ^{-1} \frac{1}{2 \times 2^{2}}+\tan ^{-1} \frac{1}{2 \times 3^{2}}+\ldots+\tan ^{-1} \frac{1}{2 k^{2}}=\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+1}
$$

Prove true for $n=k+1$:
ie. RTP $\tan ^{-1} \frac{1}{2 \times 1^{2}}+\tan ^{-1} \frac{1}{2 \times 2^{2}}+\tan ^{-1} \frac{1}{2 \times 3^{2}}+\ldots+\tan ^{-1} \frac{1}{2 k^{2}}+\tan ^{-1} \frac{1}{2(k+1)^{2}}=\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+3}$

$$
\begin{aligned}
\text { LHS }- \text { RHS } & =\left(\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+1}\right)+\tan ^{-1} \frac{1}{2(k+1)^{2}}-\left(\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+3}\right) \quad \text { (by assumption) } \\
& =\tan ^{-1} \frac{1}{2(k+1)^{2}}+\tan ^{-1} \frac{1}{2 k+3}-\tan ^{-1} \frac{1}{2 k+1} \\
& =\tan ^{-1} \frac{\frac{1}{2(k+1)^{2}}+\frac{1}{2 k+3}}{1-\frac{1}{2(k+1)^{2}} \cdot \frac{1}{2 k+3}} \times \frac{2(k+1)^{2}(2 k+3)}{2(k+1)^{2}(2 k+3)}-\tan ^{-1} \frac{1}{2 k+1} \\
& =\tan ^{-1} \frac{(2 k+3)+2(k+1)^{2}}{2(k+1)^{2}(2 k+3)-1}-\tan ^{-1} \frac{1}{2 k+1} \\
& =\tan ^{-1} \frac{2 k^{2}+6 k+5}{4 k^{3}+14 k^{2}+16 k+5}-\tan ^{-1} \frac{1}{2 k+1} \\
& =\tan ^{-1} \frac{2 k^{2}+6 k+5}{(2 k+1)\left(2 k^{2}+6 k+5\right)}-\tan ^{-1} \frac{1}{2 k+1} \\
& =\tan ^{-1} \frac{1}{2 k+1}-\tan ^{-1} \frac{1}{2 k+1} \\
& =0 \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

Using the fact that $\tan ^{-1}(-x)=-\tan ^{-1} x$:

$$
\begin{aligned}
\text { LHS } & =\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+1}+\tan ^{-1} \frac{1}{2(k+1)^{2}} \\
& =\frac{\pi}{4}-\left(\tan ^{-1} \frac{1}{2 k+1}-\tan ^{-1} \frac{1}{2(k+1)^{2}}\right) \\
& =\frac{\pi}{4}-\tan ^{-1} \frac{\frac{1}{2 k+1}-\frac{1}{2(k+1)^{2}}}{1+\frac{1}{2 k+1} \cdot \frac{1}{2(k+1)^{2}}} \times \frac{2(2 k+1)(k+1)^{2}}{2(2 k+1)(k+1)^{2}} \\
& =\frac{\pi}{4}-\tan ^{-1} \frac{2(k+1)^{2}-(2 k+1)}{2(2 k+1)(k+1)^{2}+1} \\
& =\frac{\pi}{4}-\tan ^{-1} \frac{2 k^{2}+2 k+1}{4 k^{3}+10 k^{2}+8 k+3} \\
& =\frac{\pi}{4}-\tan ^{-1} \frac{1}{2 k+3} \quad \quad \text { (by part b) } \\
& =\text { RHS }
\end{aligned}
$$

\therefore true for $n=k+1$ when true for $n=k$
\therefore by Mathematical Induction, true for all positive integers n.
(d) (i) $f(x)=\log x-x+1$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x}-1 \\
& =\frac{1-x}{x}
\end{aligned}
$$

\therefore stationary point at $x=1$
$f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0 \quad \forall x$
\therefore minimum turning point at $(1,0)$
Also domain $x>0$ (and continuous for all x in the domain).

$\therefore f(x) \leq 0 \quad \forall x>0$
(ii) $\quad \sum_{r=1}^{n} \log \left(n p_{r}\right) \leq \sum_{r=1}^{n}\left(n p_{r}-1\right) \quad($ from part i $-\log x \leq x-1 \quad \forall x>0)$
$=\sum_{r=1}^{n} n p_{r}-\sum_{r=1}^{n} 1$
$\sum_{r=1}^{n} \log \left(n p_{r}\right) \leq \sum_{r=1}^{n} n p_{r}-n$
(iii) Continuing from part ii:

$$
\begin{aligned}
\begin{aligned}
\sum_{r=1}^{n} \log n p_{r} & \leq n \sum_{r=1}^{n} p_{r}-n \quad(\text { since } n \text { is a constant }) \\
& =n \cdot 1-n \\
\sum_{r=1}^{n} \log n p_{r} & \leq 0
\end{aligned}
\end{aligned}
$$

(iv) Continuiing from part iii:

$$
\begin{aligned}
\log n p_{1}+\log n p_{2}+\ldots+\log n p_{n} & \leq 0 \\
\log \left(n p_{1} \cdot n p_{2} \cdot \ldots \cdot n p_{n}\right) & \leq 0 \\
\log \left(n^{n} \cdot p_{1} p_{2} \ldots p_{n}\right) & \leq 0 \\
n^{n} \cdot p_{1} p_{2} \ldots p_{n} & \leq 1
\end{aligned}
$$

Also, since $p_{1}, p_{2}, \ldots, p_{n}$ and n are all positive, then $n^{n} \cdot p_{1} p_{2} \ldots p_{n}>0$
$\therefore 0<n^{n} \cdot p_{1} p_{2} \ldots p_{n} \leq 1$

