NORTH SYDNEY GIRLS HIGH SCHOOL

2017 TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black pen
- Board approved calculators may be used
- A reference sheet has been provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I Pages 2-6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Pages 7 – 15

(Section II)

90 Marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

NAME:

TEACHER:

STUDENT NUMBER:_____

Question	1-10	11	12	13	14	15	16	Total
Mark								
	/10	/15	/15	/15	/15	/15	/15	/100

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10.

- 1 If k is a real number, then what is $\frac{k^2 + 4}{2 ki}$ equal to?
 - (A) 2-ki
 - (B) k-2i
 - (C) 2 + ki
 - (D) *k*+2*i*
- 2 Which of the following Argand diagrams describes the locus defined by $\arg(z-i) = \arg(z+1)$?

- 3 The roots of the polynomial $x^3 2x^2 + 5x + 4 = 0$ are α, β and γ . What is the value of $\alpha^2 + \beta^2 + \gamma^2$?
 - (A) 4
 - (B) 25
 - (C) –6
 - (D) 14
- 4 The polynomial $P(x) = x^3 11x 20$ has a zero at x = -2 + i. Which of the graphs below could be the graph of y = P(x)?

5 Let $z_1 = r_1 \operatorname{cis} \alpha$ and $z_2 = r_2 \operatorname{cis} \beta$ where r_1 and r_2 are real numbers. z_1 and $z_1 z_2$ are shown in the Argand diagram below.

Which of the following is necessarily true?

(A)
$$r_1 > 1$$

(B) $r_2 > 1$

(C)
$$\left|\frac{z_1}{z_2}\right| > r_1$$

(D)
$$r_2 < |z_1 z_2|$$

6 *P* is an extremity of the minor axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci at *S* and *S'*. If *SPS'* is a right-angled triangle, what is the eccentricity of the ellipse?

(A)
$$\frac{1}{2}$$

(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$

7 The region bounded by the circle $x^2 + y^2 = 1$ is rotated about the line x = 1.

What is the volume of the solid of revolution formed?

(A)
$$V = 4\pi \int_{0}^{1} (1 - y^2)^{\frac{1}{2}} dy$$

(B)
$$V = 8\pi \int_{0}^{1} (1 - y^2)^{\frac{1}{2}} dy$$

(C)
$$V = 4\pi \int_{0}^{1} (1 - y^2) dy$$

(D)
$$V = 8\pi \int_{0}^{0} (1 - y^2) dy$$

8 What is the range of the function $f(x) = (x^2 - 1)\sin^{-1}(x - 1)$?

(A)
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(B)
$$\frac{\pi}{2} \le y \le \frac{3\pi}{2}$$

(C)
$$0 \le y \le \frac{\pi}{2}$$

(D)
$$0 \le y \le \frac{3\pi}{2}$$

9 If a > b and k < 0, which of the following must be true?

I.
$$a^2 > b^2$$

II. $a+k > b+k$
III. $\frac{a}{k^2} > \frac{b}{k^2}$

- (A) I and II only
- (B) II and III only
- (C) I and III only
- (D) I, II and III

10 Which expression must be equal to
$$\int_{0}^{a} \left[f(a-x) + f(a+x) \right] dx$$
?

(A)
$$\int_{0}^{a} f(x) dx$$

(B)
$$\int_{0}^{2a} f(x) dx$$

(C)
$$2 \int_{0}^{a} f(x) dx$$

(D)
$$\int_{-a}^{a} f(x) dx$$

Section II

Total marks – 90 Attempt Questions 11–16 Allow about 2 hour 45 minutes for this section.

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the complex number $z = \sqrt{3} - 3i$.

(i)	Express z in modulus-argument form.	2
(ii)	Write down the argument of z^4 .	1
(iii)	Hence, write z^4 in the form $x + iy$, where x and y are real.	1

(b) Find
$$\int \sin^3 x \, dx$$
.

(c) Sketch the conic defined by |z-1|+|z+1|=4 showing intercepts, foci and directrices. 2

(d) Consider the polynomial equation $P(z) = z^4 - 4z^3 + 7z^2 - 4z + 6$. (i) Show that z = i is a zero of this polynomial. (ii) Hence, write down a quadratic real factor of P(z). 1

2

(iii) Find all the roots of P(z) = 0.

(e) A relation is defined by the equation $\sin x + \cos y = \frac{1}{2}$, where $-\pi < x < \pi$ and $-\pi < y < \pi$.

(i) Show that
$$\frac{dy}{dx} = \frac{\cos x}{\sin y}$$
. 1

(ii) Find the coordinates of the points where $\frac{dy}{dx} = 0$. 2

Question 12 (15 marks) Use a SEPARATE writing booklet.

In the Argand diagram above, OA = OB = AB = BC and $OB \perp BC$. A represents the complex number u.

- (i) Find the complex number represented by *B*.
- (ii) Hence, or otherwise, find an expression in terms of u for the complex number 2 represented by C.

1

2

(b) (i) Find real numbers a, b and c such that

$$\frac{3-x}{(x^2+1)(1-2x)} = \frac{ax+b}{x^2+1} + \frac{c}{1-2x}.$$

(ii) Hence find
$$\int \frac{3-x}{(x^2+1)(1-2x)} dx$$
. 2

(c) (i) Sketch the curve $f(x) = \frac{x-3}{x^2 + x - 2}$ showing all intercepts and asymptotes. 3 You are not required to find stationary points.

(ii) Hence solve
$$\frac{|x|-3}{x^2+|x|-2} \ge 0$$
. 1

Question 12 continues on Page 9

(d) Given below is the graph of y = f(x). The line y = 1 is a horizontal asymptote and x = b is a vertical asymptote. The *x*-intercept is at x = a and the *y*-intercept is at $y = \frac{1}{2}$.

Neatly sketch the graphs of the following showing all important information, including the location of a, b and c:

(i)
$$\frac{1}{f(x)}$$
 2

(ii)
$$\tan^{-1}(f(x))$$
 2

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) If
$$u = 6 + ki$$
 and $v = 4 + ki$, find k if $\arg(uv) = \frac{\pi}{4}$. 3

(b) $P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

(i) Show that the tangent at *P* has the equation
$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$$

- (ii) The tangent at *P* meets the asymptotes of the hyperbola at *Q* and *R*. **3** Show that PQ = PR.
- (c) If α, β, γ are the roots of the equation $x^3 + 2x^2 + 3x 4 = 0$, find a polynomial equation whose roots are:

(i)
$$\frac{1}{\alpha}, \frac{1}{\beta}$$
 and $\frac{1}{\gamma}$ 2

(ii)
$$\alpha^2, \beta^2 \text{ and } \gamma^2$$
 2

(d) A sequence is defined by
$$a_1 = 5, a_2 = 13$$
 and $a_{n+2} = 5a_{n+1} - 6a_n$ for all natural numbers *n*.

Use Mathematical Induction to prove that $a_n = 2^n + 3^n$.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Using the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{1 + \cos x - \sin x} dx$$

(b) (i) Use integration by parts to find
$$\int x \tan^{-1} x \, dx$$
. 2

(ii) The region bounded by the curve $y = \tan x$, the lines y = 1, $y = \sqrt{3}$ 2 and the y-axis is rotated about the x-axis.

3

Use the method of cylindrical shells to find the volume of the solid of revolution formed.

(c) (i) Show that $a^2 + 9b^2 \ge 6ab$, where *a* and *b* are real numbers. 1 (ii) Hence, or otherwise, show that $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$. 2

(iii) Hence if
$$a > b > c > 0$$
, show that $a^2 + 5b^2 + 9c^2 > 9bc$.

Question 14 continues on Page 12

Question 14 (continued)

(d) *ABCDE* is a pentagon inscribed in a circle and AB = AE. *BE* meets *AC* and *AD* at *M* and *N* respectively. Let $\angle BEA = \alpha$.

- (i) Explain why $\angle ACE = \alpha$.
- (ii) Prove that *CDNM* is a cyclic quadrilateral.

End of Question 14

1

3

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Given that $p(x) = x^3 - 3ax^2 + b$ has a double zero, where *a* and *b* are non-zero real numbers, show that $4a^3 - b = 0$.

(b)
$$P\left(cp,\frac{c}{p}\right)$$
 lies on the hyperbola $xy = c^2$.

(i) Show that the equation of the normal to the hyperbola at *P* is given by
$$px - \frac{y}{p} = c \left(p^2 - \frac{1}{p^2} \right).$$

2

(ii) The equation of the tangent at *P* is $x + p^2 y = 2cp$. DO NOT PROVE THIS. **3**

The normal at P cuts the x-axis at Q and the tangent at P cuts the y-axis at R. M is the midpoint of QR.

Find the equation of the locus of *M* as *P* moves on the hyperbola.

(c) Let
$$I = \int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x) + f\left(\frac{1}{x}\right)\right)} dx.$$

(i) Use a suitable substitution to show that $I = \int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f(x) + f\left(\frac{1}{x}\right)\right)} dx.$ 2

(ii) Hence, or otherwise, evaluate
$$\int_{\frac{1}{2}}^{2} \frac{\sin x}{x \left(\sin x + \sin \frac{1}{x}\right)} dx.$$
 2

Question 15 continues on Page 14

- (d) (i) Find the area bounded by the curve $y = (x a)^2$ and the coordinate axes, 1 where a > 0.
 - (ii) Cross-sections of a solid perpendicular to the base are sections of two parabolas $z = (x a)^2$ and $z = (x + a)^2$ as shown below.

3

The heights of the cross-sections are bounded by the line z = 9 - y.

Find the volume of the solid.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Consider
$$I_n = \int (x^2 + 1)^{-n} dx$$
, $n > 0$.
(i) Show that $I_{n+1} = \frac{x(x^2 + 1)^{-n}}{2n} + \frac{2n - 1}{2n} I_n$.
3

(ii) Find
$$I_2$$
.

(b) (i) Using the result
$$\cos(A+B) - \cos(A-B) = -2\sin A\sin B$$
, or otherwise,
show that $\sin \theta \sum_{r=1}^{n} \sin 2r\theta = \sin(n+1)\theta \sin n\theta$.
(ii) Hence show that $\sum_{r=1}^{8} \sin \frac{r\pi}{9} = \cot \frac{\pi}{18}$.

(c) (i) Show that
$$\log_e x \le x - 1$$
 for $x > 0$.

(ii) Show that
$$\log_e\left(\frac{c_1c_2...c_n}{\mu^n}\right) \le \frac{c_1+c_2+...+c_n}{\mu} - n$$
, where $c_1, c_2, ..., c_n > 0$ and $\mu > 0$. 2

2

(iii) Hence if
$$\mu = \frac{c_1 + c_2 + \dots + c_n}{n}$$
, show that $\sqrt[n]{c_1 c_2 \dots c_n} \le \frac{c_1 + c_2 + \dots + c_n}{n}$. 2

(iv) Hence use part (iii) to find a lower bound for
$$\frac{101}{103} + \frac{103}{105} + \frac{105}{107} + \dots + \frac{197}{199} + \frac{199}{101}$$
. 1

End of paper

1 If k is a real number, then what is $\frac{k^2 + 4}{2 - ki}$ equal to?

$$\frac{k^{2}+4}{2-ki} \times \frac{2+ki}{2+ki} = \frac{\binom{k^{2}+4}{2} \times (2+ki)}{4k^{2}}$$
$$= 2+ki$$

2 Which of the following Argand diagrams describes the locus defined by $\arg(z-i) = \arg(z+1)$?

3 The roots of the polynomial $x^3 - 2x^2 + 5x + 4 = 0$ are α, β and γ . What is the value of $\alpha^2 + \beta^2 + \gamma^2$?

4 The polynomial $P(x) = x^3 - 11x - 20$ has a zero at x = -2 + i. Which of the graphs below could be the graph of y = P(x)?

The graph has a negative y-intercept so must be A or C. Solving for stationary points, $P'(x) = 0 \Rightarrow 3x^2 - 11 = 0 \Rightarrow x = \pm \sqrt{\frac{11}{3}}$. So it has stationary points. Hence, A. 5 Let $z_1 = r_1 \operatorname{cis} \alpha$ and $z_2 = r_2 \operatorname{cis} \beta$ where r_1 and r_2 are real numbers. z_1 and $z_1 z_2$ are shown in the Argand diagram below.

Which of the following is necessarily true?

6

There is no scale, so neither r_1 or r_2 needs to be greater than 1. D looks like it has to be true, but if both r_1 and r_2 are smaller than 1, then $|z_1z_2| = r_1r_2$ will be smaller than r_2 . Rearranging C we get $|z_1| > r_1 |z_2|$ or $|z_1| > |z_1z_2|$ which is true from the diagram. Hence, C.

P is an extremity of the minor axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci at *S* and *S'*. If *SPS'* is a right-angled triangle, what is the eccentricity of the ellipse?

(A)
$$\frac{1}{2}$$

(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$
(A) $\frac{1}{2}$
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$
(E) $\frac{1}{\sqrt{2}}$
(E

7 The region bounded by the circle $x^2 + y^2 = 1$ is rotated about the line x = 1.

What is the volume of the solid of revolution formed?

(A)
$$V = 4\pi \int_{0}^{1} (1 - y^{2})^{\frac{1}{2}} dy$$

(B) $V = 8\pi \int_{0}^{1} (1 - y^{2})^{\frac{1}{2}} dy$
(C) $V = 4\pi \int_{0}^{1} (1 - y^{2}) dy$
(D) $V = 8\pi \int_{0}^{1} (1 - y^{2}) dy$

$$x^{2} + y^{2} = 1 \implies x = \pm \sqrt{1 - y^{2}}$$

$$R = 1 + \sqrt{1 - y^{2}} \text{ and } r = 1 - \sqrt{1 - y^{2}}$$

$$V = \pi \int_{-1}^{1} (R^{2} - r^{2}) dy$$

$$= 2\pi \int_{0}^{1} (R + r) (R - r) dy$$

$$= 2\pi \int_{0}^{1} (2) (2\sqrt{1 - y^{2}}) dy$$

$$= 8\pi \int_{0}^{1} (1 - y^{2})^{\frac{1}{2}} dy$$

8 What is the range of the function $f(x) = (x^2 - 1)\sin^{-1}(x - 1)$?

(A) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(B)
$$\frac{\pi}{2} \le y \le \frac{3\pi}{2}$$

(C)
$$0 \le y \le \frac{\pi}{2}$$

(D)
$$0 \le y \le \frac{3\pi}{2}$$

From the graphs of $y = x^2 - 1$ and $y = \sin^{-1}(x-1)$ both are negative or both are positive. So the range is always positive. When both are 0, y = 0, so not B.

Finally, looking at endpoints of the domain of $y = \sin^{-1}(x-1)$, the answer is D.

9 If a > b and k < 0, which of the following must be true?

I.
$$a^2 > b^2$$

II. $a + k > b + k$
III. $\frac{a}{k^2} > \frac{b}{k^2}$

I is true only if *a* and *b* are positive. II is true regardless of whether *a*,*b*, or *k* are positive. III is true as $k^2 > 0$ when k < 0Therefore II and III are true, so B.

(A) I and II only

- (B) II and III only
- (C) I and III only
- (D) I, II and III

10 Which expression must be equal to $\int_{0}^{a} \left[f(a-x) + f(a+x) \right] dx$?

(A)
$$\int_{0}^{a} f(x) dx$$
$$\int_{0}^{a} f(x) dx$$
$$\int_{0}^{a} f(x) dx$$
(B)
$$\int_{0}^{2a} f(x) dx$$
$$\int_{0}^{a} f(x) dx$$
(C)
$$2 \int_{0}^{a} f(x) dx$$
(D)
$$\int_{-a}^{a} f(x) dx$$
$$\int_{0}^{a} f(x) dx$$
$$\int_{0}^{a} f(a-x) + f(a+x) dx = \int_{0}^{a} f(x) dx + \int_{a}^{2a} f(x) dx$$
$$= \int_{0}^{2a} f(x) dx$$

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a)	Cons	sider the complex number $z = \sqrt{3} - 3i$.	
	(i)	Express z in modulus-argument form.	2
	(ii)	Write down the argument of z^4 .	1
	(iii)	Hence write z^4 in the form $x + iy$, where x and y are real.	1

(i)
$$|z| = \sqrt{\sqrt{3}^2 + (-3)^2} = \sqrt{12}$$

 $\tan(\arg z) = \frac{-3}{\sqrt{3}} = -\sqrt{3} \Rightarrow \arg z = -\frac{\pi}{3}$ (4th quadrant)
 $z = 2\sqrt{3} \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) \right)$
(ii) $\arg(z^4) = 4\arg(z) = 4 \left(-\frac{\pi}{3}\right) = -\frac{4\pi}{3} \text{ or } \frac{2\pi}{3}$
(iii) $z^4 = \left(2\sqrt{3}\right)^4 \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
 $= 144 \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$
 $= -72 + 72\sqrt{3}i$

(b) Find $\int \sin^3 x \, dx$.

$$\int \sin^3 x dx = \int (1 - \cos^2 x) \sin x dx$$
$$= \int \sin x dx + \int \cos^2 x (-\sin x) dx$$
$$= -\cos x + \frac{\cos^3 x}{3} + C$$

2

2

Using PS + PS' = 2a, this is an ellipse with 2a = 4 and S(1,0) and S'(-1,0). Then a = 2; and $ae = 1 \Longrightarrow e = \frac{1}{2}$. Then $\frac{a}{e} = 4$ and $b^2 = a^2(1-e^2) = 4\left(1-\frac{1}{4}\right) = 3$

(d)	Consider the polynomial equation $P(z) = z^4 - 4z^3 + 7z^2 - 4z + 6$.			
	(i)	Show that $z = i$ is a zero of this polynomial.	1	
	(ii)	Hence write down a quadratic real factor of $P(z)$.	1	
	(iii)	Find all the roots of $P(z) = 0$.	2	

(i) $P(i) = i^4 - 4i^3 + 7i^2 - 4i + 6 = 1 + 4i - 7 - 4i + 6 = 0$. Therefore, z = i is a zero or z = i is a root of P(z) = 0.

(ii) As the polynomial equation P(z) = 0 has real coefficients, complex roots occur in conjugate pairs. Thus, z = -i is also a root and $(z-i)(z+i) = z^2 - i^2 = z^2 + 1$ is a factor of P(z).

(iii) Hence,
$$P(z) = z^4 - 4z^3 + 7z^2 - 4z + 6 = (z^2 + 1)(z^2 - 4z + 6)$$
 by inspection
 $z^2 - 4z + 6 = 0$
 $(z-2)^2 = -2$ by completing the square
 $z - 2 = \pm i\sqrt{2}$

$$z = 2 \pm i\sqrt{2}$$

Therefore the roots are $\pm i$, $2 \pm i\sqrt{2}$.

(e) A relation is defined by the equation $\sin x + \cos y = \frac{1}{2}$, where $-\pi < x < \pi$ and $-\pi < y < \pi$. (i) Show that $\frac{dy}{dx} = \frac{\cos x}{\sin y}$. (ii) Find the coordinates of the points where $\frac{dy}{dx} = 0$. 2

Differentiating implicitly wrt x

$$\cos x - \sin y \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-\cos x}{-\sin y} = \frac{\cos x}{\sin y}$$

(i)

(ii)
$$\frac{dy}{dx} = 0 \Rightarrow \cos x = 0 \text{ and } \sin y \neq 0.$$

 $\cos x = 0 \Rightarrow x = \pm \frac{\pi}{2} \quad (-\pi < x < \pi).$
 $x = \frac{\pi}{2} \Rightarrow \sin \frac{\pi}{2} + \cos y = \frac{1}{2}$
 $\cos y = -\frac{1}{2} \Rightarrow y = \pm \frac{2\pi}{3}$
Therefore, $\frac{dy}{dx} = 0$ at $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$.

Question 12 (15 marks) Use a SEPARATE writing booklet.

In the Argand diagram above, OA = OB = AB = BC and $OB \perp BC$.
A represents the complex number u.1(i) Find the complex number represented by B.1(ii) Hence, or otherwise, find the complex number represented by C.2

(i)
$$\angle AOB = \frac{\pi}{3}$$
 (equilateral triangle)
 $\therefore B = u.cis\left(\frac{\pi}{3}\right)$. As \overrightarrow{OB} is obtained by rotating \overrightarrow{OA} anticlockwise by $\frac{\pi}{3}$.

(ii)
$$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$$

Now, \overrightarrow{BC} is obtained by rotating \overrightarrow{BO} anticlockwise by $\frac{\pi}{2}$.

$$\therefore C \equiv u \operatorname{cis}\left(\frac{\pi}{3}\right) - i.u \operatorname{cis}\left(\frac{\pi}{3}\right)$$
$$C \equiv (1 - i)u \operatorname{cis}\left(\frac{\pi}{3}\right)$$

Other valid approaches possible. For instance,

$$\left|\overrightarrow{OC}\right|^2 = \left|\overrightarrow{OB}\right|^2 + \left|\overrightarrow{BC}\right|^2$$
 Pythag. So, $\left|\overrightarrow{OC}\right| = \left|u\right|\sqrt{2}$
 $\angle AOC = \angle AOB - \angle BOC = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}$

 \overrightarrow{OC} is obtained by rotating \overrightarrow{OA} anticlockwise by $\frac{\pi}{12}$. So, $\overrightarrow{OC} = u\sqrt{2}\operatorname{cis}\left(\frac{\pi}{12}\right)$.

(b)

(i)

$$\frac{3-x}{\left(x^2+1\right)\left(1-2x\right)} = \frac{ax+b}{x^2+1} + \frac{c}{1-2x}$$

Comparing numerators on both sides, $3 - x \equiv (ax + b)(1 - 2x) + c(x^2 + 1)$

$$x = \frac{1}{2}: \quad \frac{5}{2} = \frac{5c}{4} \Rightarrow c = 2$$

$$x = 0: \quad 3 = b + c \Rightarrow b = 1$$

$$x^{2} \text{coeff:} \quad 0 = -2a + c \Rightarrow a = 1$$

$$\therefore a = 1, \quad b = 1, \quad c = 2$$

(ii) Hence find
$$\int \frac{3-x}{(x^2+1)(1-2x)} dx$$
. 2

$$\int \frac{3-x}{(x^2+1)(1-2x)} dx = \int \frac{x+1}{x^2+1} dx + \int \frac{2}{1-2x} dx \quad \text{using (i)}$$
$$= \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx - \int \frac{-2}{1-2x} dx$$
$$= \frac{1}{2} \log_e \left(x^2+1\right) + \tan^{-1} x - \log_e \left(1-2x\right) + C$$

From the graph, using the symmetry transformation y = f(|x|), solutions are $x \ge 3, x \le -3, -1 < x < 1$

2

(d) Given below is the graph of y = f(x). The line y = 1 is a horizontal asymptote and x = b is a vertical asymptote. The *x*-intercept is at x = a and the *y*-intercept is at $y = \frac{1}{2}$.

(ii)
$$\tan^{-1}(f(x))$$

2

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) If
$$u = 6 + ki$$
 and $v = 4 + ki$, find k if $\arg(uv) = \frac{\pi}{4}$.

$$uv = (6+ki)(4+ki) = (24-k^{2})+i(10k)$$

$$\arg(uv) = \frac{\pi}{4}$$

$$\tan(\arg(uv)) = \frac{10k}{24-k^{2}} = 1$$

$$10k = 24-k^{2}$$

$$k^{2} + 10k - 24 = 0$$

$$(k+12)(k-2) = 0$$

$$k = -12, 2$$

But $k \neq -12$ as this gives uv = -120 - 120k which is not in the first quadrant. So k = 2 is the only solution. 3

2

(b)
$$P(a \sec \theta, b \tan \theta)$$
 is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

(i) Show that the tangent at *P* has the equation $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$

$$x = a \sec \theta \Longrightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta$$
$$y = b \tan \theta \Longrightarrow \frac{dy}{d\theta} = b \sec^2 \theta$$
$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b \sec \theta}{a \tan \theta}$$

Equation of tangent at *P* is:

$$y - b \tan \theta = \frac{b \sec \theta}{a \tan \theta} (x - a \sec \theta)$$

$$ay \tan \theta - ab \tan^2 \theta = bx \sec \theta - ab \sec^2 \theta$$

$$bx \sec \theta - ay \tan \theta = ab (\sec^2 \theta - \tan^2 \theta) \qquad \div ab$$

$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1 \qquad \text{as } \sec^2 \theta - \tan^2 \theta = 1$$

(ii) The tangent at *P* meets the asymptotes of the hyperbola at *Q* and *R*. Show that PQ = PR.

3

2

The asymptotes are $y = \pm \frac{b}{a}x$. Solving simultaneously with the tangent, we get

$$\frac{x \sec \theta}{a} - \frac{\left(\pm \frac{b}{a}x\right) \tan \theta}{b} = 1$$

$$\frac{x \sec \theta}{a} - \frac{\pm x \tan \theta}{a} = 1$$

$$\frac{x(\sec \theta \mp \tan \theta)}{a} = 1 \text{ or } x = \frac{a}{(\sec \theta \mp \tan \theta)}$$
So, $Q = \left(\frac{a}{\sec \theta - \tan \theta}, \frac{b}{\sec \theta - \tan \theta}\right)$ using $y = \frac{b}{a}x$ and
$$R = \left(\frac{a}{\sec \theta + \tan \theta}, \frac{-b}{\sec \theta + \tan \theta}\right)$$
using $y = -\frac{b}{a}x$

Now, if PQ=PR, then P is the midpoint of QR. Let M be the midpoint of QR.

$$x_{M} = \frac{1}{2} \left(\frac{a \sec \theta + a \tan \theta + a \sec \theta - a \tan \theta}{\sec^{2} \theta - \tan^{2} \theta} \right) \text{ but } \sec^{2} \theta - \tan^{2} \theta = 1$$
$$= \frac{2a \sec \theta}{2} = a \sec \theta$$
$$y_{M} = \frac{1}{2} \left(\frac{b \sec \theta + b \tan \theta - b \sec \theta + b \tan \theta}{\sec^{2} \theta - \tan^{2} \theta} \right) \text{ but } \sec^{2} \theta - \tan^{2} \theta = 1$$
$$= \frac{2b \tan \theta}{2} = b \tan \theta$$
So, $M_{QR} = (a \sec \theta, b \tan \theta) = P \text{ or } PQ = PR$

Alternate approaches use distance formula or geometric relationships using similar triangles or intercepts on parallel lines.

(c) If α, β, γ are the roots of the equation $x^3 + 2x^2 + 3x - 4 = 0$, find a polynomial equation whose roots are:

(i)
$$\frac{1}{\alpha}, \frac{1}{\beta} \text{ and } \frac{1}{\gamma}$$

An equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$ is given by: $\left(\frac{1}{x}\right)^3 + 2\left(\frac{1}{x}\right)^2 + 3\left(\frac{1}{x}\right) - 4 = 0$ multiply by x^3 $1 + 2x + 3x^2 - 4x^3 = 0$ or $4x^3 - 3x^2 - 2x - 1 = 0$

(ii) α^2, β^2 and γ^2

2

3

An equation with roots α^2 , β^2 and γ^2 is given by:

$$(\sqrt{x})^{3} + 2(\sqrt{x})^{2} + 3(\sqrt{x}) - 4 = 0$$

$$x\sqrt{x} + 2x + 3\sqrt{x} - 4 = 0$$

$$(x+3)\sqrt{x} = 4 - 2x$$
 square both sides

$$(x^{2} + 6x + 9)x = 16 + 4x^{2} - 16x$$

$$x^{3} + 2x^{2} + 25x - 16 = 0$$

(d) A sequence is defined by $a_1 = 5, a_2 = 13 \text{ and } a_{n+2} = 5a_{n+1} - 6a_n \text{ for all natural numbers } n.$

Use Mathematical Induction to prove that $a_n = 2^n + 3^n$.

Let S(n) be the statement $a_n = 2^n + 3^n$. Test n = 1: $a_1 = 2^1 + 3^1 = 5$ So, S(1) is true. Test n = 2 $a_2 = 2^2 + 3^2 = 4 + 9 = 13$ So, S(2) is true. Assume S(k) and S(k+1) are true. i.e. assume $a_k = 2^k + 3^k$ and $a_{k+1} = 2^{k+1} + 3^{k+1}$ Prove S(k+2) i.e prove $a_{k+2} = 2^{k+2} + 3^{k+2}$. LHS $= a_{k+2}$ $= 5a_{k+1} - 6a_k$ using the given recursive formula $= 5(2^{k+1} + 3^{k+1}) - 6(2^k + 3^k)$ by assumption $= 5 \cdot 2^{k+1} + 5 \cdot 3^{k+1} - 6 \cdot 2^k - 6 \cdot 3^k$ $= 5 \cdot 2^{k+1} - 3 \cdot 2 \cdot 2^k + 5 \cdot 3^{k+1} - 2 \cdot 3 \cdot 3^k$ $= 5 \cdot 2^{k+1} - 3 \cdot 2^{k+1} + 5 \cdot 3^{k+1} - 2 \cdot 3^{k+1}$ $= 2 \cdot 2^{k+1} + 3 \cdot 3^{k+1}$ $= 2^{k+2} + 3^{k+2}$ = RHS

Hence, S(k+2) is true.

So, S(n) is true by Mathematical Induction.

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) Using the substitution
$$t = \tan \frac{x}{2}$$
, or otherwise, evaluate
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{1 + \cos x - \sin x} dx$$

Let
$$t = \tan \frac{x}{2}$$
 then $x = 2 \tan^{-1} t$ and $dx = \frac{2dt}{1+t^2}$

x	0	$\frac{\pi}{3}$
t	0	$\frac{1}{\sqrt{3}}$

3

2

Also,
$$\cos x = \frac{1 - t^2}{1 + t^2}$$
 and $\sin x = \frac{2t}{1 + t^2}$

$$\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos x - \sin x} dx = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{1+\frac{1-t^{2}}{1+t^{2}} - \frac{2t}{1+t^{2}}} \times \frac{2dt}{1+t^{2}}$$
$$= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{1+t^{2} + 1 - t^{2} - 2t}$$
$$= \int_{0}^{\frac{1}{\sqrt{3}}} \frac{2dt}{2-2t} = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{dt}{1-t}$$
$$= \left[-\log(1-t) \right]_{0}^{\frac{1}{\sqrt{3}}}$$
$$= -\log\left(1 - \frac{1}{\sqrt{3}}\right) + \log 1$$
$$= -\log\left(\frac{\sqrt{3} - 1}{\sqrt{3}}\right) = \log\left(\frac{\sqrt{3}}{\sqrt{3} - 1}\right)$$

(b) (i) Use integration by parts to find
$$\int x \tan^{-1} x \, dx$$
.

$$\int x \tan^{-1} x \, dx = \frac{x^2}{2} \tan^{-1} x - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \quad \text{using integration by parts}$$

$$= \frac{1}{2} \left[x^2 \tan^{-1} x - \int \frac{x^2 + 1 - 1}{1+x^2} \, dx \right]$$

$$= \frac{1}{2} \left[x^2 \tan^{-1} x - \int \frac{1}{1+x^2} \, dx \right]$$

$$= \frac{1}{2} \left[x^2 \tan^{-1} x - \int \frac{1 - \frac{1}{1+x^2}}{1+x^2} \, dx \right]$$

$$= \frac{1}{2} \left[x^2 \tan^{-1} x - x + \tan^{-1} x \right] + C$$

$$= \frac{1}{2} \left[(x^2 + 1) \tan^{-1} x - x \right] + C$$

(ii) The region bounded by the curve $y = \tan x$, the lines y = 1, $y = \sqrt{3}$ 2 and the y-axis is rotated about the x-axis.

Use the method of cylindrical shells to find the volume of the solid of revolution formed.

Radius of shell is y and height of cylindrical shell is $x = \tan^{-1} y$. Thickness of shell is δy .

Volume of cylindrical shell is $\delta V = 2\pi y \tan^{-1} y \delta y$. $V = \lim_{\delta y \to 0} \sum_{y=1}^{\sqrt{3}} \delta V$ $= 2\pi \int_{1}^{\sqrt{3}} y \tan^{-1} y dy$ $= 2\pi \frac{1}{2} \Big[(y^{2} + 1) \tan^{-1} y - y \Big]_{1}^{\sqrt{3}}$ $= \pi \Big[(4 \tan^{-1} \sqrt{3} - \sqrt{3}) - (2 \tan^{-1} 1 - 1) \Big]$ $= \pi \Big(\frac{4\pi}{3} - \sqrt{3} - 2\frac{\pi}{4} + 1 \Big)$ $= \pi \Big(\frac{5\pi}{6} - \sqrt{3} + 1 \Big)$ units³

Cylindrical shell as rectangular prism

2

(c) (i) Show that
$$a^2 + 9b^2 \ge 6ab$$
, where a and b are real numbers. 1

 $a^{2} + 9b^{2} - 6ab = (a - 3b)^{2} \ge 0$ for all real a, b (perfect square) $\therefore a^{2} + 9b^{2} \ge 6ab$

(ii) Hence, or otherwise, show that $a^2 + 5b^2 + 9c^2 \ge 3(ab + bc + ac)$.

 $a^{2} + 9b^{2} \ge 6ab$ from (i) Similarly, $b^{2} + 9c^{2} \ge 6bc$ and $a^{2} + 9c^{2} \ge 6ac$ Adding the three results we have:

$$2a^{2} + 10b^{2} + 18c^{2} \ge 6(ab + bc + ac)$$
$$a^{2} + 5b^{2} + 9c^{2} \ge 3(ab + bc + ac)$$

(iii) Hence if a > b > c > 0, show that $a^2 + 5b^2 + 9c^2 > 9bc$.

$$a^{2} + 5b^{2} + 9c^{2} \ge 3(ab + ac + bc) \quad \text{from (ii)}$$

$$> 3(bc + bc + bc) \quad \text{as } a > c \Longrightarrow ab > bc \text{ and } a > b \Longrightarrow ac > bc$$

$$= 3(3bc)$$

$$= 9bc$$

$$a^{2} + 5b^{2} + 9c^{2} > 9bc$$

1

1

3

(i) Explain why $\angle ACE = \alpha$.

Join CE.

AB and *AE* are equal chords and hence subtend equal angles at the centre and hence at the circumference. Therefore, $\angle AEB = \angle ACE = \alpha$

(ii) Prove that *CDNM* is a cyclic quadrilateral.

Let $\angle ECD = \beta$. Then $\angle ECD = \angle EAD = \beta$ (angles in same segment on chord *ED*)

 $\angle MCD = \alpha + \beta$ (adding adjacent angles)

 $\angle ANM = \alpha + \beta$ (exterior angle of $\triangle ANE$)

 $\therefore \angle ANM = \angle MCD$

Then, CDNM is cyclic (exterior angle is equal to opposite interior angle)

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Given that $p(x) = x^3 - 3ax^2 + b$ has a double zero, where *a* and *b* are non-zero real numbers, show that $4a^3 - b = 0$.

2

2

Let
$$x = \alpha$$
 be the double zero. Then $p(\alpha) = p'(\alpha) = 0$ by the Multiple Root Theorem
 $p'(x) = 3x^2 - 6ax$
 $p'(\alpha) = 3\alpha^2 - 6a\alpha = 0$
 $3\alpha(\alpha - 2a) = 0$
 $\alpha = 2a$ Note $\alpha \neq 0$ as $P(0) = b \neq 0$
 $p(\alpha) = \alpha^3 - 3a\alpha^2 + b = 0$
 $(2a)^3 - 3a(2a)^2 + b = 0$
 $8a^3 - 12a^3 + b = 0$
 $-4a^3 + b = 0$ or $4a^3 - b = 0$

(b)
$$P\left(cp, \frac{c}{p}\right)$$
 lies on the hyperbola $xy = c^2$.
(i) Show that the equation of the normal to the normal t

(i) Show that the equation of the normal to the hyperbola at *P* is given by

$$px - \frac{y}{p} = c \left(p^2 - \frac{1}{p^2} \right).$$

$$x = cp \Rightarrow \frac{dx}{dp} = c$$
$$y = \frac{c}{p} \Rightarrow \frac{dy}{dp} = -\frac{c}{p^2}$$
$$\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dy}{dp}} = \frac{-c/p^2}{c} = -\frac{1}{p^2}$$

Gradient of normal is p^2 .

Equation of normal is:

$$y - \frac{c}{p} = p^{2} (x - cp) \text{ divide by } p$$
$$\frac{y}{p} - \frac{c}{p^{2}} = px - cp^{2}$$
$$px - \frac{y}{p} = cp^{2} - \frac{c}{p^{2}}$$
$$px - \frac{y}{p} = c \left(p^{2} - \frac{1}{p^{2}} \right)$$

(ii) The equation of the tangent at *P* is $x + p^2 y = 2cp$. DO NOT PROVE THIS.

3

The normal at P cuts the x-axis at Q and the tangent at P cuts the y-axis at R. M is the midpoint of QR.

Find the equation of the locus of M as P moves on the hyperbola.

$$Q = \left(c\left(p - \frac{1}{p^3}\right), 0\right) \text{ and } R = \left(0, \frac{2c}{p}\right)$$

$$M = \left(\frac{c}{2}\left(p - \frac{1}{p^3}\right), \frac{c}{p}\right)$$
For locus of M ,

$$x = \frac{c}{2}\left(p - \frac{1}{p^3}\right) \quad (1) \text{ and } y = \frac{c}{p} \qquad (2)$$
From (2), $p = \frac{c}{y}$. Sub into (1)

$$x = \frac{c}{2}\left(\frac{c}{y} - \frac{y^3}{c^3}\right)$$

$$x = \frac{c^2}{2y} - \frac{y^3}{2c^2} \quad \text{multiply by } 2c^2y$$

$$2c^2xy = c^4 - y^4$$

(c) Let
$$I = \int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x) + f\left(\frac{1}{x}\right)\right)} dx.$$

(i) Use a suitable substitution to show that $I = \int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f(x) + f\left(\frac{1}{x}\right)\right)} dx.$ 2

Let
$$u = \frac{1}{x}$$
. Then $du = -\frac{1}{x^2}dx$
When $x = \frac{1}{a}$, $u = a$ and when $x = a$, $u = \frac{1}{a}$
 $f(x) = f\left(\frac{1}{u}\right)$ and $f\left(\frac{1}{x}\right) = f(u)$

$$\int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} dx. = \int_{a}^{\frac{1}{a}} \frac{f\left(\frac{1}{u}\right)}{\frac{1}{u}\left(f\left(\frac{1}{u}\right)+f(u)\right)} \left(-\frac{1}{u^{2}}du\right)$$
$$= \int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{u}\right)}{u\left(f\left(\frac{1}{u}\right)+f(u)\right)} du$$
$$= \int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f\left(\frac{1}{x}\right)+f(x)\right)} dx \qquad \text{as } u \text{ is a dum}$$

nmy variable

(ii) Hence, or otherwise, evaluate
$$\int_{\frac{1}{2}}^{2} \frac{\sin x}{x \left(\sin x + \sin \frac{1}{x}\right)} dx.$$
 2

Let
$$I = \int_{\frac{1}{2}}^{2} \frac{\sin x}{x\left(\sin x + \sin\frac{1}{x}\right)} dx = \int_{\frac{1}{2}}^{2} \frac{\sin\frac{1}{x}}{x\left(\sin x + \sin\frac{1}{x}\right)} dx$$
 using res

sult in (i)

$$2I = \int_{\frac{1}{2}}^{2} \frac{\sin x}{x \left(\sin x + \sin \frac{1}{x} \right)} dx + \int_{\frac{1}{2}}^{2} \frac{\sin \frac{1}{x}}{x \left(\sin x + \sin \frac{1}{x} \right)} dx$$
$$= \int_{\frac{1}{2}}^{2} \frac{\sin x + \sin \frac{1}{x}}{x \left(\sin x + \sin \frac{1}{x} \right)} dx$$
$$= \int_{\frac{1}{2}}^{2} \frac{1}{x} dx$$
$$= \left[\log_{e} x \right]_{\frac{1}{2}}^{2}$$
$$= \log 2 - \log \frac{1}{2} = \log 2 + \log 2$$
$$= 2 \log 2$$
$$I = \log 2$$

(d)	(i)	Find the area bounded by the curve $y = (x - a)^2$ and the coordinate axes,	1
		where $a > 0$.	

$$A = \int_0^a (x-a)^2 dx$$
$$= \left[\frac{(x-a)^3}{3}\right]_0^a$$
$$= 0 - \left(\frac{-a^3}{3}\right) = \frac{a^3}{3}$$

The heights of the cross-sections are bounded by the line z = 9 - y.

Find the volume of the solid.

Area of typical element is $\frac{2a^3}{3}$ from (i), where *a* is the *x*-intercept of the parabolic segment. The height of the typical element is 9 - y which equates to a^2 (the *y*-intercept of the parabolic segment). So $a = (9 - y)^{\frac{1}{2}}$. So, area of the typical element is $\frac{2}{3}(9 - y)^{\frac{3}{2}}$.

Volume of typical element is $\delta V = \frac{2}{3} (9 - y)^{\frac{3}{2}} \delta y$

$$V = \lim_{\delta y \to 0} \sum_{y=0}^{9} \delta V$$

= $\int_{0}^{9} \frac{2}{3} (9 - y)^{\frac{3}{2}} dy$
= $\frac{2}{3} \left[-\frac{2}{5} (9 - y)^{\frac{5}{2}} \right]_{0}^{9}$
= $\frac{-4}{15} (0 - 3^{5})$
= $\frac{324}{5}$ units³

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Consider
$$I_n = \int (x^2 + 1)^{-n} dx$$
, $n > 0$.
(i) Show that $I_{n+1} = \frac{x(x^2 + 1)^{-n}}{2n} + \frac{2n - 1}{2n} I_n$.
3

Using integration by parts,

$$I_{n} = \int 1.(x^{2}+1)^{-n} dx \qquad \qquad u = (x^{2}+1)^{-n} \quad v' = 1$$
$$= x(x^{2}+1)^{-n} - \int -2nx^{2}(x^{2}+1)^{-(n+1)} dx \qquad \qquad u' = -2nx(x^{2}+1)^{-(n+1)} \quad v = x$$

$$I_n = x(x^2 + 1)^{-n} + 2n \int (x^2 + 1 - 1)(x^2 + 1)^{-(n+1)} dx$$

= $x(x^2 + 1)^{-n} + 2n \int \left[(x^2 + 1)^{-n} - (x^2 + 1)^{-(n+1)} \right] dx$
= $x(x^2 + 1)^{-n} + 2nI_n - 2nI_{n+1}$

Rearranging, we have

$$2nI_{n+1} = x(x^{2}+1)^{-n} + (2n-1)I_{n}$$
$$I_{n+1} = \frac{x(x^{2}+1)^{-n}}{2n} + \frac{(2n-1)}{2n}I_{n}$$

(ii) Find
$$I_2$$
.

$$I_{2} = \frac{x(x^{2}+1)^{-1}}{2} + \frac{1}{2}I_{1} \qquad \text{using (i)}$$
$$= \frac{x}{2(x^{2}+1)} + \frac{1}{2}\int \frac{dx}{x^{2}+1}$$
$$= \frac{x}{2(x^{2}+1)} + \frac{1}{2}\tan^{-1}x + C$$

- 24 -

1

(b) (i) Using the result
$$\cos(A+B) - \cos(A-B) = -2\sin A\sin B$$
, or otherwise,
show that $\sin \theta \sum_{r=1}^{n} \sin 2r\theta = \sin(n+1)\theta \sin n\theta$.

$$\sin\theta \sum_{r=1}^{n} \sin 2r\theta = \sum_{r=1}^{n} \sin\theta \sin 2r\theta = -\frac{1}{2} \sum_{r=1}^{n} -2\sin\theta \sin 2r\theta$$
$$= -\frac{1}{2} \sum_{r=1}^{n} \left[\cos(2r+1)\theta - \cos(2r-1)\theta \right] \text{ using the given result}$$
$$= -\frac{1}{2} \left[\sum_{r=1}^{n} \cos(2r+1)\theta - \sum_{r=1}^{n} \cos(2r-1)\theta \right]$$
$$= -\frac{1}{2} \left[\sum_{r=1}^{n} \cos(2r+1)\theta - \sum_{r=0}^{n-1} \cos(2r+1)\theta \right]$$
$$= -\frac{1}{2} \left[\sum_{r=1}^{n-1} \cos(2r+1)\theta + \cos(2n+1)\theta - \cos\theta - \sum_{r=1}^{n-1} \cos(2r+1)\theta \right]$$
$$= -\frac{1}{2} \left[\cos(2n+1)\theta - \cos\theta \right]$$
$$= -\frac{1}{2} \left[\cos(n\theta + \theta + n\theta) - \cos(n\theta + \theta - n\theta) \right]$$
$$= -\frac{1}{2} \left[-2\sin(n\theta + \theta)\sin n\theta \right] \text{ using the given result}$$
$$= \sin(n+1)\theta \sin n\theta \text{ as required}$$

(ii) Hence show that
$$\sum_{r=1}^{\circ} \sin \frac{r\pi}{9} = \cot \frac{\pi}{18}$$
.

Using
$$\theta = \frac{\pi}{18}$$
 and $n = 8$ in (i) we have
 $\sin\frac{\pi}{18}\sum_{r=1}^{8}\sin.\frac{2r\pi}{18} = \sin9\left(\frac{\pi}{18}\right)\sin8\left(\frac{\pi}{18}\right)$
 $\sin\frac{\pi}{18}\sum_{r=1}^{8}\sin.\frac{r\pi}{9} = \sin\frac{\pi}{2}\sin\left(\frac{4\pi}{9}\right)$
 $\sum_{r=1}^{8}\sin.\frac{r\pi}{9} = \frac{\sin\frac{\pi}{2}\sin\left(\frac{4\pi}{9}\right)}{\sin\frac{\pi}{18}} = \frac{\sin\left(\frac{4\pi}{9}\right)}{\sin\frac{\pi}{18}}$
 $= \frac{\cos\left(\frac{\pi}{2} - \frac{4\pi}{9}\right)}{\sin\frac{\pi}{18}} = \frac{\cos\frac{\pi}{18}}{\sin\frac{\pi}{18}}$
 $= \cot\frac{\pi}{18}$

Let $f(x) = \log x - x + 1$. $f'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x}$ Stationary point at $f'(x) = 0 \Rightarrow x = 1$ f(1) = 0. So, stationary point at (1,0). $f''(x) = -\frac{1}{x^2} < 0$ for all x.

So the function is always concave down and (1,0) is a maximum turning point.

 $\therefore f(x) = \log x - x + 1 \le 0 \text{ for all } x \text{ in its domain ie for } x > 0.$ So $\log x - x + 1 \le 0$ or $\log x \le x - 1$

(ii) Show that $\log_e\left(\frac{c_1c_2...c_n}{\mu^n}\right) \le \frac{c_1 + c_2 + ... + c_n}{\mu} - n$, where $c_1, c_2, ..., c_n > 0$ and $\mu > 0$. 2

$$\log\left(\frac{c_1c_2...c_n}{\mu^n}\right) = \log\left(\frac{c_1}{\mu}.\frac{c_2}{\mu}...\frac{c_n}{\mu}\right)$$
$$= \log\left(\frac{c_1}{\mu}\right) + \log\left(\frac{c_2}{\mu}\right) + ... + \log\left(\frac{c_n}{\mu}\right)$$
$$\leq \left(\frac{c_1}{\mu} - 1\right) + \left(\frac{c_2}{\mu} - 1\right) + ... + \left(\frac{c_n}{\mu} - 1\right) \text{ using (i)}$$
$$= \frac{c_1}{\mu} + \frac{c_2}{\mu} + ... + \frac{c_n}{\mu} - n$$
$$= \frac{c_1 + c_2 + ... + c_n}{\mu} - n$$

(iii) Hence if
$$\mu = \frac{c_1 + c_2 + \dots + c_n}{n}$$
, show that $\sqrt[n]{c_1 c_2 \dots c_n} \le \frac{c_1 + c_2 + \dots + c_n}{n}$. 2

Using $\mu = \frac{c_1 + c_2 + \dots + c_n}{n}$ in the result from (ii) $\log \left(\frac{c_1 c_2 \dots c_n}{\left(\frac{c_1 + c_2 + \dots + c_n}{n}\right)^n} \right) \le \frac{c_1 + c_2 + \dots + c_n}{\left(\frac{c_1 + c_2 + \dots + c_n}{n}\right)} - n$ $\log \left(\frac{n^n c_1 c_2 \dots c_n}{\left(c_1 + c_2 + \dots + c_n\right)^n} \right) \le n - n = 0$

$$\frac{n^{n}c_{1}c_{2}...c_{n}}{\left(c_{1}+c_{2}+...+c_{n}\right)^{n}} \leq 1$$

$$n^{n}c_{1}c_{2}...c_{n} \leq \left(c_{1}+c_{2}+...+c_{n}\right)^{n}$$

$$c_{1}c_{2}...c_{n} \leq \left(\frac{c_{1}+c_{2}+...+c_{n}}{n}\right)^{n}$$

$$\sqrt[n]{c_{1}c_{2}...c_{n}} \leq \frac{c_{1}+c_{2}+...+c_{n}}{n}$$

$$\frac{c_{1}+c_{2}+...+c_{n}}{n} \geq \sqrt[n]{c_{1}c_{2}...c_{n}}$$

(iv)	Hence use part (iii) to find a lower bound for	101	103	105	197	199	1	
(\mathbf{IV})	Thenee use part (iii) to find a lower bound for	103	105	107	199	101.	1	

Using result (iii) with	$c_1 = \frac{101}{103}; c_2$	$=\frac{103}{105};c_3=$	$=\frac{105}{107}c_{50}$	$=\frac{199}{101}$
$\frac{101}{103} + \frac{103}{105} + \dots + \frac{197}{199} + \dots$	$\frac{+\frac{199}{101}}{\sqrt[5]{101}} \ge \sqrt[50]{\frac{10}{10}}$	$\frac{101}{1} \times \frac{103}{1} \times \frac{103}{1}$	× <u>197</u> × <u>1</u>	$\frac{99}{99} = 1$
50	- 10	3 105	199 [^] 1	01
$\frac{101}{103} + \frac{103}{105} + \dots + \frac{197}{199}$	$+\frac{199}{101} \ge 50$			

End of solutions