

NORTH SYDNEY GIRLS HIGH SCHOOL

HSC Trial Examination

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks – 100

Section I – 10 marks (pages 3 – 6)

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 7 - 17)

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section

NAME:

TEACHER:

STUDENT NUMBER:				

Question	1-10	11	12	13	14	15	16	Total
Mark								
	/10	/15	/15	/15	/15	/15	/15	/100

BLANK PAGE

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10.

1 What is the value of
$$(2+i^5)(i^2-i^3)$$
?

- (A) 5-5i
- (B) 7-*i*
- (C) -1+3i
- (D) -3+i

2 Which expression is equal to $\int x^2 \cos x \, dx$?

- (A) $x^2 \sin x + \int 2x \sin x \, dx$
- (B) $x^2 \sin x \int 2x \sin x \, dx$
- (C) $2x\sin x \int x^2 \sin x \, dx$
- (D) $2x\sin x + \int x^2 \sin x \, dx$

3 A directrix of an ellipse has the equation $x = \frac{25}{4}$ and one of its foci has the coordinates (-4,0). What is the equation of the ellipse?

(A)
$$\frac{x^2}{5} + \frac{y^2}{3} = 1$$

- (B) $\frac{x^2}{3} + \frac{y^2}{5} = 1$
- (C) $\frac{x^2}{25} + \frac{y^2}{9} = 1$
- (D) $\frac{x^2}{9} + \frac{y^2}{25} = 1$

4 Given the substitution $x = \pi - y$, which of the following is equal to $\int_{-\pi}^{\pi} x \sin x \, dx$?

0

(A)
$$\int_{-\pi}^{\pi} \sin x \, dx$$

(B)
$$\frac{\pi}{2}\int_{0}^{\pi}\sin x \, dx$$

(C)
$$\pi \int_{0}^{x} \sin x \, dx$$

(D)
$$\int_{0}^{\pi} \sin x \, dx$$

5 The region bounded by the parabola $x^2 = 4ay$ and the line y = a is rotated about the line y = a to form a solid.

Which expression represents the volume of the solid?

(A)
$$2\pi \int_{0}^{2a} \left(a - \frac{x^{2}}{4a}\right)^{2} dx$$

(B) $2\pi \int_{0}^{2a} \left(a^{2} - \left(\frac{x^{2}}{4a}\right)^{2}\right) dx$
(C) $\pi \int_{0}^{2a} \left(a - \frac{x^{2}}{4a}\right)^{2} dx$
(D) $\pi \int_{0}^{2a} \left(a^{2} - \left(\frac{x^{2}}{4a}\right)^{2}\right) dx$

- 6 Let *e* be the eccentricity of a conic, centred at the origin, with both foci on the *x*-axis. Which of the following is NOT true?
 - (A) If two ellipses have the same foci and directrices, then they have the same equation.
 - (B) If two hyperbolae have equal eccentricity, then they share the same asymptotes.
 - (C) For the hyperbola, as $e \to \infty$, the asymptotes approach the *x*-axis.
 - (D) For the ellipse, as $e \rightarrow 0$, the directrices move further away from the origin whilst the foci approach the origin.
- 7 Which complex number is a root of $z^6 + i = 0$?
 - (A) -1-i
 - (B) -1+i
 - (C) $-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$

(D)
$$-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$

- 8 If the tangent at the point $(2 \sec \phi, 3 \tan \phi)$ on the hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$ is parallel to 3x y + 4 = 0, then what is a possible value of ϕ ?
 - (A) 45°
 - (B) 60°
 - (C) 30°
 - (D) 75°

- 9 Let the complex number z satisfy the equation |z + 4i| = 3. What are the greatest and least values of |z + 3|?
 - (A) 8 and 2
 - (B) 5 and 2
 - (C) 8 and 3
 - (D) 8 and 5
- 10 The diagram below shows the graphs of the straight lines L_1 and L_2 , whose equations are y = ax + b and y = cx + d respectively.

Which of the following are true?

I.	c < a
II.	d > b
III.	ad > bc

(A) I and II only

- (B) I and III only
- (C) II and III only
- (D) I, II and III

Section II

Total marks – 90 Attempt Questions 11–16 Allow about 2 hour 45 minutes for this section. Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{4+3i}{2-i}$$
 in the form $x+iy$, where x and y are real. 2

(b) Consider the complex numbers
$$z = -1 + \sqrt{3}i$$
 and $w = 2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$.

(i) Express z in modulus-argument form.

(ii) Find the argument of
$$\frac{z}{w}$$
. 1

2

2

(c) (i) Express
$$\frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)}$$
 in the form $\frac{Ax + B}{x^2 + 9} + \frac{C}{x - 1}$.

(ii) Hence find
$$\int \frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)} dx$$
. 2

- (d) The equation $|z-2|-|z+2| = \pm 2$ corresponds to a conic in the Argand diagram. 3 Sketch the conic, showing any asymptotes, foci and directrices.
- (e) The polynomial $P(x) = x^4 + 3x^3 x^2 13x 10$ has a zero at x = -2 i.

(i)	Explain why $x = -2 + i$ is also a zero.	1
-----	--	---

(ii) Fully factorise P(x) over the real numbers.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

In the Argand diagram above, the points O, R, S, T and U correspond to the complex numbers 0, r, s, t and u respectively. The triangles *ORS* and *OTU* are right-angled isosceles triangles. Let $\omega = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$.

(i) Explain why
$$u = \sqrt{2} \omega t$$
. 1

(ii) Show that
$$r = \frac{s}{\sqrt{2}\omega}$$
. 1

(iii) Using complex numbers show that
$$\frac{SU}{RT} = \sqrt{2}$$
.

(b) Let
$$I = \int \frac{\sin x}{\sin x + 2\cos x} dx$$
 and $J = \int \frac{\cos x}{\sin x + 2\cos x} dx$

(i) Find
$$I + 2J$$
. 1

(ii) Find
$$2I - J$$
. 1

(iii) Hence, or otherwise, find
$$\int \frac{\sin x}{\sin x + 2\cos x} dx$$
. 2

Question 12 continues on Page 9

Question 12 (continued)

(c) (i) Sketch the curve
$$f(x) = \frac{4x^2}{x^2 - 9}$$
 showing all intercepts and asymptotes. 2

(ii) Hence sketch
$$|y| = f(x)$$
 on a separate number plane. 2

(d) A relation is defined by the equation
$$\tan^{-1}(x^2) + \tan^{-1}(y^2) = \frac{\pi}{4}$$
.

(i) Find
$$\frac{dy}{dx}$$
 in terms of x and y. 1

(ii) Find the gradient of the curve at the point where $x = \frac{1}{\sqrt{2}}$ and y < 0. 2

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows a sketch of y = f(x) with asymptotes at x = 0, y = -1 and y = 0. There is a maximum turning point at (2,1) and the curve passes through (-1,1).

Neatly sketch the graphs of the following showing all important information, including the coordinates of any new points which can be determined.

(i)
$$y^2 = f(x)$$
 2

(ii)
$$y = e^{f(x)}$$
 2

(b) (i) Prove that for any polynomial P(x), if k is a zero of multiplicity r, then k **1** is a zero of multiplicity r-1 of P'(x).

(ii) Given that the polynomial $P(x) = x^4 + 5x^3 + 9x^2 + 7x + 2$ has a zero of 3 multiplicity 3, factorise P(x).

Question 13 continues on Page 11

Question 13 (continued)

(c) The cubic equation $x^3 + 4x + 3 = 0$ has roots α , β and γ .

(i) Find a polynomial equation whose roots are
$$\alpha^2$$
, β^2 and γ^2 . 2

- (ii) Hence, or otherwise, find the value of $\alpha^4 + \beta^4 + \gamma^4$. 2
- (d) A sequence is defined by $a_1 = 1$, $a_2 = 8$ and $a_{n+2} = a_{n+1} + 2a_n$ for all positive **3** integers *n*. Use Mathematical Induction to prove that $a_n = 3 \times 2^{n-1} + 2(-1)^n$.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet

- (a) (i) Let x be a positive real number. Show that $x + \frac{1}{x} \ge 2$. 1
 - (ii) The region bounded by the curve $y = x + \frac{1}{x}$ and the line y = 4 is rotated 4 about the *x*-axis.

Use the method of cylindrical shells to show that the volume of the solid of revolution formed is $16\pi\sqrt{3}$ units³.

(b)	(i)	Show that if x and y are positive and $x^3 + x^2 = y^3 - y^2$, then $x < y$.	2

(ii) Show that if $0 < x \le y - 1$, then $x^3 + x^2 < y^3 - y^2$.

2

Question 14 continues on Page 13

Question 14 (continued)

In the diagram, *VUT* is a straight line joining *V* and *T*, the centres of the circles. (c) *QS* and *RU* are common tangents. Let $\angle QVU = \alpha$.

Copy the diagram into your answer booklet.

(i)	Explain why QRUV and RSTU are cyclic quadrilaterals.	1
(ii)	Show that $\triangle SRU$ is similar to $\triangle QVU$.	3
(iii)	Show that QU is parallel to RT .	2

Show that QU is parallel to RT. (iii)

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.

- (a) Determine $\int \cos^2 x \sin^7 x \, dx$.
- (b) A dome is sitting on a regular hexagonal base of side 20 metres. The height of the dome is also 20 metres. Each strut of the dome is a quarter of a circle with its centre at the centre of the hexagonal base.

A cross-sectional slice is taken parallel to the base of the dome.

(i) If the slice is *h* metres above the base, deduce that the length of each side is $\sqrt{400 - h^2}$.

(ii) Show that the area of the cross-section is
$$A = \frac{3\sqrt{3}}{2} (400 - h^2)$$
. 1

(iii) Find the volume of the solid.

Question 15 continues on Page 15

2

Question 15 (continued)

(c) The rectangular hyperbola x = ct, $y = \frac{c}{t}$, where c > 0, touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0, at points *P* and *Q*, where $P\left(cp, \frac{c}{p}\right)$ lies in the first quadrant.

(i) Explain why the equation
$$(bc)^2 t^4 - (ab)^2 t^2 + (ca)^2 = 0$$
 has roots **2**
 $p, p, -p, -p$ where $p > 0$.

(ii) Deduce that
$$p = \frac{a}{c\sqrt{2}}$$
 and $ab = 2c^2$. 2

(iii) Show that if S and S' are the foci of the hyperbola $xy = c^2$, then the quadrilateral with vertices P, S, Q and S' has area 2c(a-b).

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

(a) Consider
$$I_n = \int \frac{x^n}{\sqrt{a^2 - x^2}} dx$$
, $n \ge 0$.

(i) Show that
$$nI_n = -x^{n-1}\sqrt{a^2 - x^2 + a^2(n-1)I_{n-2}}$$
 where $n \ge 2$. 3

(ii) Hence find
$$\int \frac{x^2}{\sqrt{16-x^2}} dx.$$
 1

- (b) Let P(x) be a polynomial of degree n, where n is odd. It is known that $P(k) = \frac{k}{k+1}$ for k = 0, 1, 2, ..., n.
 - (i) Q(x) is a polynomial such that Q(x) = (x+1)P(x) x. Show that the zeroes 1 of Q(x) are x = 0, 1, 2, ..., n.

(ii) Let A be the leading coefficient of
$$Q(x)$$
. Factor $Q(x)$, 2
and show that $A = \frac{1}{1 \times 2 \times 3 \times ... \times n \times (n+1)} = \frac{1}{(n+1)!}$.

1

(iii) Find
$$P(n+1)$$
.

Question 16 continues on Page 17

Question 16 (continued)

(c) (i) Show that
$$x - \log_e(1+x) > 0$$
 for $x > 0$. 2

(ii) Hence show that
$$\sum_{k=1}^{n} \frac{1}{k} > \log_e(n+1)$$
. 2

(iii) Hence by considering
$$x + \log_e(1-x)$$
, show that $\sum_{k=1}^{\infty} \frac{1}{k^2} < 1 + \log_e 2$. 3

End of paper

NORTH SYDNEY GIRLS HIGH SCHOOL 2019 HSC Trial Examination

Mathematics Extension 2- Solutions

- 1 What is the value of $(2+i^5)(i^2-i^3)$?
 - (A) 5-5i
 - (B) 7 i
 - (C) -1+3i
 - (D) -3+i
- 2 Which expression is equal to $\int x^2 \cos x \, dx$?
 - (A) $x^2 \sin x + \int 2x \sin x \, dx$
 - (B) $x^2 \sin x \int 2x \sin x \, dx$
 - (C) $2x\sin x \int x^2 \sin x \, dx$
 - (D) $2x\sin x + \int x^2 \sin x \, dx$
- 3 A directrix of an ellipse has the equation $x = \frac{25}{4}$ and one of its foci has the coordinates (-4,0). What is the equation of the ellipse?
 - (A) $\frac{x^2}{5} + \frac{y^2}{3} = 1$ (B) $\frac{x^2}{3} + \frac{y^2}{5} = 1$ (C) $\frac{x^2}{25} + \frac{y^2}{9} = 1$ (D) $\frac{x^2}{9} + \frac{y^2}{25} = 1$

e=	4)	ae = 4	
oly x o	4 = 2	25		
	a = 25	5.		
Foci	00	the	2-axis	÷. C

4 Given the substitution $x = \pi - y$, which of the following is equal to $\int x \sin x \, dx$?

5 The region bounded by the parabola $x^2 = 4ay$ and the line y = a is rotated about the line y = a to form a solid. Which expression represents the volume of the solid?

- 6 Let *e* be the eccentricity of a conic, centred at the origin, with both foci on the *x*-axis. Which of the following is NOT true?
 - (A) If two ellipses have the same foci and directrices, then they have the same equation. Since $b^2 = a^2 (1 - c^2)$, if a and c are the same then b is also the same.
 - (B) If two hyperbolae have equal eccentricity, then they share the same asymptotes. Since $\frac{b^2}{a^2} = e^2 - 1$ if e is the same then $\frac{a}{a}$ is the same.
 - For the hyperbola, as $e \to \infty$, the asymptotes approach the x-axis. Since $\frac{B}{2} = e^2 - 1$, as $e \to \infty$, $\frac{b}{2} \to \infty$ $\therefore asymptotes$ do not approach the x-axis,
 - (D) For the ellipse, as $e \rightarrow 0$, the directrices move further away from the origin whilst the foci approach the origin.

As end a to.

- 7 Which complex number is a root of $z^6 + i = 0$?
 - (A) -1-i (B) -1+i $(C) -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ $(D) -\frac{1}{\sqrt{2}} -\frac{1}{\sqrt{2}}i$ (A) -1-i $(C) -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ $(C) -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ $(C) -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$

8 If the tangent at the point $(2 \sec \phi, 3 \tan \phi)$ on the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel

to 3x - y + 4 = 0, then what is a possible value of ϕ ?

- (A) 45°(B) 60°
- **(C)** 30°
- (D) 75°

dac = i	asection	dy =35ect
1y = :	35eedpx	1 asepton\$
n utter	s Sino	2, 1
3 = 3	3 育	$\sin \phi = \frac{1}{2}$ $\phi = 30^{\circ}$

- 3 -

9 Let the complex number z satisfy the equation |z + 4i| = 3. What are the greatest and least values of |z + 3|?

10 The diagram below shows the graphs of the straight lines L_1 and L_2 , whose equations are y = ax + b and y = cx + d respectively.

Which of the following are true?

	I. II. III.	c < a d > b ad > bc	
(A)	I and	II only	
(B)	I and I	III only	
(C)	II and	III only	
D	I, II aı	nd III	

gradient of 12 steeper than gradient	of L c<
a-intercept of LI > x-intercept of L	$2 \frac{-b}{a} > -\frac{d}{c}$
	000
since a, c < 0	bc < ad
since a, c < 0	be < ad

Question 11

Express $\frac{4+3i}{2-i}$ in the form x+iy, where x and y are real. (a) 2 $\frac{4+3i}{2-i} \times \frac{2+i}{2+i} = \frac{8+4i+6i-3}{4+i}$ = 5+101 = 1+21 Consider the complex numbers $z = -1 + \sqrt{3}i$ and $w = 2\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$. (b) Express z in modulus-argument form. (i) 2 Find the argument of $\frac{z}{w}$. (ii) 1 $|Z| = \sqrt{(-i)^2 + (\sqrt{53})^2}$ $\tan\left(\arg(z)\right) = -\sqrt{3}$ $\arg(z) = 2\pi$ $\overline{3}$ -25 $\frac{z}{z} = 2 \operatorname{cis} \frac{2\pi}{3}$ $= 2 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)$ $\begin{array}{c} \text{ii)} \quad \arg\left(\frac{\pi}{\omega}\right) = \frac{2\pi}{3} - \frac{\pi}{5} \end{array}$ = 71 Express $\frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)}$ in the form $\frac{Ax + B}{x^2 + 9} + \frac{C}{x - 1}$. (c) 2 (i) Hence find $\int \frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)} dx.$ (ii) 2 $\frac{3x^{2} + x + 6}{(x^{2} + 9)(x - 1)} = \frac{4x + 8}{x^{2} + 9} + \frac{C}{x - 1}$ - $= \frac{(A\alpha + B)(\alpha - 1) + C(\alpha^2 + 9)}{(\alpha^2 + 9)(\alpha - 1)}$ 3x2+x+6 = (Ax+B)(x-1) + C(x2+9)

sub
$$a = 1$$
, $10 = 10C$
 $C = 1$
equate coefficients, $3 = A + C = 7$, $A = 2$.
of x^2
sub $x = 0$, $6 = -B + 9C$
 $-3 = -B = 7$, $B = 3$
 $\frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)} = \frac{2x + 3}{x^2 + 9} + \frac{1}{x - 1}$
ii) $\int \frac{3x^2 + x + 6}{(x^2 + 9)(x - 1)} = \int \frac{2x}{x^2 + 9} dx + \int \frac{dx}{x^2 - 1}$
 $= \log_e(x^2 + 9) + \tan^2 \frac{x}{3} + \log_e[x^2 - 1] + C$

3

(d) The equation $|z-2| - |z+2| = \pm 2$ corresponds to a conic in the Argand diagram. Sketch the conic, showing any asymptotes, foci and directrices.

(e)	The polynomial $P(x) = x^4 + 3x^3 - x^2 - 13x - 10$ has a zero at $x = -2 - i$.
	(i) Explain why $x = -2 + i$ is also a zero.
	(ii) Fully factorise $P(x)$ over the real numbers.
	i) complex roots of polynomial with real
	coefficients occur in conjugate pairs.
	Ii) Let the roots be x, B, -2=1
	sum of roots: X+B-4=-3
	x+B=1
	product of roots: SKB = -10
	×B=-2
	The equation at - or -2=0 has noots of B.
	$P(a) = (\alpha - (2+i))(\alpha - (-2-i))(a^2 - 2 - 2)$ = (2 ² + 42 + 5)(2-2)(2+i) over IR
	$= (\pi^2 + 4\pi + \pi)(\pi - \pi)(\pi + i) \pi = R$

Question 12

(b) Let
$$I = \int \frac{\sin x}{\sin x + 2\cos x} dx$$
 and $J = \int \frac{\cos x}{\sin x + 2\cos x} dx$.
(i) Find $I + 2J$.
(ii) Find $2I - J$.
(iii) Hence, or otherwise, find $\int \frac{\sin x}{\sin x + 2\cos x} dx$.
2

i)
$$I+2J = \int \frac{\sin \alpha + 2\cos \alpha}{\sin \alpha + 2\cos \alpha} d\alpha$$

= $\int d\alpha L$
= $\int d\alpha L$

$$ii) \quad \lambda I - J = \int \frac{2 \sin \alpha - \cos \alpha}{\sin \alpha + 2\cos \alpha} d\alpha$$

$$= -\int \frac{\cos \alpha - 2\sin \alpha}{\sin \alpha + 2\cos \alpha} d\alpha$$

$$= -\log_{\alpha} |\sin \alpha + 2\cos \alpha| + C$$

$$ii) \quad I + J + 2(2I + J) = \alpha - 2\log_{\alpha} |\sin \alpha + 2\cos \alpha| + C_{\alpha}$$

$$\int I = \alpha - 2\log_{\alpha} |\sin \alpha + 2\cos \alpha| + C_{\alpha}$$

$$I = \alpha - 2\log_{\alpha} |\sin \alpha + 2\cos \alpha| + C_{\alpha}$$

$$I = \alpha - 2\log_{\alpha} |\sin \alpha + 2\cos \alpha| + C_{\alpha}$$

(c) (i) Sketch the curve
$$f(x) = \frac{4x^2}{x^2 - 9}$$
 showing all intercepts and asymptotes.
(ii) Hence sketch $|y| = f(x)$ on a separate number plane.
2
(i) vertical asymptotes: $x = \pm 3$
horizontal asymptotes: $y = 4$
 $f(-x) = f(x)$, \therefore even function
when $x=0$, $y=0$
 $\frac{1}{x^2 - 9}$
 $\frac{1}{x^2 - 9}$
 $\frac{1}{x^2 - 36} = 4x^2$, Noisoln.

(d) A relation is defined by the equation
$$\tan^{-1}(x^2) + \tan^{-1}(y^2) = \frac{\pi}{4}$$
.
(i) Find $\frac{dy}{dx}$ in terms of x and y.
(ii) Find the gradient of the curve at the point where $x = \frac{1}{\sqrt{2}}$ and $y < 0$.
2
(i) $+\infty^{-1}(x^2) + +\infty^{-1}(y^2) = \frac{\pi}{4}$
 $\frac{\partial i + \cos^{-1}(x^2) + + \cos^{-1}(y^2) = \frac{\pi}{4}}{1 + (y^2)^2 \ dx} = 0$
 $\frac{dy}{1 + (x^2)^2} + \frac{2y}{1 + (y^2)^2 \ dx} = 0$
 $\frac{dy}{1 + x^4} = -\frac{2x}{2y}$
 $\frac{dy}{1 + x^4} = -\frac{2x}{2y}$
 $\frac{dy}{1 + x^4} = -\frac{x}{2y}$

ii) when $a = \frac{1}{2}$, $\tan(\frac{1}{2}) + \tan(\frac{1}{2}) = \frac{\pi}{4}$ $\frac{tqn^{-1}(y^{2}) = \frac{\pi}{4} - tan^{-1}(\frac{1}{2})}{y^{2} = tan(\frac{\pi}{4} - tan^{-1}(\frac{1}{2}))}$ $= \frac{1 - \frac{1}{2}}{1 + 1 \times \frac{1}{2}}$ (y<0) = 13 × 9 - 5 $1 \div \frac{1}{9}$ dy = * 1 E x SA 14 1+ 10 × 252 353 5 = 85 452 Ξ 5 313

Question 13

(b) (i) Prove that for any polynomial
$$P(x)$$
, if k is a zero of multiplicity r, then k
is a zero of multiplicity $r-1$ of $P'(x)$.
(ii) Given that the polynomial $P(x) = x^4 + 5x^3 + 9x^2 + 7x + 2$ has a zero of
multiplicity 3, factorise $P(x)$.
(i) Let $P(x) = (x - k)^{r-1} Q(x)$ where $Q(k) \neq 0$
 $P'(x) = r(x - k)^{r-1} Q(x) + (x - k)Q'(x)$
 $= (x - k)^{r-1} [r Q(x) + (x - k)Q'(x)]$
 $= (x - k)^{r-1} [R(x)]$ where $R(k) \neq 0$
 $\therefore (x - k)^{r-1}$ is a zero of $P'(x)$ with multiplicity $(r-1)$.
(i) $P(x) = x^4 + 5x^3 + 9x^2 + 7x + 2$
 $P'(x) = 4x^3 + 15x^2 + 15x + 7$
 $P'(x) = 12x^2 + 30x + 15x$
 $= (x - k)^{r-1} [R(x) - 1 + 5x^2 + 15x + 7]$
 $P(x) = 12x^2 + 30x + 15x^2 - 1 + 5x^2 + 15x^2 + 15x^2$

(c) The cubic equation
$$x^3 + 4x + 3 = 0$$
 has roots α , β and γ .
(i) Find a polynomial equation whose roots are α^2 , β^2 and γ^2 .
(ii) Hence, or otherwise, find the value of $\alpha^4 + \beta^4 + \gamma^4$.
(i) Let $\alpha^2 + 4\alpha + \beta = 0$
Transforming the roots, $\alpha^2 = x$
($\sqrt{\alpha}$)³ + $4\sqrt{\alpha} + \beta = 0$
($\sqrt{\alpha}$)³ + $4\sqrt{\alpha} + \beta = 0$
($\sqrt{\alpha}$)³ + $4\sqrt{\alpha} + \beta = 0$
($\sqrt{\alpha}$)³ + $4\sqrt{\alpha} + \beta = 0$
($\sqrt{\alpha}$)⁴ + $\sqrt{\alpha}^2 + (6\alpha - 9) = 0$
This polynomial equation has roots α^2 , $\beta^2 + \delta^2$
(ii) Let $A = \alpha^2$, $\beta = \beta^2$, $c = \chi^2$
($\alpha^4 + \beta^4 + \chi^4 = H^2 + \beta^2 + c^2$
 $A^2 + B^2 + C^2 = (A + B + C)^2 - 2(AB + AC + BC)$
 $= (-\chi)^2 - 2(1C)$ from (i)
 $= 32$.

(d) A sequence is defined by $a_1 = 1$, $a_2 = 8$ and $a_{n+2} = a_{n+1} + 2a_n$ for all positive **3** integers *n*. Use Mathematical Induction to prove that $a_n = 3 \times 2^{n-1} + 2(-1)^n$.

Prove the for n=1 and n=2. For N=1 145= 1 RHS = 3x 2 + 2(-1) = [for n=2 LHS= 8 RHS = 3x2 + 2(= 612 - 8 Assume true for n=k and n=k+1 $a_k = 3 \times 2^{k-1} + 2(-1)^k$ $a_{k+1} = 3 \times 2^k + 2(-1)^{k+1}$

Prove true for
$$n = k+2$$

i.e. R.T. P. $a_{k+2} = 3 \times 2^{k+2-1} + 2(-1)^{k+2}$
 $= 3 \times 2^{k+1} + 2(-1)^{k+2}$
LHS = a_{k+2}
 $= a_{k+1} + 2a_{k}$
 $= 3 \times 2^{k-1} + 2(-1)^{k+1} + 2[3 \times 2^{k-1} + 2(-1)^{k}] (By assumption)$
 $= 3 \times 2^{k} + 2(-1)^{k+1} + 3 \cdot 2^{k} + 4(-1)^{k}$
 $= 3 \times 2^{k+1} + 2(-1)^{k+2} + 4(-1)^{k}$
 $= 3 \times 2^{k+1} + 2(-1)^{k}$
 $= 3 \times 2^{k+1} + 2(-1)^{k+2}$
 $= RHS$

. the statement is true by Mathematical Induction.

Question 14 (15 marks)

Use the method of cylindrical shells to show that the volume of the solid of revolution formed is $16\pi\sqrt{3}$ units³.

 $\Delta A = \sqrt{y^2 + x} 2\pi y$ $\Delta V = 2\pi y \sqrt{y^2 + \Delta y}$ 4 $V = \lim_{\Delta y \to 0} \frac{4}{y^{-2}} 2\pi y \sqrt{y^2 + \Delta y}$ $= \pi \int_{2}^{4} 2y \sqrt{y^2 - 4} dy.$ = $\pi \left[2 \left(y^2 - 4 \right)^{3/2} \right]^4$ $= \frac{2\pi}{3} \left(\frac{12^{3/2} - 0}{2} \right)$ = $\frac{2\pi}{3} \left(\frac{2\sqrt{3}}{3} \right)^{3}$ = $\frac{2\pi}{3} \left(\frac{2\sqrt{3}}{3} \right)^{3}$ = $\frac{2\pi}{3} \times 8 \times 8\sqrt{3}$ = 16773 units 3

(b)	(i)	Show that if x and y are positive and $x^3 + x^2 = y^3 - y^2$, then $x < y$.	2
	(ii)	Show that if $0 < x \le y - 1$, then $x^3 + x^2 < y^3 - y^2$.	2

i)
$$x^{3} + x^{2} = y^{3} - y^{2}$$

 $x^{3} + x^{2} < y^{3}$ $(y^{3} > 0)$
 $x^{3} < y^{3}$ $(y^{3} > 0)$
 $x < y$ $(x, y > 0)$

ii)
$$0 < \alpha \leq (y-1)$$

squaring $0 < \alpha^{2} \leq y^{2} - 2y \pm 1$
cubing $0 < x^{3} \leq (y-1)^{3}$
 $= y^{3} - 3y^{2} + 3y - 1$ (2)
(1) $+(2) - x^{3} + x^{2} \leq y^{3} - 2y^{2} + y$
 $= y^{3} - y^{2} - (y^{2} - y)$
 $= y^{3} - y^{2} - y(y-1)$
 $= y^{3} - y^{2} - y(y-1)$

(c) In the diagram, VUT is a straight line joining V and T, the centres of the circles.
QS and RU are common tangents. Let
$$\angle QVU = a$$
.
(c) $\boxed{Vu} = \frac{1}{\sqrt{u}} \frac{$

Question 15

(b) A dome is sitting on a regular hexagonal base of side 20 metres. The height of the dome is also 20 metres. Each strut of the dome is a quarter of a circle with its centre at the centre of the hexagonal base.

A cross-sectional slice is taken parallel to the base of the dome.

- (i) If the slice is *h* metres above the base, deduce that the length of each side is $\sqrt{400 h^2}$.
- (ii) Show that the area of the cross-section is $A = \frac{3\sqrt{3}}{2} (400 h^2)$.
- (iii) Find the volume of the solid.

2

1

2

ii) Area of hexagon:

$$A = 6 \times \frac{1}{2} \times 3 \times 3 \times \sin \frac{\pi}{3}$$

$$= 3\sqrt{3} \times \sqrt{3}$$

$$= 3\sqrt{3} (400 - h^{2})$$
iii) $AV = A \Delta h$

$$V = \lim_{n \to \infty} 2 \frac{3\sqrt{3}}{3} (400 - h^{2}) \Delta h$$

$$= \int_{0}^{20} \frac{3\sqrt{3}}{3} (400 - h^{2}) dh$$

$$= \int_{0}^{20} \frac{3\sqrt{3}}{3} (400 - h^{2}) dh$$

$$= \int_{0}^{20} \frac{3\sqrt{3}}{3} (400 - h^{2}) dh$$

$$= \frac{3\sqrt{3}}{2} [400h - h^{3}]^{20}$$

$$= 3\sqrt{3} [400h - h^{3}]^{20}$$

$$= 3\sqrt{3} (5000 - 5000)$$

$$= 3000(3 \text{ units}^{3})$$

- (c) The rectangular hyperbola x = ct, $y = \frac{c}{t}$, where c > 0, touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0, at points *P* and *Q*, where $P\left(cp, \frac{c}{p}\right)$ lies in the first quadrant.
 - (i) Explain why the equation $(bc)^2 t^4 (ab)^2 t^2 + (ca)^2 = 0$ has roots 2 p, p, -p, -p where p > 0.

2

3

(ii) Deduce that $p = \frac{a}{c\sqrt{2}}$ and $ab = 2c^2$.

(iii) Show that if *S* and *S*' are the foci of the hyperbola $xy = c^2$, then the quadrilateral with vertices *P*, *S*, *Q* and *S*' has area 2c(a-b).

i) x = ct $y = \frac{c}{t}$ and $\frac{a}{a^2} + \frac{y}{b^2} = 1$ solving simultaneously for pts of intersection. $\frac{c^{2}t^{2}}{c^{2}} + \frac{c^{3}}{c^{2}} = \frac{x \ a^{2}b^{2}t^{2}}{x \ a^{2}b^{2}t^{2}}$ $b^{2}c^{2}t^{4} + a^{2}c^{2} = a^{2}b^{2}t^{2}$ $(bc)^{2}t^{4} - (ab)^{2}t^{2} + (ac)^{2} = 0$ This equation has 2 double mosts as the ellipse and hyperbola are tongential to each other at the pts of contact. Also by the symmetry of the ellipse a the hyperbola, P. Q are at opposite ends of a diameter threfore their parameter values are apposite of each other, Hence the noots are p,p,-p,-p where p is the the parameter value at P. ii) sum of roots in poics; (P)(P) + (P)(-P) + (P)(-P) + P(-P) + (-P)(-P) + (-P)(-P) $-2\rho^2 = -\frac{(ob)^2}{(bc)^2}$ $\rho^{2} = \frac{\alpha^{2}}{2c^{2}}$ $\rho = \frac{\alpha}{c\sqrt{2}} (\rho > 0)$ product of roots: $p \times p \times (-p) \times (-p) = \frac{(ca)^2}{(bc)^2}$ $\rho^4 = \frac{\alpha^2}{\mu^4}$ 2

using () = (2) $p^4 = \frac{q^4}{c^4 + 4} = \frac{q^2}{c^2}$ ÷ 02 $\frac{a^2}{4-4} = \frac{1}{b^2}$ $a^{2}b^{2} = 4c^{4}$ $ab = 2c^{2} \qquad (ab > 0)$ $p = \frac{q}{cT_2}$ $ab = 2c^2$ SPS'Q is a parallelogram (by symmetry Area of SPS'Q = 2× Area DSPS' (iii Perpendicular distance from P to 55 = cp- x-y=0 V12+12 = |cp-<u>c</u>] 55'= 4c Area ASPS= 1x1 cp-5 x4c = 52 C2 p- 4 $= \overline{12} c^2 \times \left(\frac{q}{c\overline{12}} - \frac{c\overline{12}}{q}\right) \qquad (since \alpha) = \frac{c}{\sqrt{2}}$ from diagram = $\sqrt{c^2} \left(\frac{a^2 - \lambda^2}{a^2 - \lambda^2} \right)$ $= \frac{c}{c} \left(\alpha^2 - 2c^2 \right)$ $= c \left(a^2 - ab\right)$ from ii) = c (a - b) : Area SPS'Q = 2x Area 1 SPS' = 2c(a-b)

Question 16.

(a) Consider
$$I_n = \int \frac{x^n}{\sqrt{a^2 - x^2}} dx$$
, $n \ge 0$.
(i) Show that $nI_n = -x^{n-1}\sqrt{a^2 - x^2} + a^2(n-1)I_{n-2}$ where $n \ge 2$.
(ii) Hence find $\int \frac{x^2}{\sqrt{16 - x^2}} dx$.
(i) $I_n = \int \frac{y^n}{\sqrt{a^2 - y^2}} dx$.
(i) $I_n = \int \frac{y^n}{\sqrt{a^2 - y^2}} dx$.
(i) $I_n = \int \frac{y^n}{\sqrt{a^2 - y^2}} dx$.
(ii) $I_n = \int \frac{y^n}{\sqrt{a^2 - y^2}} dx$.
(iii) $I_n = -\frac{y^{n-1}}{\sqrt{a^2 - y^2}} dx$.
(iv) $\int \frac{y^{n-1}}{\sqrt{a^2 - x^2}} dx$.
(iv) $\int \frac{x^n}{\sqrt{a^2 - x^2}} dx = (n-1) \int \frac{x^n}{\sqrt{a^2 - x^2}} dx$.
(iv) $\int \frac{x^1}{\sqrt{a^2 - x^2}} dx = I_2$.
(where $a \le 4$).
(iv) $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = I_2$.
(where $a \le 4$).
(iv) $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = I_2$.
(iv) $\int \frac{y^n}{\sqrt{a^2 - x^2}} dx$.
(iv) $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = I_2$.
(iv) $\int \frac{y^n}{\sqrt{a^2 - x^2}} dx$.
(iv) $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = I_2$.
(iv) $\int \frac{y^n}{\sqrt{a^2 - x^2}} dx$.
(iv) $\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = \frac{x^2 + a^2(2-1)}{\sqrt{a^2 - x^2}} \int \frac{x^n}{\sqrt{a^2 - x^2}} dx$.

(b) Let
$$P(x)$$
 be a polynomial of degree n , where n is odd.
It is known that $P(k) = \frac{k}{k+1}$ for $k = 0, 1, 2, ..., n$.
(i) $Q(x)$ is a polynomial such that $Q(x) = (x+1)P(x) - x$. Show that the zeroes of $Q(x)$ are $x = 0, 1, 2, ..., n$.
(ii) Let A be the leading coefficient of $Q(x)$. Factor $Q(x)$, 2
and show that $A = \frac{1}{1 \times 2 \times 3 \times ... \times n \times (n+1)} = \frac{1}{(n+1)!}$.
(iii) Find $P(n+1)$.
(iv) $x, k - k$ where $k=0, 1, 2, ..., n$
 $Q(k) : $(k+1) \cdot P(k) = k$
 $= 0$
 \therefore the zeroes of $Q(k)$ are $a=0, 1, 2, ..., n$
(by the factor theorem)
(by the factor theorem)
(c) the factor the$

(i) Show that
$$x - \log_{c}(1+x) > 0$$
 ($n+1$) = $(n+1+1) \times P(n+1) - (n+1)$

$$Q(n+1) = (n+1+1) \times P(n+1) - (n+1)$$

$$Q(n+1) = (n+1)(n+1-1)(n+1-2) \times \dots \times (n+1-n)$$

$$Q(n+1) = (n+1)(n)(n-1) \times \dots \times (1)$$

$$= (n+1)!$$

$$= (n+1)!$$

$$Q(n+1) = (n+1) = (n+1) = 1$$

$$(n+2) P(n+1) = 1 + n+1$$

$$P(n+1) = n+2$$

$$P(n+1) = 1$$
(i) Show that $x - \log_{c}(1+x) > 0$ for $x > 0$.

(c) (i) Show that
$$x - \log_e(1+x) > 0$$
 for $x > 0$.
(ii) Hence show that $\sum_{k=1}^{n} \frac{1}{k} > \log_e(n+1)$.
(iii) Hence by considering $x + \log_e(1-x)$, show that $\sum_{k=1}^{\infty} \frac{1}{k^2} < 1 + \log_e 2$.
(i) $\frac{1}{2} \left(\frac{1}{2} - \ln\left(\frac{1+2x}{2}\right) = 1 - \frac{1}{1+2}$
 $\frac{1}{1+2} = \frac{2}{1+2}$
 $\frac{1}{1+2} = \frac{2}{1+2}$

ii) using port i) k> in (1+ k) for all k>0 $\frac{1}{k} > \ln\left(\frac{k+1}{k}\right)$ $\frac{1}{1} > \ln\left(\frac{2}{1}\right) \qquad k \ge 1$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ k=2 $\frac{1}{n} > \ln\left(\frac{n+1}{n}\right) \quad k=n.$ summing $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{3} > \ln\left(\frac{2}{1}\right) + \ln\left(\frac{3}{2}\right) + \dots + \ln\left(\frac{n+1}{n}\right)$ = In (** ** × ... × (+1) = 1~ (1+1) $\frac{n}{2} \frac{1}{k} > \ln(n+1)$ iii) $\frac{d}{dx} \left(a + \log_e(1-x) \right) = 1 - \frac{1}{1-x}$ = 1-2-1 J- SL = 24, 3-1 x <0 [numerrator positive x-1 [denominator model For O< x<1 L denominator negative

End of paper