

2017 TRIAL HSC EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hours
- Write using black pen
- Board approved calculators may be used
- A reference sheet has been provided
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 2-6
10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II Pages 7-15
90 Marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section

NAME: \qquad TEACHER:

STUDENT NUMBER:

\qquad

Question	$1-10$	11	12	13	14	15	16	Total
Mark								
	$/ 10$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 15$	$/ 100$

Section I

10 marks
Attempt Questions 1-10
Allow about $\mathbf{1 5}$ minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 If k is a real number, then what is $\frac{k^{2}+4}{2-k i}$ equal to?
(A) $\quad 2-k i$
(B) $k-2 i$
(C) $2+k i$
(D) $k+2 i$

2 Which of the following Argand diagrams describes the locus defined by $\arg (z-i)=\arg (z+1)$?
(A)

(B)

(C)

(D)

3 The roots of the polynomial $x^{3}-2 x^{2}+5 x+4=0$ are α, β and γ.
What is the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$?
(A) 4
(B) 25
(C) -6
(D) 14

4 The polynomial $P(x)=x^{3}-11 x-20$ has a zero at $x=-2+i$. Which of the graphs below could be the graph of $y=P(x)$?
(A)

(B)

(C)

(D)

5 Let $z_{1}=r_{1} \operatorname{cis} \alpha$ and $z_{2}=r_{2} \operatorname{cis} \beta$ where r_{1} and r_{2} are real numbers.
z_{1} and $z_{1} z_{2}$ are shown in the Argand diagram below.

Which of the following is necessarily true?
(A) $\quad r_{1}>1$
(B) $\quad r_{2}>1$
(C) $\left|\frac{z_{1}}{z_{2}}\right|>r_{1}$
(D) $\quad r_{2}<\left|z_{1} z_{2}\right|$
$6 \quad P$ is an extremity of the minor axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci at S and S^{\prime}. If SPS' is a right-angled triangle, what is the eccentricity of the ellipse?
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$

7 The region bounded by the circle $x^{2}+y^{2}=1$ is rotated about the line $x=1$.

What is the volume of the solid of revolution formed?
(A) $\quad V=4 \pi \int_{0}^{1}\left(1-y^{2}\right)^{\frac{1}{2}} d y$
(B) $\quad V=8 \pi \int_{0}^{1}\left(1-y^{2}\right)^{\frac{1}{2}} d y$
(C) $\quad V=4 \pi \int_{0}^{1}\left(1-y^{2}\right) d y$
(D) $\quad V=8 \pi \int_{0}^{1}\left(1-y^{2}\right) d y$

8 What is the range of the function $f(x)=\left(x^{2}-1\right) \sin ^{-1}(x-1)$?
(A) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(B) $\frac{\pi}{2} \leq y \leq \frac{3 \pi}{2}$
(C) $0 \leq y \leq \frac{\pi}{2}$
(D) $0 \leq y \leq \frac{3 \pi}{2}$

9 If $a>b$ and $k<0$, which of the following must be true?
I. $\quad a^{2}>b^{2}$
II. $\quad a+k>b+k$
III. $\quad \frac{a}{k^{2}}>\frac{b}{k^{2}}$
(A) I and II only
(B) II and III only
(C) I and III only
(D) I, II and III

10 Which expression must be equal to $\int_{0}^{a}[f(a-x)+f(a+x)] d x$?
(A) $\int_{0}^{a} f(x) d x$
(B) $\int_{0}^{2 a} f(x) d x$
(C) $2 \int_{0}^{a} f(x) d x$
(D) $\int_{-a}^{a} f(x) d x$

Section II

Total marks - 90

Attempt Questions 11-16
Allow about 2 hour 45 minutes for this section.
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the complex number $z=\sqrt{3}-3 i$.
(i) Express z in modulus-argument form. $\mathbf{2}$
(ii) Write down the argument of z^{4}. $\quad \mathbf{1}$
(iii) Hence, write z^{4} in the form $x+i y$, where x and y are real. $\mathbf{1}$
(b) Find $\int \sin ^{3} x d x$. 2
(c) Sketch the conic defined by $|z-1|+|z+1|=4$ showing intercepts, foci and directrices. $\mathbf{2}$
(d) Consider the polynomial equation $P(z)=z^{4}-4 z^{3}+7 z^{2}-4 z+6$.
(i) Show that $z=i$ is a zero of this polynomial. $\quad \mathbf{1}$
(ii) Hence, write down a quadratic real factor of $P(z)$. $\quad 1$
(iii) Find all the roots of $P(z)=0$. 2
(e) A relation is defined by the equation $\sin x+\cos y=\frac{1}{2}$, where $-\pi<x<\pi$ and $-\pi<y<\pi$.
(i) Show that $\frac{d y}{d x}=\frac{\cos x}{\sin y}$.
(ii) Find the coordinates of the points where $\frac{d y}{d x}=0$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a)

In the Argand diagram above, $O A=O B=A B=B C$ and $O B \perp B C$.
A represents the complex number u.
(i) Find the complex number represented by B.
(ii) Hence, or otherwise, find an expression in terms of u for the complex number represented by C.
(b) (i) Find real numbers a, b and c such that

$$
\frac{3-x}{\left(x^{2}+1\right)(1-2 x)}=\frac{a x+b}{x^{2}+1}+\frac{c}{1-2 x} .
$$

(ii) Hence find $\int \frac{3-x}{\left(x^{2}+1\right)(1-2 x)} d x$.
(c) (i) Sketch the curve $f(x)=\frac{x-3}{x^{2}+x-2}$ showing all intercepts and asymptotes. You are not required to find stationary points.
(ii) Hence solve $\frac{|x|-3}{x^{2}+|x|-2} \geq 0$.

Question 12 (continued)
(d) Given below is the graph of $y=f(x)$. The line $y=1$ is a horizontal asymptote and $x=b$ is a vertical asymptote. The x-intercept is at $x=a$ and the y-intercept is at $y=\frac{1}{2}$.

Neatly sketch the graphs of the following showing all important information, including the location of a, b and c :
(i) $\frac{1}{f(x)}$
(ii) $\tan ^{-1}(f(x))$

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) If $u=6+k i$ and $v=4+k i$, find k if $\arg (u v)=\frac{\pi}{4}$.
(b) $\quad P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(i) Show that the tangent at P has the equation

$$
\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1
$$

(ii) The tangent at P meets the asymptotes of the hyperbola at Q and R.

Show that $P Q=P R$.
(c) If α, β, γ are the roots of the equation $x^{3}+2 x^{2}+3 x-4=0$, find a polynomial equation whose roots are:
(i) $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$
(ii) α^{2}, β^{2} and γ^{2}
(d) A sequence is defined by
$a_{1}=5, a_{2}=13$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for all natural numbers n.
Use Mathematical Induction to prove that $a_{n}=2^{n}+3^{n}$.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Using the substitution $t=\tan \frac{x}{2}$, or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos x-\sin x} d x
$$

(b) (i) Use integration by parts to find $\int x \tan ^{-1} x d x$.
(ii) The region bounded by the curve $y=\tan x$, the lines $y=1, y=\sqrt{3}$ and the y-axis is rotated about the x-axis.

Use the method of cylindrical shells to find the volume of the solid of revolution formed.
(c) (i) Show that $a^{2}+9 b^{2} \geq 6 a b$, where a and b are real numbers.
(ii) Hence, or otherwise, show that $a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)$.
(iii) Hence if $a>b>c>0$, show that $a^{2}+5 b^{2}+9 c^{2}>9 b c$.

Question 14 continues on Page 12

Question 14 (continued)
(d) $A B C D E$ is a pentagon inscribed in a circle and $A B=A E$.
$B E$ meets $A C$ and $A D$ at M and N respectively. Let $\angle B E A=\alpha$.

(i) Explain why $\angle A C E=\alpha$.
(ii) Prove that $C D N M$ is a cyclic quadrilateral.

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Given that $p(x)=x^{3}-3 a x^{2}+b$ has a double zero, where a and b are non-zero real numbers, show that $4 a^{3}-b=0$.
(b) $\quad P\left(c p, \frac{c}{p}\right)$ lies on the hyperbola $x y=c^{2}$.
(i) Show that the equation of the normal to the hyperbola at P is given by

$$
p x-\frac{y}{p}=c\left(p^{2}-\frac{1}{p^{2}}\right) .
$$

(ii) The equation of the tangent at P is $x+p^{2} y=2 c p$. DO NOT PROVE THIS.

The normal at P cuts the x-axis at Q and the tangent at P cuts the y-axis at R. M is the midpoint of $Q R$.

Find the equation of the locus of M as P moves on the hyperbola.
(c) Let $I=\int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} d x$.
(i) Use a suitable substitution to show that $I=\int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} d x$.
(ii) Hence, or otherwise, evaluate $\int_{\frac{1}{2}}^{2} \frac{\sin x}{x\left(\sin x+\sin \frac{1}{x}\right)} d x$.

Question 15 continues on Page 14

(d) (i) Find the area bounded by the curve $y=(x-a)^{2}$ and the coordinate axes, where $a>0$.
(ii) Cross-sections of a solid perpendicular to the base are sections of two parabolas $z=(x-a)^{2}$ and $z=(x+a)^{2}$ as shown below.

The heights of the cross-sections are bounded by the line $z=9-y$.

Find the volume of the solid.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Consider $I_{n}=\int\left(x^{2}+1\right)^{-n} d x, \quad n>0$.
(i) Show that $I_{n+1}=\frac{x\left(x^{2}+1\right)^{-n}}{2 n}+\frac{2 n-1}{2 n} I_{n}$.
(ii) Find I_{2}.
(b) (i) Using the result $\cos (A+B)-\cos (A-B)=-2 \sin A \sin B$, or otherwise, show that $\sin \theta \sum_{r=1}^{n} \sin 2 r \theta=\sin (n+1) \theta \sin n \theta$.
(ii) Hence show that $\sum_{r=1}^{8} \sin \frac{r \pi}{9}=\cot \frac{\pi}{18}$.
(c) (i) Show that $\log _{e} x \leq x-1$ for $x>0$.
(ii) Show that $\log _{e}\left(\frac{c_{1} c_{2} \ldots c_{n}}{\mu^{n}}\right) \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{\mu}-n$, where $c_{1}, c_{2}, \ldots, c_{n}>0$ and $\mu>0$.
(iii) Hence if $\mu=\frac{c_{1}+c_{2}+\ldots .+c_{n}}{n}$, show that $\sqrt[n]{c_{1} c_{2} \ldots c_{n}} \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{n}$.
(iv) Hence use part (iii) to find a lower bound for $\frac{101}{103}+\frac{103}{105}+\frac{105}{107}+\ldots .+\frac{197}{199}+\frac{199}{101}$.

End of paper

1 If k is a real number, then what is $\frac{k^{2}+4}{2-k i}$ equal to?
(A) $2-k i$
(B) $k-2 i$
(C) $2+k i$

$$
\begin{aligned}
\frac{k^{2}+4}{2-k i} \times \frac{2+k i}{2+k i} & =\frac{\left(k^{2}+4\right) \times(2+k i)}{4+k^{2}} \\
& =2+k i
\end{aligned}
$$

(D) $k+2 i$

2 Which of the following Argand diagrams describes the locus defined by $\arg (z-i)=\arg (z+1)$?
(A)

(B)

(C)

(D)

3 The roots of the polynomial $x^{3}-2 x^{2}+5 x+4=0$ are α, β and γ.
What is the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$?
(A) 4
(B) 25
(C) -6

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =(-2)^{2}-2(5)=4-10 \\
& =-6
\end{aligned}
$$

(D) 14

4 The polynomial $P(x)=x^{3}-11 x-20$ has a zero at $x=-2+i$. Which of the graphs below could be the graph of $y=P(x)$?
(A)

(B)

(C)

(D)

The graph has a negative y-intercept so must be A or C . Solving for stationary points, $P^{\prime}(x)=0 \Rightarrow 3 x^{2}-11=0 \Rightarrow x= \pm \sqrt{\frac{11}{3}}$. So it has stationary points. Hence, A.

5 Let $z_{1}=r_{1} \operatorname{cis} \alpha$ and $z_{2}=r_{2} \operatorname{cis} \beta$ where r_{1} and r_{2} are real numbers.
z_{1} and $z_{1} z_{2}$ are shown in the Argand diagram below.

Which of the following is necessarily true?
(A) $r_{1}>1$
(B) $\quad r_{2}>1$
(C) $\left|\frac{z_{1}}{z_{2}}\right|>r_{1}$
(D) $\quad r_{2}<\left|z_{1} z_{2}\right|$

There is no scale, so neither r_{1} or r_{2} needs to be greater than 1. D looks like it has to be true, but if both r_{1} and r_{2} are smaller than 1 , then $\left|z_{1} z_{2}\right|=r_{1} r_{2}$ will be smaller than r_{2}. Rearranging C we get $\left|z_{1}\right|>r_{1}\left|z_{2}\right|$ or $\left|z_{1}\right|>\left|z_{1} z_{2}\right|$ which is true from the diagram. Hence, C.
$6 \quad P$ is an extremity of the minor axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci at S and S^{\prime}. If SPS' is a right-angled triangle, what is the eccentricity of the ellipse?
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$

$$
\begin{aligned}
& P=(0, \pm b) \text { and } m_{P S} \times m_{P S^{\prime}}=-1 \\
& \frac{b-0}{0-a e} \times \frac{b-0}{0+a e}=-1 \Rightarrow \frac{b^{2}}{-a^{2} e^{2}}=-1 \\
& b^{2}=a^{2} e^{2} \Rightarrow e^{2}=\frac{b^{2}}{a^{2}} \\
& e^{2}=1-e^{2} \text { or } 2 e^{2}=1 \Rightarrow e=\frac{1}{\sqrt{2}}
\end{aligned}
$$

7 The region bounded by the circle $x^{2}+y^{2}=1$ is rotated about the line $x=1$.

What is the volume of the solid of revolution formed?
(A) $\quad V=4 \pi \int_{0}^{1}\left(1-y^{2}\right)^{\frac{1}{2}} d y$
(B) $V=8 \pi \int_{0}^{1}\left(1-y^{2}\right)^{\frac{1}{2}} d y$
(C) $\quad V=4 \pi \int_{0}^{1}\left(1-y^{2}\right) d y$
(D) $\quad V=8 \pi \int_{0}^{1}\left(1-y^{2}\right) d y$

$$
\begin{aligned}
& x^{2}+y^{2}=1 \Rightarrow x= \pm \sqrt{1-y^{2}} \\
& R=1+\sqrt{1-y^{2}} \text { and } r=1-\sqrt{1-y^{2}} \\
& V=\pi \int_{-1}^{1}\left(R^{2}-r^{2}\right) d y \\
& =2 \pi \int_{0}^{1}(R+r)(R-r) d y \\
& =2 \pi \int_{0}^{1}(2)\left(2 \sqrt{1-y^{2}}\right) d y \\
& =8 \pi \int_{0}^{1}\left(1-y^{2}\right)^{\frac{1}{2}} d y
\end{aligned}
$$

8 What is the range of the function $f(x)=\left(x^{2}-1\right) \sin ^{-1}(x-1)$?
(A) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(B) $\frac{\pi}{2} \leq y \leq \frac{3 \pi}{2}$
(C) $0 \leq y \leq \frac{\pi}{2}$
(D) $0 \leq y \leq \frac{3 \pi}{2}$

From the graphs of $y=x^{2}-1$ and $y=\sin ^{-1}(x-1)$
both are negative or both are positive. So the range is always positive. When both are $0, y=0$, so not B .

Finally, looking at endpoints of the domain of $y=\sin ^{-1}(x-1)$, the answer is D.

9 If $a>b$ and $k<0$, which of the following must be true?
I. $\quad a^{2}>b^{2}$
II. $a+k>b+k$
III. $\frac{a}{k^{2}}>\frac{b}{k^{2}}$
(A) I and II only

I is true only if a and b are positive.
II is true regardless of whether a, b, or k are positive.
III is true as $k^{2}>0$ when $k<0$
Therefore II and III are true, so B.
(B) II and III only
(C) I and III only
(D) I, II and III

10 Which expression must be equal to $\int_{0}^{a}[f(a-x)+f(a+x)] d x$?
(A) $\int_{0}^{a} f(x) d x$
$\int_{0}^{a} f(a-x) d x=\int_{0}^{a} f(x) d x$ by symmetry in $x=\frac{a}{2}$.
(B) $\int_{0}^{2 a} f(x) d x$ $y=f(a+x)$ is $y=f(x)$ shifted right by a units. $\int_{0}^{a} f(a+x) d x=\int_{a}^{2 a} f(x) d u$.
(C) $2 \int_{0}^{a} f(x) d x$
(D) $\int_{-a}^{a} f(x) d x$

$$
\begin{aligned}
\int_{0}^{a}[f(a-x)+f(a+x)] d x & =\int_{0}^{a} f(x) d x+\int_{a}^{2 a} f(x) d x \\
& =\int_{0}^{2 a} f(x) d x
\end{aligned}
$$

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the complex number $z=\sqrt{3}-3 i$.
(i) Express z in modulus-argument form.
(ii) Write down the argument of z^{4}.
(iii) Hence write z^{4} in the form $x+i y$, where x and y are real.
(i) $|z|=\sqrt{\sqrt{3}^{2}+(-3)^{2}}=\sqrt{12}$
$\tan (\arg z)=\frac{-3}{\sqrt{3}}=-\sqrt{3} \Rightarrow \arg z=-\frac{\pi}{3}(4$ th quadrant $)$
$z=2 \sqrt{3}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$
(ii) $\quad \arg \left(z^{4}\right)=4 \arg (z)=4\left(-\frac{\pi}{3}\right)=-\frac{4 \pi}{3}$ or $\frac{2 \pi}{3}$
(iii) $\quad z^{4}=(2 \sqrt{3})^{4}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
$=144\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)$
$=-72+72 \sqrt{3} i$
(b) Find $\int \sin ^{3} x d x$.

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int \sin x d x+\int \cos ^{2} x(-\sin x) d x \\
& =-\cos x+\frac{\cos ^{3} x}{3}+C
\end{aligned}
$$

(c) Sketch the conic defined by $|z-1|+|z+1|=4$ showing intercepts, foci and directrices. 2

Using $P S+P S^{\prime}=2 a$, this is an ellipse with $2 a=4$ and $S(1,0)$ and $S^{\prime}(-1,0)$.
Then $a=2$; and $a e=1 \Rightarrow e=\frac{1}{2}$. Then $\frac{a}{e}=4$ and $b^{2}=a^{2}\left(1-e^{2}\right)=4\left(1-\frac{1}{4}\right)=3$

(d) Consider the polynomial equation $P(z)=z^{4}-4 z^{3}+7 z^{2}-4 z+6$.
(i) Show that $z=i$ is a zero of this polynomial.
(ii) Hence write down a quadratic real factor of $P(z)$.
(iii) Find all the roots of $P(z)=0$.
(i) $P(i)=i^{4}-4 i^{3}+7 i^{2}-4 i+6=1+4 i-7-4 i+6=0$. Therefore, $z=i$ is a zero or $z=i$ is a root of $P(z)=0$.
(ii) As the polynomial equation $P(z)=0$ has real coefficients, complex roots occur in conjugate pairs. Thus, $z=-i$ is also a root and $(z-i)(z+i)=z^{2}-i^{2}=z^{2}+1$ is a factor of $P(z)$.
(iii) Hence, $P(z)=z^{4}-4 z^{3}+7 z^{2}-4 z+6=\left(z^{2}+1\right)\left(z^{2}-4 z+6\right)$ by inspection $z^{2}-4 z+6=0$
$(z-2)^{2}=-2 \quad$ by completing the square
$z-2= \pm i \sqrt{2}$
$z=2 \pm i \sqrt{2}$
Therefore the roots are $\pm i, 2 \pm i \sqrt{2}$.
(e) A relation is defined by the equation $\sin x+\cos y=\frac{1}{2}$, where $-\pi<x<\pi$ and $-\pi<y<\pi$.
(i) Show that $\frac{d y}{d x}=\frac{\cos x}{\sin y}$.
(ii) Find the coordinates of the points where $\frac{d y}{d x}=0$.
(i) Differentiating implicitly wrt x
$\cos x-\sin y \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-\cos x}{-\sin y}=\frac{\cos x}{\sin y}$
(ii) $\frac{d y}{d x}=0 \Rightarrow \cos x=0$ and $\sin y \neq 0$.
$\cos x=0 \Rightarrow x= \pm \frac{\pi}{2} \quad(-\pi<x<\pi)$.
$x=\frac{\pi}{2} \Rightarrow \sin \frac{\pi}{2}+\cos y=\frac{1}{2} \quad x=-\frac{\pi}{2} \Rightarrow \sin \left(-\frac{\pi}{2}\right)+\cos y=\frac{1}{2}$
$\cos y=-\frac{1}{2} \Rightarrow y= \pm \frac{2 \pi}{3}$
$\cos y=\frac{3}{2} \Rightarrow$ no solutions
Therefore, $\frac{d y}{d x}=0$ at $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{\pi}{2},-\frac{2 \pi}{3}\right)$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a)

In the Argand diagram above, $O A=O B=A B=B C$ and $O B \perp B C$.
A represents the complex number u.
(i) Find the complex number represented by B.
(ii) Hence, or otherwise, find the complex number represented by C.
(i) $\angle A O B=\frac{\pi}{3}$ (equilateral triangle)
$\therefore B \equiv u . \operatorname{cis}\left(\frac{\pi}{3}\right)$. As $\overrightarrow{O B}$ is obtained by rotating $\overrightarrow{O A}$ anticlockwise by $\frac{\pi}{3}$.
(ii) $\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C}$

Now, $\overrightarrow{B C}$ is obtained by rotating $\overrightarrow{B O}$ anticlockwise by $\frac{\pi}{2}$.

$$
\begin{aligned}
\therefore C & \equiv u \operatorname{cis}\left(\frac{\pi}{3}\right)-i \cdot u \operatorname{cis}\left(\frac{\pi}{3}\right) \\
C & \equiv(1-i) u \operatorname{cis}\left(\frac{\pi}{3}\right)
\end{aligned}
$$

Other valid approaches possible. For instance,
$|\overrightarrow{O C}|^{2}=|\overrightarrow{O B}|^{2}+|\overrightarrow{B C}|^{2}$ Pythag. So, $|\overrightarrow{O C}|=|u| \sqrt{2}$
$\angle A O C=\angle A O B-\angle B O C=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}$
$\overrightarrow{O C}$ is obtained by rotating $\overrightarrow{O A}$ anticlockwise by $\frac{\pi}{12}$. So, $\overrightarrow{O C}=u \sqrt{2} \operatorname{cis}\left(\frac{\pi}{12}\right)$.
(b) (i) Find real numbers a, b and c such that

$$
\frac{3-x}{\left(x^{2}+1\right)(1-2 x)}=\frac{a x+b}{x^{2}+1}+\frac{c}{1-2 x} .
$$

Comparing numerators on both sides, $3-x \equiv(a x+b)(1-2 x)+c\left(x^{2}+1\right)$
$x=\frac{1}{2}: \frac{5}{2}=\frac{5 c}{4} \Rightarrow c=2$
$x=0: \quad 3=b+c \Rightarrow b=1$
x^{2} coeff: $0=-2 a+c \Rightarrow a=1$
$\therefore a=1, \quad b=1, \quad c=2$
(ii) Hence find $\int \frac{3-x}{\left(x^{2}+1\right)(1-2 x)} d x$.

$$
\begin{aligned}
\int \frac{3-x}{\left(x^{2}+1\right)(1-2 x)} d x & =\int \frac{x+1}{x^{2}+1} d x+\int \frac{2}{1-2 x} d x \quad \text { using (i) } \\
& =\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x-\int \frac{-2}{1-2 x} d x \\
& =\frac{1}{2} \log _{e}\left(x^{2}+1\right)+\tan ^{-1} x-\log _{e}(1-2 x)+C
\end{aligned}
$$

(c) (i) Sketch the curve $f(x)=\frac{x-3}{x^{2}+x-2}$ showing all intercepts and asymptotes. 3 You are not required to find stationary points.
$f(x)=\frac{x-3}{x^{2}+x-2}=\frac{x-3}{(x+2)(x-1)}$
Vertical asymptotes at $x=-2, x=1$.
$\lim _{x \rightarrow \pm \infty} f(x)=0$.
x-intercept is $3, y$-intercept is $\frac{3}{2}$.

(ii) Hence solve $\frac{|x|-3}{x^{2}+|x|-2} \geq 0$.

From the graph, using the symmetry transformation $y=f(|x|)$, solutions are $x \geq 3, x \leq-3,-1<x<1$
(d) Given below is the graph of $y=f(x)$. The line $y=1$ is a horizontal asymptote and $x=b$ is a vertical asymptote. The x-intercept is at $x=a$ and the y-intercept is at $y=\frac{1}{2}$.

Neatly sketch the graphs of the following showing all important information, including the location of a, b and c :
(i) $\frac{1}{f(x)}$

(ii) $\tan ^{-1}(f(x))$

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) If $u=6+k i$ and $v=4+k i$, find k if $\arg (u v)=\frac{\pi}{4}$.
$u v=(6+k i)(4+k i)=\left(24-k^{2}\right)+i(10 k)$
$\arg (u v)=\frac{\pi}{4}$
$\tan (\arg (u v))=\frac{10 k}{24-k^{2}}=1$
$10 k=24-k^{2}$
$k^{2}+10 k-24=0$
$(k+12)(k-2)=0$
$k=-12,2$

But $k \neq-12$ as this gives $u v=-120-120 k$ which is not in the first quadrant.
So $k=2$ is the only solution.
(b) $\quad P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(i) Show that the tangent at P has the equation

$$
\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1
$$

$x=a \sec \theta \Rightarrow \frac{d x}{d \theta}=a \sec \theta \tan \theta$
$y=b \tan \theta \Rightarrow \frac{d y}{d \theta}=b \sec ^{2} \theta$
$\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}=\frac{b \sec \theta}{a \tan \theta}$

Equation of tangent at P is:
$y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta)$
$a y \tan \theta-a b \tan ^{2} \theta=b x \sec \theta-a b \sec ^{2} \theta$
$b x \sec \theta-a y \tan \theta=a b\left(\sec ^{2} \theta-\tan ^{2} \theta\right) \quad \div a b$
$\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \quad$ as $\sec ^{2} \theta-\tan ^{2} \theta=1$
(ii) The tangent at P meets the asymptotes of the hyperbola at Q and R.

Show that $P Q=P R$.

The asymptotes are $y= \pm \frac{b}{a} x$. Solving simultaneously with the tangent, we get
$\frac{x \sec \theta}{a}-\frac{\left(\pm \frac{b}{a} x\right) \tan \theta}{b}=1$
$\frac{x \sec \theta}{a}-\frac{ \pm x \tan \theta}{a}=1$
$\frac{x(\sec \theta \mp \tan \theta)}{a}=1$ or $x=\frac{a}{(\sec \theta \mp \tan \theta)}$
So, $Q=\left(\frac{a}{\sec \theta-\tan \theta}, \frac{b}{\sec \theta-\tan \theta}\right) \quad$ using $y=\frac{b}{a} x$ and
$R=\left(\frac{a}{\sec \theta+\tan \theta}, \frac{-b}{\sec \theta+\tan \theta}\right)$ using $y=-\frac{b}{a} x$

Now, if $P Q=P R$, then P is the midpoint of $Q R$. Let M be the midpoint of $Q R$.

$$
\begin{aligned}
x_{M} & =\frac{1}{2}\left(\frac{a \sec \theta+a \tan \theta+a \sec \theta-a \tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}\right) \text { but } \sec ^{2} \theta-\tan ^{2} \theta=1 \\
& =\frac{2 a \sec \theta}{2}=a \sec \theta \\
y_{M} & =\frac{1}{2}\left(\frac{b \sec \theta+b \tan \theta-b \sec \theta+b \tan \theta}{\sec ^{2} \theta-\tan ^{2} \theta}\right) \text { but } \sec ^{2} \theta-\tan ^{2} \theta=1 \\
& =\frac{2 b \tan \theta}{2}=b \tan \theta
\end{aligned}
$$

So, $M_{Q R}=(a \sec \theta, b \tan \theta)=P$ or $P Q=P R$

Alternate approaches use distance formula or geometric relationships using similar triangles or intercepts on parallel lines.
(c) If α, β, γ are the roots of the equation $x^{3}+2 x^{2}+3 x-4=0$, find a polynomial equation whose roots are:
(i) $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$

An equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$ is given by:
$\left(\frac{1}{x}\right)^{3}+2\left(\frac{1}{x}\right)^{2}+3\left(\frac{1}{x}\right)-4=0 \quad$ multiply by x^{3}
$1+2 x+3 x^{2}-4 x^{3}=0$ or $4 x^{3}-3 x^{2}-2 x-1=0$

$$
\text { (ii) } \alpha^{2}, \beta^{2} \text { and } \gamma^{2}
$$

An equation with roots α^{2}, β^{2} and γ^{2} is given by:

$$
\begin{aligned}
& (\sqrt{x})^{3}+2(\sqrt{x})^{2}+3(\sqrt{x})-4=0 \\
& x \sqrt{x}+2 x+3 \sqrt{x}-4=0 \\
& (x+3) \sqrt{x}=4-2 x \quad \text { square both sides } \\
& \left(x^{2}+6 x+9\right) x=16+4 x^{2}-16 x \\
& x^{3}+2 x^{2}+25 x-16=0
\end{aligned}
$$

(d) A sequence is defined by
$a_{1}=5, a_{2}=13$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for all natural numbers n.

Use Mathematical Induction to prove that $a_{n}=2^{n}+3^{n}$.
Let $S(n)$ be the statement $a_{n}=2^{n}+3^{n}$.
Test $n=1: \quad a_{1}=2^{1}+3^{1}=5 \quad$ So, $S(1)$ is true.
Test $n=2 \quad a_{2}=2^{2}+3^{2}=4+9=13$ So, $S(2)$ is true.
Assume $S(k)$ and $S(k+1)$ are true. i.e. assume $a_{k}=2^{k}+3^{k}$ and $a_{k+1}=2^{k+1}+3^{k+1}$
Prove $S(k+2)$ i.e prove $a_{k+2}=2^{k+2}+3^{k+2}$.
LHS $=a_{k+2}$
$=5 a_{k+1}-6 a_{k} \quad$ using the given recursive formula
$=5\left(2^{k+1}+3^{k+1}\right)-6\left(2^{k}+3^{k}\right) \quad$ by assumption
$=5.2^{k+1}+5.3^{k+1}-6.2^{k}-6.3^{k}$
$=5 \cdot 2^{k+1}-3 \cdot 2 \cdot 2^{k}+5 \cdot 3^{k+1}-2.3 .3^{k}$
$=5.2^{k+1}-3.2^{k+1}+5.3^{k+1}-2.3^{k+1}$
$=2.2^{k+1}+3.3^{k+1}$
$=2^{k+2}+3^{k+2}$
$=$ RHS

Hence, $S(k+2)$ is true.
So, $S(n)$ is true by Mathematical Induction.

Question 14 (15 marks) Use a SEPARATE writing booklet
(a) Using the substitution $t=\tan \frac{X}{2}$, or otherwise, evaluate

$$
\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos x-\sin x} d x
$$

Let $t=\tan \frac{x}{2}$ then $x=2 \tan ^{-1} t$ and $d x=\frac{2 d t}{1+t^{2}}$
Also, $\cos x=\frac{1-t^{2}}{1+t^{2}}$ and $\sin x=\frac{2 t}{1+t^{2}}$

x	0	$\frac{\pi}{3}$
t	0	$\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos x-\sin x} d x & =\int_{0}^{\frac{1}{\sqrt{3}}} \frac{1}{1+\frac{1-t^{2}}{1+t^{2}}-\frac{2 t}{1+t^{2}}} \times \frac{2 d t}{1+t^{2}} \\
& =\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{1+t^{2}+1-t^{2}-2 t} \\
& =\int_{0}^{\frac{1}{\sqrt{3}}} \frac{2 d t}{2-2 t}==\int_{0}^{\frac{1}{\sqrt{3}}} \frac{d t}{1-t} \\
& =[-\log (1-t)]_{0}^{1 / \sqrt{3}} \\
& =-\log \left(1-\frac{1}{\sqrt{3}}\right)+\log 1 \\
& =-\log \left(\frac{\sqrt{3}-1}{\sqrt{3}}\right)=\log \left(\frac{\sqrt{3}}{\sqrt{3-1}}\right)
\end{aligned}
$$

(b) (i) Use integration by parts to find $\int x \tan ^{-1} x d x$.
$\int x \tan ^{-1} x d x=\frac{x^{2}}{2} \tan ^{-1} x-\int \frac{x^{2}}{2} \cdot \frac{1}{1+x^{2}} d x$ using integration by parts

$$
\begin{aligned}
& =\frac{1}{2}\left[x^{2} \tan ^{-1} x-\int \frac{x^{2}+1-1}{1+x^{2}} d x\right] \\
& =\frac{1}{2}\left[x^{2} \tan ^{-1} x-\int\left(1-\frac{1}{1+x^{2}}\right) d x\right] \\
& =\frac{1}{2}\left[x^{2} \tan ^{-1} x-x+\tan ^{-1} x\right]+C \\
& =\frac{1}{2}\left[\left(x^{2}+1\right) \tan ^{-1} x-x\right]+C
\end{aligned}
$$

$$
\begin{array}{ll}
u=\tan ^{-1} x & v^{\prime}=x \\
u^{\prime}=\frac{1}{1+x^{2}} & v=\frac{x^{2}}{2}
\end{array}
$$

(ii) The region bounded by the curve $y=\tan x$, the lines $y=1, y=\sqrt{3}$ and the y-axis is rotated about the x-axis.

Use the method of cylindrical shells to find the volume of the solid of revolution formed.

Radius of shell is y and height of cylindrical shell is $x=\tan ^{-1} y$. Thickness of shell is δy.
Volume of cylindrical shell is $\delta V=2 \pi y \tan ^{-1} y \delta y$.

$$
\begin{aligned}
V & =\lim _{\delta y \rightarrow 0} \sum_{y=1}^{\sqrt{3}} \delta V \\
& =2 \pi \int_{1}^{\sqrt{3}} y \tan ^{-1} y d y \\
& =2 \pi \frac{1}{2}\left[\left(y^{2}+1\right) \tan ^{-1} y-y\right]_{1}^{\sqrt{3}} \\
& =\pi\left[\left(4 \tan ^{-1} \sqrt{3}-\sqrt{3}\right)-\left(2 \tan ^{-1} 1-1\right)\right] \\
& =\pi\left(\frac{4 \pi}{3}-\sqrt{3}-2 \frac{\pi}{4}+1\right) \\
& =\pi\left(\frac{5 \pi}{6}-\sqrt{3}+1\right) \text { units }^{3}
\end{aligned}
$$

Cylindrical shell as rectangular prism
(c) (i) Show that $a^{2}+9 b^{2} \geq 6 a b$, where a and b are real numbers.
$a^{2}+9 b^{2}-6 a b=(a-3 b)^{2} \geq 0$ for all real a, b (perfect square)
$\therefore a^{2}+9 b^{2} \geq 6 a b$
(ii) Hence, or otherwise, show that $a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)$.
$a^{2}+9 b^{2} \geq 6 a b$ from (i)
Similarly, $b^{2}+9 c^{2} \geq 6 b c$ and $a^{2}+9 c^{2} \geq 6 a c$
Adding the three results we have:

$$
\begin{aligned}
& 2 a^{2}+10 b^{2}+18 c^{2} \geq 6(a b+b c+a c) \\
& a^{2}+5 b^{2}+9 c^{2} \geq 3(a b+b c+a c)
\end{aligned}
$$

(iii) Hence if $a>b>c>0$, show that $a^{2}+5 b^{2}+9 c^{2}>9 b c$.

$$
\begin{aligned}
a^{2}+5 b^{2}+9 c^{2} & \geq 3(a b+a c+b c) \quad \text { from (ii) } \\
& >3(b c+b c+b c) \quad \text { as } a>c \Rightarrow a b>b c \text { and } a>b \Rightarrow a c>b c \\
& =3(3 b c) \\
& =9 b c \\
a^{2}+5 b^{2}+9 c^{2} & >9 b c
\end{aligned}
$$

(d) $A B C D E$ is a pentagon inscribed in a circle and $A B=A E$. $B E$ meets $A C$ and $A D$ at M and N respectively. Let $\angle B E A=\alpha$.

(i) Explain why $\angle A C E=\alpha$.

Join CE.
$A B$ and $A E$ are equal chords and hence subtend equal angles at the centre and hence at the circumference. Therefore, $\angle A E B=\angle A C E=\alpha$
(ii) Prove that $C D N M$ is a cyclic quadrilateral.

Let $\angle E C D=\beta$. Then $\angle E C D=\angle E A D=\beta$ (angles in same segment on chord $E D$)
$\angle M C D=\alpha+\beta$ (adding adjacent angles)
$\angle A N M=\alpha+\beta$ (exterior angle of $\triangle A N E)$
$\therefore \angle A N M=\angle M C D$
Then, $C D N M$ is cyclic (exterior angle is equal to opposite interior angle)

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Given that $p(x)=x^{3}-3 a x^{2}+b$ has a double zero, where a and b are non-zero real numbers, show that $4 a^{3}-b=0$.

Let $x=\alpha$ be the double zero. Then $p(\alpha)=p^{\prime}(\alpha)=0$ by the Multiple Root Theorem
$p^{\prime}(x)=3 x^{2}-6 a x$
$p^{\prime}(\alpha)=3 \alpha^{2}-6 a \alpha=0$
$3 \alpha(\alpha-2 a)=0$
$\alpha=2 a \quad$ Note $\alpha \neq 0$ as $P(0)=b \neq 0$
$p(\alpha)=\alpha^{3}-3 a \alpha^{2}+b=0$
$(2 a)^{3}-3 a(2 a)^{2}+b=0$
$8 a^{3}-12 a^{3}+b=0$
$-4 a^{3}+b=0$ or $4 a^{3}-b=0$
(b) $\quad P\left(c p, \frac{c}{p}\right)$ lies on the hyperbola $x y=c^{2}$.
(i) Show that the equation of the normal to the hyperbola at P is given by

$$
p x-\frac{y}{p}=c\left(p^{2}-\frac{1}{p^{2}}\right) .
$$

$x=c p \Rightarrow \frac{d x}{d p}=c$
$y=\frac{c}{p} \Rightarrow \frac{d y}{d p}=-\frac{c}{p^{2}}$
$\frac{d y}{d x}=\frac{d y / d p}{d x / d p}=\frac{-c / p^{2}}{c}=-\frac{1}{p^{2}}$
Gradient of normal is p^{2}.
Equation of normal is:
$y-\frac{c}{p}=p^{2}(x-c p)$ divide by p
$\frac{y}{p}-\frac{c}{p^{2}}=p x-c p^{2}$
$p x-\frac{y}{p}=c p^{2}-\frac{c}{p^{2}}$
$p x-\frac{y}{p}=c\left(p^{2}-\frac{1}{p^{2}}\right)$
(ii) The equation of the tangent at P is $x+p^{2} y=2 c p$. DO NOT PROVE THIS.

The normal at P cuts the x-axis at Q and the tangent at P cuts the y-axis at R. M is the midpoint of $Q R$.

Find the equation of the locus of M as P moves on the hyperbola.
$Q=\left(c\left(p-\frac{1}{p^{3}}\right), 0\right)$ and $R=\left(0, \frac{2 c}{p}\right)$
$M=\left(\frac{c}{2}\left(p-\frac{1}{p^{3}}\right), \frac{c}{p}\right)$
For locus of M,
$x=\frac{c}{2}\left(p-\frac{1}{p^{3}}\right) \quad$ (1) and $y=\frac{c}{p}$
From (2), $p=\frac{c}{y}$. Sub into (1)
$x=\frac{c}{2}\left(\frac{c}{y}-\frac{y^{3}}{c^{3}}\right)$
$x=\frac{c^{2}}{2 y}-\frac{y^{3}}{2 c^{2}}$ multiply by $2 c^{2} y$
$2 c^{2} x y=c^{4}-y^{4}$
(c) Let $I=\int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} d x$.
(i) Use a suitable substitution to show that $I=\int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} d x$.

Let $u=\frac{1}{x}$. Then $d u=-\frac{1}{x^{2}} d x$
When $x=\frac{1}{a}, \quad u=a$ and when $x=a, \quad u=\frac{1}{a}$
$f(x)=f\left(\frac{1}{u}\right)$ and $f\left(\frac{1}{x}\right)=f(u)$

$$
\begin{aligned}
\int_{\frac{1}{a}}^{a} \frac{f(x)}{x\left(f(x)+f\left(\frac{1}{x}\right)\right)} d x . & =\int_{a}^{\frac{1}{a}} \frac{f\left(\frac{1}{u}\right)}{\frac{1}{u}\left(f\left(\frac{1}{u}\right)+f(u)\right)}\left(-\frac{1}{u^{2}} d u\right) \\
& =\int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{u}\right)}{u\left(f\left(\frac{1}{u}\right)+f(u)\right)} d u \\
& =\int_{\frac{1}{a}}^{a} \frac{f\left(\frac{1}{x}\right)}{x\left(f\left(\frac{1}{x}\right)+f(x)\right)} d x \quad \text { as } u \text { is a dummy variable }
\end{aligned}
$$

(ii) Hence, or otherwise, evaluate $\int_{\frac{1}{2}}^{2} \frac{\sin x}{x\left(\sin x+\sin \frac{1}{x}\right)} d x$.

Let $I=\int_{\frac{1}{2}}^{2} \frac{\sin x}{x\left(\sin x+\sin \frac{1}{x}\right)} d x=\int_{\frac{1}{2}}^{2} \frac{\sin \frac{1}{x}}{x\left(\sin x+\sin \frac{1}{x}\right)} d x \quad$ using result in (i)

$$
\begin{aligned}
2 I & =\int_{\frac{1}{2}}^{2} \frac{\sin x}{x\left(\sin x+\sin \frac{1}{x}\right)} d x+\int_{\frac{1}{2}}^{2} \frac{\sin \frac{1}{x}}{x\left(\sin x+\sin \frac{1}{x}\right)} d x \\
& =\int_{\frac{1}{2}}^{2} \frac{\sin x+\sin \frac{1}{x}}{x\left(\sin x+\sin \frac{1}{x}\right)} d x \\
& =\int_{\frac{1}{2}}^{2} \frac{1}{x} d x \\
& =\left[\log g_{e} x\right]_{1 / 2}^{2} \\
& =\log 2-\log \frac{1}{2}=\log 2+\log 2 \\
& =2 \log 2 \\
I & =\log 2
\end{aligned}
$$

(d) (i) Find the area bounded by the curve $y=(x-a)^{2}$ and the coordinate axes,

$$
\begin{aligned}
A & =\int_{0}^{a}(x-a)^{2} d x \\
& =\left[\frac{(x-a)^{3}}{3}\right]_{0}^{a}
\end{aligned}
$$

$=0-\left(\frac{-a^{3}}{3}\right)=\frac{a^{3}}{3}$
(ii) Cross-sections of a solid perpendicular to the base are sections of two parabolas $z=(x-a)^{2}$ and $z=(x+a)^{2}$ as shown below.

The heights of the cross-sections are bounded by the line $z=9-y$.

Typical element:

Area of typical element is $\frac{2 a^{3}}{3}$ from (i), where a is the x-intercept of the parabolic segment.
The height of the typical element is $9-y$ which equates to a^{2} (the y-intercept of the parabolic segment). So $a=(9-y)^{\frac{1}{2}}$.
So, area of the typical element is $\frac{2}{3}(9-y)^{\frac{3}{2}}$.
Volume of typical element is $\delta V=\frac{2}{3}(9-y)^{\frac{3}{2}} \delta y$

$$
\begin{aligned}
V & =\lim _{\delta y \rightarrow 0} \sum_{y=0}^{9} \delta V \\
& =\int_{0}^{9} \frac{2}{3}(9-y)^{\frac{3}{2}} d y \\
& =\frac{2}{3}\left[-\frac{2}{5}(9-y)^{\frac{5}{2}}\right]_{0}^{9} \\
& =\frac{-4}{15}\left(0-3^{5}\right) \\
& =\frac{324}{5} \text { units }^{3}
\end{aligned}
$$

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Consider $I_{n}=\int\left(x^{2}+1\right)^{-n} d x, \quad n>0$.
(i) Show that $I_{n+1}=\frac{x\left(x^{2}+1\right)^{-n}}{2 n}+\frac{2 n-1}{2 n} I_{n}$.

Using integration by parts,

$$
\begin{array}{rl|l}
I_{n} & =\int 1 \cdot\left(x^{2}+1\right)^{-n} d x & u=\left(x^{2}+1\right)^{-n} \\
u^{\prime}=-2 n x\left(x^{2}+1\right)^{-(n+1)} & v^{\prime}=1 \\
& =x\left(x^{2}+1\right)^{-n}-\int-2 n x^{2}\left(x^{2}+1\right)^{-(n+1)} d x & \\
I_{n} & =x\left(x^{2}+1\right)^{-n}+2 n \int\left(x^{2}+1-1\right)\left(x^{2}+1\right)^{-(n+1)} d x & \\
& =x\left(x^{2}+1\right)^{-n}+2 n \int\left[\left(x^{2}+1\right)^{-n}-\left(x^{2}+1\right)^{-(n+1)}\right] d x & \\
& =x\left(x^{2}+1\right)^{-n}+2 n I_{n}-2 n I_{n+1} &
\end{array}
$$

Rearranging, we have

$$
\begin{aligned}
& 2 n I_{n+1}=x\left(x^{2}+1\right)^{-n}+(2 n-1) I_{n} \\
& I_{n+1}=\frac{x\left(x^{2}+1\right)^{-n}}{2 n}+\frac{(2 n-1)}{2 n} I_{n}
\end{aligned}
$$

(ii) Find I_{2}.

$$
\begin{aligned}
I_{2} & =\frac{x\left(x^{2}+1\right)^{-1}}{2}+\frac{1}{2} I_{1} \quad \text { using (i) } \\
& =\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{2} \int \frac{d x}{x^{2}+1} \\
& =\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{2} \tan ^{-1} x+C
\end{aligned}
$$

(b) (i) Using the result $\cos (A+B)-\cos (A-B)=-2 \sin A \sin B$, or otherwise,

$$
\text { show that } \sin \theta \sum_{r=1}^{n} \sin 2 r \theta=\sin (n+1) \theta \sin n \theta
$$

$$
\begin{aligned}
\sin \theta \sum_{r=1}^{n} \sin 2 r \theta & =\sum_{r=1}^{n} \sin \theta \sin 2 r \theta=-\frac{1}{2} \sum_{r=1}^{n}-2 \sin \theta \sin 2 r \theta \\
& =-\frac{1}{2} \sum_{r=1}^{n}[\cos (2 r+1) \theta-\cos (2 r-1) \theta] \quad \text { using the given result } \\
& =-\frac{1}{2}\left[\sum_{r=1}^{n} \cos (2 r+1) \theta-\sum_{r=1}^{n} \cos (2 r-1) \theta\right] \\
& =-\frac{1}{2}\left[\sum_{r=1}^{n} \cos (2 r+1) \theta-\sum_{r=0}^{n-1} \cos (2 r+1) \theta\right] \\
& =-\frac{1}{2}\left[\sum_{r=1}^{n-1} \cos (2 r+1) \theta+\cos (2 n+1) \theta-\cos \theta-\sum_{r=1}^{n-1} \cos (2 r+1) \theta\right] \\
& =-\frac{1}{2}[\cos (2 n+1) \theta-\cos \theta] \\
& =-\frac{1}{2}[\cos (n \theta+\theta+n \theta)-\cos (n \theta+\theta-n \theta)] \\
& =-\frac{1}{2}[-2 \sin (n \theta+\theta) \sin n \theta] \text { using the given result } \\
& =\sin (n+1) \theta \sin n \theta \text { as required }
\end{aligned}
$$

(ii) Hence show that $\sum_{r=1}^{8} \sin \frac{r \pi}{9}=\cot \frac{\pi}{18}$.

Using $\theta=\frac{\pi}{18}$ and $n=8$ in (i) we have

$$
\begin{gathered}
\sin \frac{\pi}{18} \sum_{r=1}^{8} \sin \cdot \frac{2 r \pi}{18}=\sin 9\left(\frac{\pi}{18}\right) \sin 8\left(\frac{\pi}{18}\right) \\
\sin \frac{\pi}{18} \sum_{r=1}^{8} \sin \cdot \frac{r \pi}{9}=\sin \frac{\pi}{2} \sin \left(\frac{4 \pi}{9}\right) \\
\begin{array}{c}
\sum_{r=1}^{8} \sin \cdot \frac{r \pi}{9} \\
=\frac{\sin \frac{\pi}{2} \sin \left(\frac{4 \pi}{9}\right)}{\sin \frac{\pi}{18}}=\frac{\sin \left(\frac{4 \pi}{9}\right)}{\sin \frac{\pi}{18}} \\
=\frac{\cos \left(\frac{\pi}{2}-\frac{4 \pi}{9}\right)}{\sin \frac{\pi}{18}}=\frac{\cos \frac{\pi}{18}}{\sin \frac{\pi}{18}} \\
=\cot \frac{\pi}{18}
\end{array}
\end{gathered}
$$

(c) (i) Show that $\log _{e} x \leq x-1$ for $x>0$.

Let $f(x)=\log x-x+1$.
$f^{\prime}(x)=\frac{1}{x}-1=\frac{1-x}{x}$
Stationary point at $f^{\prime}(x)=0 \Rightarrow x=1$
$f(1)=0$. So, stationary point at $(1,0)$.
$f^{\prime \prime}(x)=-\frac{1}{x^{2}}<0$ for all x.
So the function is always concave down and $(1,0)$ is a maximum turning point.
$\therefore f(x)=\log x-x+1 \leq 0$ for all x in its domain ie for $x>0$.
So $\log x-x+1 \leq 0$ or $\log x \leq x-1$
(ii) Show that $\log _{e}\left(\frac{c_{1} c_{2} \ldots c_{n}}{\mu^{n}}\right) \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{\mu}-n$, where $c_{1}, c_{2}, \ldots, c_{n}>0$ and $\mu>0 . \quad \mathbf{2}$
$\log \left(\frac{c_{1} c_{2} \ldots c_{n}}{\mu^{n}}\right)=\log \left(\frac{c_{1}}{\mu} \cdot \frac{c_{2}}{\mu} \ldots \frac{c_{n}}{\mu}\right)$

$$
\begin{aligned}
& =\log \left(\frac{c_{1}}{\mu}\right)+\log \left(\frac{c_{2}}{\mu}\right)+\ldots+\log \left(\frac{c_{n}}{\mu}\right) \\
& \leq\left(\frac{c_{1}}{\mu}-1\right)+\left(\frac{c_{2}}{\mu}-1\right)+\ldots+\left(\frac{c_{n}}{\mu}-1\right) \text { using (i) } \\
& =\frac{c_{1}}{\mu}+\frac{c_{2}}{\mu}+\ldots+\frac{c_{n}}{\mu}-n \\
& =\frac{c_{1}+c_{2}+\ldots+c_{n}}{\mu}-n
\end{aligned}
$$

(iii) Hence if $\mu=\frac{c_{1}+c_{2}+\ldots .+c_{n}}{n}$, show that $\sqrt[n]{c_{1} c_{2} \ldots c_{n}} \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{n}$.

Using $\mu=\frac{c_{1}+c_{2}+\ldots+c_{n}}{n}$ in the result from (ii)
$\log \left(\frac{c_{1} c_{2} \ldots c_{n}}{\left(\frac{c_{1}+c_{2}+\ldots+c_{n}}{n}\right)^{n}}\right) \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{\left(\frac{c_{1}+c_{2}+\ldots+c_{n}}{n}\right)}-n$
$\log \left(\frac{n^{n} c_{1} c_{2} \ldots c_{n}}{\left(c_{1}+c_{2}+\ldots+c_{n}\right)^{n}}\right) \leq n-n=0$

$$
\begin{aligned}
\frac{n^{n} c_{1} c_{2} \ldots c_{n}}{\left(c_{1}+c_{2}+\ldots+c_{n}\right)^{n}} & \leq 1 \\
n^{n} c_{1} c_{2} \ldots c_{n} & \leq\left(c_{1}+c_{2}+\ldots+c_{n}\right)^{n} \\
c_{1} c_{2} \ldots c_{n} & \leq\left(\frac{c_{1}+c_{2}+\ldots+c_{n}}{n}\right)^{n} \\
\sqrt[n]{c_{1} c_{2} \ldots c_{n}} & \leq \frac{c_{1}+c_{2}+\ldots+c_{n}}{n} \\
\frac{c_{1}+c_{2}+\ldots+c_{n}}{n} & \geq \sqrt[n]{c_{1} c_{2} \ldots c_{n}}
\end{aligned}
$$

(iv) Hence use part (iii) to find a lower bound for $\frac{101}{103}+\frac{103}{105}+\frac{105}{107}+\ldots .+\frac{197}{199}+\frac{199}{101}$.

Using result (iii) with $c_{1}=\frac{101}{103} ; c_{2}=\frac{103}{105} ; c_{3}=\frac{105}{107} \ldots c_{50}=\frac{199}{101}$
$\frac{\frac{101}{103}+\frac{103}{105}+\ldots+\frac{197}{199}+\frac{199}{101}}{50} \geq \sqrt[50]{\frac{101}{103} \times \frac{103}{105} \times \ldots \times \frac{197}{199} \times \frac{199}{101}}=1$
$\frac{101}{103}+\frac{103}{105}+\ldots+\frac{197}{199}+\frac{199}{101} \geq 50$

End of solutions

