PENRITH HIGH SCHOOL

MATHEMATICS EXTENSION 2
 2013

HSC Trial

Assessor: Mr Ferguson

General Instructions:

- Reading time - 5 minutes
- Working time - $\mathbf{3}$ hours
- Write using black or blue pen. Black pen is preferred
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.
- Work on this question paper will not be marked.

Total marks - 100
SECTION 1 - Pages 2-7

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section.
SECTION 2 - Pages 8-13
90 marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section.

Section1

Section 2

Question	Mark		Question	Mark	
11	$/ 15$		$15_{\text {motion }}$	$/ 5$	
12	$/ 15$		$15_{\text {poly }}$	$/ 7$	
13 vol	$/ 7$		15 harder ext	$/ 3$	
13 graph	$/ 8$		$16_{\text {complex }}$	$/ 6$	
14 conic	$/ 12$		16 harder ext	$/ 9$	
14 circle	$/ 3$				

Total	$/ 100$
$\%$	

This paper MUST NOT be removed from the examination room
Student Name: \qquad

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 Consider the Argand diagram below.

The inequality that represents the shaded area is:
(A) $0 \leq|z| \leq 2$
(B) $1 \leq|z| \leq 2$
(C) $0 \leq|z-1| \leq 2$
(D) $1 \leq|z-1| \leq 2$

2 Let $z=1+2 i$ and $w=-2+i$. The value of $\frac{5}{i w}$ is:
(A) $-1-2 i$
(B) $-1+2 i$
(C) $1-2 i$
(D) $1+2 i$

3 The locus of z if $\arg (z-2)-\arg (z+2)=\frac{\pi}{4}$ is best shown as:
(A)

(B)

(C)

(D)

4 The diagram shows the graph of the function $y=f(x)$.

The diagram that shows the graph of the function $y=f(x)^{2}$ is:
(A)

(B)
(C)

(D)

5 The function $y=f(x)$ is drawn below.

Which of the following is an incorrect statement?
(A) $y=f(x)$ has two asymptotes only
(B) $y=f(x)$ is continuous everywhere in its domain
(C) $y=f(x)$ has exactly one point of inflexion
(D) $y=f(x)$ is differentiable everywhere in its domain.

6 The values of the real numbers p and q that makes $1-i$ a root of the equation $z^{3}+p z+q=0$ are:
(A) $p=-2$ and $q=-4$
(B) $p=-2$ and $q=4$
(C) $p=2$ and $q=-4$
(D) $p=2$ and $q=4$

7 Let $P(x)$ be a polynomial of degree $n>0$ such that $P(x)=(x-\alpha)^{r} Q(x)$, where $r \geq 2$ and α is a real number. $Q(x)$ is a polynomial with real coefficients of degree $q>0$. Which of the following is the incorrect statement?
(A) $n \leq r+q$
(B) $\quad P(x)$ changes sign around the root $x=\alpha$
(C) Let N_{r} be the number of real roots of $P(x)$ and N_{c} the number of complex roots of $P(x)$. Then $r \leq N_{r} \leq n$ and $0 \leq N_{c} \leq q$.
(D) Roots of $P(x)$ are conjugate one another.

8 The eccentricity of the ellipse with the equation $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ is:
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{9}{16}$

9 A particle of mass m falls from rest under gravity and the resistance to its motion is $m k v$, where v is its speed and k is a positive constant. Which of the following is the correct expression for the velocity?
(A) $v=\frac{g}{k}\left(1-e^{-k t}\right)$
(B) $\quad v=\frac{g}{k}\left(1+e^{-k t}\right)$
(C) $\quad v=\frac{g}{k}\left(1-e^{k t}\right)$
(D) $\quad v=\frac{g}{k}\left(1+e^{k t}\right)$

10 The region enclosed by the ellipse $(x-1)^{2}+\frac{y^{2}}{4}=1$ is rotated about the y axis to form a solid.

What is the correct expression for volume of this solid using the method of slicing?
(A) $V=\int_{-2}^{2} \pi \sqrt{1-y^{2}} d y$
(B) $V=\int_{-2}^{2} 2 \pi \sqrt{1-y^{2}} d y$
(C) $\quad V=\int_{-2}^{2} \pi \sqrt{4-y^{2}} d y$
(D) $V=\int_{-2}^{2} 2 \pi \sqrt{4-y^{2}} d y$

Section II

90 marks
 Attempt Questions 11-16
 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) The complex number z is given by $z=-1+\sqrt{3} i$
(i) Show that $z^{2}=2 \bar{z} \quad 2$
(ii) Evaluate $|z|$ and $\operatorname{Arg}(z) \quad 2$
(b) Calculate the product of the roots of the following equation in the form $a+i b$ $(3+2 i) z^{2}-(1-2 i) z+(6-i)=0$
(c) Find the complex square roots of $7-6 \sqrt{2} i$ giving your answers in the form $x+i y$, where x and y are real.
(d) (i) Express $z=\sqrt{3}+i$ in modulus/argument form.
(ii) Show that $z^{7}+64 z=0$
(e) The points A, B, C, D on the Argand diagram represent the complex numbers a, b, c, d respectively. If $a+c=b+d$ and $a-c=i(b-d)$ find what type of quadrilateral $A B C D$ is.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int_{0}^{3} \frac{\sqrt{x}}{1+x} d x$ (Hint: let $u^{2}=x$)
(b) By using a suitable trigonometric substitution show that $\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c$
where c is some constant
(c) (i) Find real numbers A, B and C such that $\int \frac{x+6}{(x+1)\left(x^{2}+9\right)} d x \equiv \int \frac{A}{x+1}+\int \frac{B x+C}{x^{2}+9}$
(ii) Hence, find $\int \frac{x+6}{(x+1)\left(x^{2}+9\right)} d x$
(d) Using the substitution $t=\tan \frac{x}{2}$, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+3 \cos x}$
(e) For $n \geq 0$ let,

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x
$$

Show that for $n \geq 2, I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}$

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) The area bounded by the curve $y=12 x-x^{2}$, the x axis, $x=2$ and $x=10$ is rotated about the y axis to form a solid. By using the method of cylindrical shells calculate the volume of the solid.
(b) The base of a solid is the segment of the parabola $x^{2}=4 y$ cut off by the line $y=2$. Each cross section perpendicular to the y axis is a right angled isosceles triangle with the hypotenuse in the base of the solid. Find the volume of the solid.
(c) Consider the function $f(x)=\frac{e^{x}-1}{e^{x}+1}$
(i) Show that $f(x)$ is an odd function
(ii) Show that the function is always increasing 2
(iii) Find $f^{\prime}(0)$ 1
(iv) Discuss the behaviour of $f(x)$ as $x \rightarrow \pm \infty \quad 2$
(v) Sketch the graph of $y=f(x)$

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) For the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
(i) Find the eccentricity
(ii) Find the coordinates of the foci S and S^{\prime}
(iii) Find the coordinates of the directices.
(iv) Sketch the curve showing foci and directices.
P is an arbitrary point on this ellipse
(v) Prove that the sum of the distances $S P$ and $S^{\prime} P$ is independent of P
(b) (i) Find the slope of the tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point
(ii) Hence show that the equation of this tangent is $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.
(iii) If the point $P(a \cos \theta, b \sin \theta)$ is on the ellipse in quadrant one, find the minimum area of the triangle made by this tangent and the coordinate axes.
(c) Two fixed circles intersect at AB. P is a variable point on one circle.

Copy or trace the diagram into your writing booklet.
(i) Let $\angle A P B=\theta$, explain why θ is a constant.
(ii) Prove that MN is of a constant length.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) A body of unit mass falls under gravity through a resisted medium. The body falls from rest. The resistance to its motion is $\frac{1}{100} v^{2}$ Newtons where v metres per second is the speed of the body when it has fallen a distance x metres.
(i) Show that the equation of motion of the body is $\ddot{x}=g-\frac{1}{100} v^{2}$, where g is the magnitude of the acceleration due to gravity. (Note: Draw a diagram!)
(ii) Show that the terminal speed, V_{T}, is given by $V_{T}=10 \sqrt{g}$
(iii) Show that $V^{2}=V_{T}^{2}\left(1-e^{\frac{-x}{50}}\right)$
(b) $x^{3}-6 x^{2}+9 x+k=0$ has two equal roots.
(i) Show that $k=-4$ is a possible value for $k \quad 2$
(ii) Solve $x^{3}-6 x^{2}+9 x-4=0$
(c) α, β, and γ are the roots of $x^{3}+p x^{2}+q x+r=0$

Find
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) $\alpha^{3}+\beta^{3}+\gamma^{3}$
(d)
(i) Prove that $x^{2}+x+1 \geq 0$ for all real x
(ii) Hence or otherwise, prove that $a^{2}+a b+b^{2} \geq 0$

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Let $w=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$
(i) Show that w^{k} is a solution of $z^{7}-1=0$, where k is an integer.
(ii) Prove that $w+w^{2}+w^{3}+w^{4}+w^{5}+w^{6}=-1$
(iii) Hence show that $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$
(b) The Bernoulli polynomials $B_{n}(x)$ are defined by $B_{0}(x)=1$ and for $n=1,2,3, \ldots$,

$$
\begin{aligned}
& \frac{d B_{n}(x)}{d x}=n B_{n-1}(x), \text { and } \\
& \int_{0}^{1} B_{n}(x) d x=0
\end{aligned}
$$

Thus

$$
\begin{aligned}
& B_{1}(x)=x-\frac{1}{2} \\
& B_{2}(x)=x^{2}-x+\frac{1}{6} \\
& B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x
\end{aligned}
$$

(i) Show that $B_{4}(x)=x^{2}(x-1)^{2}-\frac{1}{30}$
(ii) Show that, for $n \geq 2, B_{n}(1)-B_{n}(0)=0$
(iii) Show by mathematical induction, that for $n \geq 1$

$$
B_{n}(x+1)-B_{n}(x)=n^{n-1},
$$

(iv) Hence show that for $n \geq 1$ and any positive integer k

$$
n \sum_{m=0}^{k} m^{n-1}=B_{n}(k+1)-B_{n}(0)
$$

(v) Hence deduce that $\sum_{m=0}^{135} m^{4}=9134962308$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \quad \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { Note: } \ln x=\log _{e} x, \quad x>0
$$

(T) D

SECTION I
multiple choice
(1) B
(2)

$$
\begin{aligned}
\frac{5}{i(-2+i)} & =\frac{5}{-2 i+i^{2}} \\
& =\frac{5}{-1-2 i} \times \frac{-1+2 i}{-1+2 i} \\
& =\frac{-5+10 i}{5} \\
& =-1+2 i
\end{aligned}
$$

B
(3) C
(4) D
(5) C
(6)

$$
\begin{gathered}
\sum \alpha=-\frac{b}{a}=0 \\
\sum \alpha \beta=\frac{c}{a}=p \\
\sum \alpha \beta \gamma=-\frac{d}{a}=q \\
\sum \alpha=(1-i)+(1+i)+\gamma=0 \\
\Rightarrow 2+\gamma=0 \\
\Rightarrow \gamma=-2 \\
\sum \alpha \beta \gamma=(1-i)(+i),(-2) \\
2-2=-q \\
\therefore q=4
\end{gathered}
$$

$\sum_{\alpha \beta}(1-i)(1+i)+-2(1-i)+-2(1+i)$

$$
\begin{aligned}
& 2-2+2 i+-2-2 i \\
& -2=p \quad \therefore p=-2 q=4
\end{aligned}
$$

(8)

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& 3=4\left(1-e^{2}\right) \\
& \frac{3}{4}=1-e^{2} \\
& e^{2}=1-\frac{3}{4} \\
& e=\frac{1}{2}
\end{aligned}
$$

(9)

$$
\text { (9) } \begin{aligned}
& \quad \operatorname{lmg} \prod_{m i k v} \\
& \ddot{x}=g-k v \\
& \frac{d v}{d t}=g-k v \\
& \frac{d t}{d v}=-\frac{1}{k} \cdot \frac{-k}{g-k v} \\
& 0-t=-\frac{1}{k} \ln (g-k v)+c \\
&(2)-0=-\frac{1}{k} \ln (g)+c \quad t=0 \quad v=0 \\
&(10-(2) \quad t=-\frac{1}{k} \ln (g-k v) \\
&-k t=\ln (g-k v) \\
& e^{-k t}=\frac{g-k v}{g} \\
& g e^{-k t}=g-k v \\
& k v=g-g e^{-k t} \\
& v=\frac{g}{k}\left(1-e^{-k t}\right)
\end{aligned}
$$

(10)

$$
\begin{gathered}
\pi \int_{-2}^{2} x_{2}^{2} x_{1}^{2} d y \\
\left.\sqrt{2}=\pi \int_{2}^{2}-x_{1}^{2}\right) d y \\
(x-1)^{2}+\frac{y^{2}}{4}=1 \\
x^{2}-2 x+1+\frac{y^{2}}{4}=1 \\
x^{2}-2 x+\frac{y^{2}}{4}=0 \\
\Sigma \alpha=-2 \quad x_{1}+x_{2}=-2 \\
\Sigma \alpha \beta=\frac{y^{2}}{4}=\frac{y_{1}^{2}}{4} \\
\left.x_{2}^{2}-x_{1}^{2}=\left(x_{2}-x_{1}\right)\right)\left(x_{2}+x_{1}\right) \\
4 \\
x_{2}-x_{1}=\sqrt{\left(x_{2}-x_{1}\right)^{2}} \\
=\sqrt{\left(x_{2}+x_{1}\right)^{2}-4 x_{1} x_{2}} \\
=\sqrt{(-2)^{2}-4\left(\frac{y^{2}}{4}\right)} \\
x-x_{1}=\sqrt{4-y^{2}} \\
\therefore x_{2}^{2}-x_{1}^{2}=\sqrt{4-y^{2}} \times 2
\end{gathered}
$$

Section II
(II)
a) (i)

$$
\begin{aligned}
\bar{z} & =-i+\sqrt{3} i \\
z^{2} & =(-1+\sqrt{3} i)^{2} \\
& =1-2 \sqrt{3} i-3 \\
& =-2-2 \sqrt{3} i \\
\bar{z} & =-1-\sqrt{3} i \\
2 \bar{z} & =-2-2 \sqrt{3} i \\
& =z^{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
|z| & =\sqrt{(-1)^{2}+(\sqrt{3})^{2}} \\
& =\sqrt{1+3} \\
& =2
\end{aligned}
$$

$\operatorname{Arg} z=120$ or $\frac{2 \pi}{3}$
b)

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =\frac{6-i}{3+2 i} \times \frac{3+2 i}{3-2 i} \\
& =\frac{18-12 i-3 i-2}{9+4} \\
& =\frac{16-15 i}{13} \\
& =\frac{16}{13}-\frac{15}{13} i
\end{aligned}
$$

c)

$$
\begin{align*}
& z^{2}=7-6 \sqrt{2} i \\
& x^{2}-y^{2}+2 i x y=7-6 \sqrt{2} i \\
& x^{2}-y^{2}=7 \\
& 2 x y=-6 \sqrt{2} \\
&\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2} \\
&=49+72 \\
&\left(x^{2}+y^{2}\right)^{2}=121 \\
& x^{2}+y^{2}=11 \tag{1}\\
& x^{2}-y^{2}=7 \tag{2}
\end{align*}
$$

(1) + (2)

$$
\begin{aligned}
& 2 x^{2}=18 \\
& 2 y^{2}=4 \\
& x^{2}=9 \quad \therefore x= \pm 3 \\
& y^{2}=2 \quad \therefore y= \pm 2
\end{aligned}
$$

check in *

$$
\begin{array}{r}
2 x y=-6 \sqrt{2} . \\
\therefore \quad \pm(3-2 i)
\end{array}
$$

d) i) $z=\sqrt{3}+i$

(ii)

$$
\begin{aligned}
z^{7} & =2^{2}\left(\cos \frac{7 \pi}{6}+i \sin \frac{2 \pi}{6}\right) \\
& =128\left(\cos \frac{-5 \pi}{6} i i \sin \frac{-5 \pi}{6}\right) \\
& =128\left(-\cos \frac{\pi}{6}-i \sin \frac{\pi \pi}{6}\right) \\
& =-128\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& =-64.2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& =-64 z
\end{aligned}
$$

(e)

$$
\begin{aligned}
& a+c=b+d \\
& \frac{a+c}{2}=\frac{b+d}{2}
\end{aligned}
$$

\therefore midpoint $\hat{A C}=$ midpoint $B D$
\therefore diagonals $A C, B D$ bisect eachother

$$
a-c=i(b-d)
$$

\therefore diagonal $A C$ and $B D$ are equal and perpendicular
$\therefore A B C D$ is a square
$(12)(x) \int_{0}^{3} \frac{\sqrt{x}}{1+x} d x$
Let $u^{2}=x$
$24 \frac{d x}{d x}=1$
$\frac{d x}{d x}=\frac{1}{2 x i} \quad 2 u \quad d u=d x$
dive $=$

$$
\begin{aligned}
& =\int \frac{u}{1+u^{2}} \cdot 2 u d u \\
& =\int \frac{2 u^{2}}{1+u^{2}} d u \\
& =2 \int 1-\frac{1}{1+u^{2}} \\
& =2\left[u-\tan ^{-1}(u)\right]_{0}^{\sqrt{3}} \\
& =2\left[\sqrt{3}-\frac{\pi}{3}\right] \\
& =\frac{6 \sqrt{3}-2 \pi}{3}
\end{aligned}
$$

b) $\int \frac{d x}{\sqrt{1-x^{2}}}$

Let $x=\sin \theta$

$$
\begin{aligned}
& \frac{d x}{d \theta}=\cos Q \\
& d x=\cos Q d Q \\
= & \int \frac{1}{\sqrt{1-\sin ^{2} \theta} \cos \theta d Q} \\
= & \int \frac{\cos \theta}{\cos \theta} d Q \\
= & \int 1 d \theta \\
= & Q+C \\
= & \sin ^{-1} x+C
\end{aligned}
$$

(i) $\int \frac{x+6}{(x+1)\left(x^{2}+9\right)} d x$

$$
\left(x^{2}+\phi\right) A+(x+1)(B x+c)=x+6
$$

Let $x=-1$

$$
\begin{aligned}
& 10 A=5 \\
& A=\frac{1}{2}
\end{aligned}
$$

Let $x=0$

$$
\begin{gathered}
9\left(\frac{1}{2}\right)+1(c)=6 \\
9+2 c=12 \\
2 c=3 \\
c=\frac{3}{2}
\end{gathered}
$$

Let $x=1$

$$
\begin{gathered}
\frac{10}{2}+2\left(B+\frac{3}{2}\right)=7 \\
2\left(B+\frac{3}{2}\right)=2 \\
B+\frac{3}{2}=1 \\
B=-\frac{1}{2} \\
A=\frac{1}{2} \quad B=-\frac{1}{2} \quad C=\frac{3}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (ii) } \int \frac{x+6}{(x+1)\left(x^{3}+9\right)} d x \\
& \frac{1}{2} \int \frac{i}{x+1}+\int \frac{-\frac{1}{2} x+\frac{3}{2}}{x^{2}+9} \\
& = \\
& =\frac{1}{2} \ln (x+1)+-\frac{1}{4} \int \frac{2 x-6}{x^{2}+9} \\
& = \\
& \frac{1}{2} \ln (x+1)+-\frac{1}{4}\left[\frac{2 x}{x^{2}+9}-6 \int \frac{1}{x^{2}+9}\right] \\
& =\frac{1}{2} \ln (x+1)-\frac{1}{4} \ln \left(x^{2}+9\right)+\frac{3}{2} \times \frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right) \\
& = \\
& =\frac{1}{2} \ln (x+1)-\frac{1}{4} \ln \left(x^{2}+9\right)+\frac{1}{2} \tan ^{-1}\left(\frac{x}{3}\right)+c
\end{aligned}
$$

(d) Let $t=\tan \frac{x}{2}$

$$
\begin{aligned}
\therefore d t & =\frac{1}{2} \sec ^{2} \frac{\pi}{2} d x \\
& =\frac{1+t^{2}}{2} d x
\end{aligned}
$$

$$
x=0 \quad t=0
$$

$$
x=\frac{\pi}{2} \quad t=1
$$

$$
\begin{aligned}
& d x=\frac{2 d t}{1+t^{2}} \\
& \int_{0} \frac{d x}{3+3 \cos x}=\int_{0}^{1} \frac{2 d t}{1+t^{2}} \\
& 5+3\left(\frac{1 t^{2}}{1+t^{2}}\right) \\
&=\int_{0}^{1} \frac{2 d t}{5+5 t^{2}+3-3 t^{2}} \\
&=\int_{0}^{1} \frac{2 d t}{8+2 t^{2}} \\
&=\int_{0}^{1} \frac{1}{4+t^{2}} \\
&=\frac{1}{2}\left[\tan ^{-1} \frac{t}{2}\right]_{0}^{1} \\
&=\frac{1}{2}\left[\tan ^{-1} \frac{1}{2}\right]
\end{aligned}
$$

(l)

$$
\begin{aligned}
& I_{n}=\int_{0}^{\frac{1}{2}} x^{n} \sin x d x \\
& u=x^{n} \quad u^{\prime}=n x^{n-1} \\
& v^{\prime}=\sin x \quad v=-\cos x \\
& =\left[-x^{n} \cos x\right]_{0}^{\frac{\pi}{2}}+n_{0}^{\frac{\pi}{2}} x^{n-1} \cos x d x \\
& =n \int_{0}^{\frac{\pi}{2}} x^{n-1} \cos x d x \\
& \therefore \int_{0}^{\frac{1}{2}} x^{n-1} \cos x d x=\left[x^{n-1} \sin x\right]_{0}^{\frac{\pi}{2}}-(n-1) \int_{0}^{\frac{\pi}{2}} x^{n-2} \sin x d x \\
& =\left(\frac{\pi}{2}\right)^{n-1}-(n-1) I_{1 n-2} \\
& \therefore I_{n}=n\left(\frac{\pi}{2}\right)^{n-1}-n(n-1) I_{n-2}
\end{aligned}
$$

(13)
a)

$$
\begin{aligned}
V & =\int 2 \pi x y d x \\
& =2 \pi \int_{-2}^{10} x\left(12 x x^{2}\right) d x \\
& =2 \pi \int^{10} 12 x^{2}-x^{3} d x \\
& =2 \pi\left[4 x^{3}-\frac{x^{4}}{4}\right]_{2}^{10} \\
& \left.=2 \pi\left[4000-\frac{0000}{4}\right)-(32-4)\right] \\
& =2 \pi[1500-28] \\
& =2944 \pi \text { units }^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 2 s^{2}=4 x^{2} \\
& z s^{2}=2 x^{2} \\
& s=x \sqrt{2}
\end{aligned}
$$

area of trangle is $\frac{1}{2} b \times h$

$$
\begin{aligned}
& \frac{1}{2} s^{2} \\
&= x^{2} \\
&= 4 y \\
& V=\int_{0}^{2} 4 y d y \\
& {\left[2 y^{2}\right]_{0}^{2} }=8 \text { ubicunits }
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
f(x) & =\frac{e^{x}-1}{e^{x}+1} \\
f(-x) & =\frac{e^{-x}-1}{e^{-x}+1} \times \frac{e^{x}}{e^{x}} \\
& =\frac{1-e^{x}}{1+e^{x}} \\
& =\frac{-e^{x}-1}{e^{x}+1} \\
& =-f(x)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{e^{x}\left(e^{x}+1\right)-\left(e^{x}-1\right) e^{x}}{\left(e^{x}+1\right)^{2}} \\
& =\frac{2 e^{x}}{\left(e^{x}+1\right)^{2}}
\end{aligned}
$$

but $e^{x}>0$

$$
\begin{aligned}
& \left(e^{x^{2}}+1\right)^{2}>1 \\
& \therefore f^{\prime}(x)>0
\end{aligned}
$$

$\therefore f(x)$ is alway increasung
(iii)

$$
\begin{aligned}
f^{\prime}(0) & =\frac{2 e^{0}}{\left(e^{3}+1\right)^{2}} \\
& =\frac{2}{2^{2}}=\frac{1}{2}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
f(x) & =\frac{e^{x}-1}{e^{x}+1} \\
& =\frac{1-e^{-x}}{1+e^{-x}} \rightarrow 1^{-} a_{s} x \rightarrow t \\
f(x) & =\frac{e^{x}-1}{e^{x}+1} \rightarrow-1^{+} a_{5 x \rightarrow-}
\end{aligned}
$$

(v)

(14) $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1 \quad a=2 \quad b=\sqrt{3}$
a) (i)

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& 3=4\left(1-e^{2}\right) \\
& \frac{3}{4}=1-e^{2} \\
& e^{2}=\frac{1}{4} \\
& e=\frac{1}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S & =(a l, 0) \\
& =(1,0) \\
S^{\prime} & =(-a e, 0) \\
& =(-1,0)
\end{aligned}
$$

(iii)

$$
\text { 1) } \begin{array}{rl}
& x= \pm \frac{a}{e} \\
\Rightarrow x & x= \pm 4
\end{array}
$$

(iv)

(v) $P S+P S=e P D+e P D^{\prime}$
since $e=\frac{P S}{P D}=\frac{P S^{\prime}}{P D^{\prime}}$

$$
=e\left(P D+P D^{\prime}\right)
$$

$$
=8 e
$$

\therefore independent of P
(b)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \\
& 2 b^{2} x+2 a^{2} y \frac{d y}{a x}=0 \\
& \frac{d y}{d x^{2}}=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

at $P(a \cos \theta, b \sin a)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-a b^{2} \cos \theta}{a^{2} b \sin \theta} \\
& =\frac{-b \cos \theta}{a \sin \theta}
\end{aligned}
$$

(ii) $y-b \sin \theta=-\frac{b}{a} \frac{\cos \theta}{\sin \theta}(x-a c c$

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

(iii) when $x=0 \quad y=\frac{b}{\sin Q}$
when $y=0 \quad x=\frac{a}{\cos \theta}$

So $A\left(0, \frac{b}{\sin \alpha}\right)$

$$
B\left(\frac{a}{\cos 0}, 0\right)
$$

Area of $\triangle A O B$

$$
\begin{aligned}
& =\frac{1}{2}(O B \cdot O A) \\
& =\frac{a b}{2 \sin \theta \cos a} \\
& =\frac{a b}{\sin 2 \theta}
\end{aligned}
$$

min when $\mathbb{I} \sin 2 \theta$ max
$\sin 2 \theta=1$ ie when $\theta=\frac{\pi}{4}$
(c)

(i) since $A B$ is a fixed chord
$\therefore Q$ is a constant since angle subtended from same chord $A B$ are equal.
(ii) $\angle \phi$ is fixed (angle subtended by same chord AB,
$\angle M A N=\angle M B N=Q+\phi$ (both are exterior angles to $\triangle P A N$ and
$\triangle P_{B} M$ respectively = constant.
$\therefore M N$ is a constant
since fixed circumference angles subtends fixed chords in the same circle.

15
(a)

$$
\begin{aligned}
& x \sqrt{\substack{j \sin \\
1-\frac{1}{100} v^{2} \\
(M=1)}} \\
& F=m g-\frac{1}{100} v^{2} \\
& \ddot{x}=y-\frac{1}{\operatorname{com}} v^{2} \\
& m=1 \\
& \dot{x}=g-\frac{1}{1 a j} v^{2}
\end{aligned}
$$

(iv) whentermal

$$
\begin{aligned}
& \sum F=0 \\
& \therefore g-\frac{1}{180} V_{T}^{2}=0 \\
& V_{T}{ }^{2}=1093 \\
& =\sqrt{1009} \\
& =10 \sqrt{9}
\end{aligned}
$$

(ii) $\left.V \frac{d v}{d x}=g \frac{1}{100}\right)^{2}$

$$
\int \frac{x d x}{\sqrt{-\frac{1}{2} y^{2}}-\int} d d x
$$

$4.15=\int \frac{100 \mathrm{~V}}{\log \mathrm{~V}^{2}}$

$$
=\int \frac{100 V}{V_{T}^{2}-V^{2}}
$$

$$
\begin{aligned}
& =\frac{-100}{2} \ln \left(V_{T}^{2}-V^{2}\right) \\
& -50 \ln \left(V_{T}^{2}-V^{2}\right)=x+C \\
& V_{T}^{2}-V^{2}=A e^{-\frac{x}{50}} \\
& V^{2}=V_{T}^{2}-A e^{-\frac{x}{5}}
\end{aligned}
$$

when $x=0 \quad \vee=0$

$$
\begin{gathered}
O=V_{T}^{2}-A \\
A=V_{T}^{2} \\
V_{1}^{2}=V_{T}^{2}\left(1-e^{-\frac{V_{2}^{2}}{2}}\right)
\end{gathered}
$$

b)

$$
\begin{aligned}
& P_{1}^{\prime}(x)=3 x^{2}-12 x+9 \\
& 3\left(x^{2}-4 x+3\right)=0 \\
& 3(x-3)(x-1)=0 \\
& x=1 \text { or } x=3 .
\end{aligned}
$$

PA) $P(1)=0$

$$
\begin{gathered}
1-6+9+k=0 \\
k=-7 .
\end{gathered}
$$

$$
\begin{aligned}
& \text { (i) } \begin{array}{l}
x^{3}-6 x^{2}+9 x-4=0 \\
(x-1)^{2}=x^{2}-2 x+1 \\
x^{2}-2 x^{2} 1 \frac{x-4}{x^{3}-6 x^{2}+9 x-4} \\
\frac{x^{3}-2 x^{2}}{-4 x^{2}+96-4} \\
\therefore x=1,1,4 .
\end{array} \\
& \therefore x=4
\end{aligned}
$$

$$
\begin{aligned}
\text { qi) } d^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\theta)-2(\alpha+\alpha \partial+\beta) \\
& =-p^{2}-2 q \\
& =\beta^{2}-2 q
\end{aligned}
$$

(il)

$$
\begin{aligned}
& x^{3}=-p^{3}-p+y \\
& W^{3}=-p \alpha^{2}-p, \alpha^{\alpha-r} \\
& p^{3}=-p \beta^{2}-p p^{-r} \\
& \gamma^{3}=-p \gamma^{2}+j-r \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-\gamma\left(\alpha^{4}+\beta^{2}+\gamma^{2}\right)-\gamma(\alpha+\beta+\gamma)-3 \gamma \\
& \left.=-p^{2}-2\right)-q(-p)-3 \\
& =-p^{3}+3 p q^{-3 r} \text {. }
\end{aligned}
$$

d)

$$
\begin{aligned}
& x^{2}+x+\geqslant 0 \\
& \Delta=0^{2-7 a} \\
& 1-4=40^{\circ} \therefore \text { divan the. } \\
& \text { (i) } a^{n-2}+a=b\left(\frac{a}{b}+\frac{a}{b^{2}}+\frac{b^{2}}{b}\right) \\
& =b^{2}\left(\frac{a}{2}+\left(\frac{2}{2}\right)+\right. \\
& =0\left(x^{2}+x+1\right) \quad t^{2} x=\frac{a}{6} \\
& \geqslant 0 \text {. }
\end{aligned}
$$

(16) $a_{(i)}$

$$
\begin{aligned}
& \omega=\cos \frac{2 \pi}{9}+\sin \frac{2 \pi}{7} \\
& \begin{aligned}
w^{k} & =\cos \frac{2 \pi k}{7}+1 \sin \frac{2 k \pi}{7} \\
\therefore z^{2}-1 & =\left(w^{k}\right)^{7}-1 \\
& =\left(\cos 2 k \pi+1 \sin ^{2} 2 k\right)-1 \\
& =(1+0)-1=0
\end{aligned}
\end{aligned}
$$

(ii) $w+w^{2}+w^{3}+\cdots w^{6}$

$$
\begin{aligned}
G_{1} P & =\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{w\left(1-w^{6}\right)}{1-w} \\
& =\frac{w-w}{1-w} \\
& =\frac{w-1}{1-w} \\
& =-1
\end{aligned}
$$

(iir)

$$
\begin{aligned}
& w+w^{6}=2 \cos ^{2} \frac{3}{3} \\
& w^{2}+w^{5}=2 \cos \frac{4 \pi}{6} \\
& w^{3}+w^{4}=2 \cos \frac{3 \pi}{7}
\end{aligned}
$$

$2 \cos \frac{2 \pi}{7}+2 \cos \frac{4 \pi}{7} 2 \cos \frac{4 \pi}{8}=-1$
(b) $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=-\frac{1}{2}$
(i)

$$
\begin{aligned}
B_{i}(x) & =4 \int B_{3}(x) d x \\
& =\int 4 x^{3}-6 x^{2}+2 x d x \\
& =x^{4}-2 x^{3}+x^{2}+c
\end{aligned}
$$

Now $\int x^{4}-2 x^{3}+x^{2}+c a=0$,

$$
\therefore\left[\frac{1}{5} x^{5-\frac{1}{2}} x^{4} \frac{1}{3} x^{3}+c x\right]_{0}^{1}=0
$$

$$
\begin{aligned}
& \therefore C=\left\{-\frac{1}{5}-\frac{1}{5}\right. \\
& \quad=-\frac{1}{30} \\
& \therefore B_{4}\left(x-x^{4}-2 x^{3}+x^{2}-\frac{1}{30}\right. \\
& \quad=x^{2}(x-1)^{2}-\frac{1}{30}
\end{aligned}
$$

(i)

$$
\begin{aligned}
& \left.B_{n(1}\right)-B_{n}(0) \\
= & \int_{0}^{1} B_{r-1}(x) d x
\end{aligned}
$$

$=0$ by defintin.
ie $P_{n}(1)-B_{n}(0)=0$

$$
\text { If } n=1: \int_{0}^{1} E_{d}(x) h_{h}=\int_{0}^{i} d x
$$

$$
=0
$$

(iii) Lat (n) by the staterment that $B_{n}(x+1)-B_{r}(x)=n x^{n-1}$ for some posithe integern.
Now $B_{1}(x+1)-B_{1}(x)$

$$
\begin{aligned}
& =x+1-\frac{1}{2}-\left(x-\frac{1}{2}\right) \\
& =1 . x^{1-1} \\
& =1 .
\end{aligned}
$$

ldane $5(1)$ the
Let 1 th be some posither. intiger forwhech shot tax le $B_{f}(x+1)-B_{k}(x)=k x^{k-1}$
Conscdr

$$
\begin{aligned}
& \frac{d}{d x}\left[B_{k+1}(x+i)-B_{k+1}(x)\right] \\
& \left.=(k+1) B_{k}(x+i)-(k+i) B_{x}(x)\right] \\
& =(k+1)\left[B_{k}(x+1)-B_{k}(x)\right]
\end{aligned}
$$

$-(k+1) k_{0} x^{5^{-1}}$ by assumptom

$$
\therefore B_{1+k}\left(x+B_{i+1}(x)=1+x^{k}\right.
$$

(iv)

$$
\begin{aligned}
& B_{n}(1)-B_{n}(0)=n O^{n-1} \\
& B_{n}(3)-B_{n}(0)=n_{2} 1^{n-1} \\
& B_{n}(3)-B_{n}(2)=n 2^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& B_{n}(k)-B_{n}(k-1)=n(k-1)^{m+1} \\
& B_{n}(k+1)-B_{n}(k)=n k^{n-1}
\end{aligned}
$$

Sum of Laths.

$$
B_{n}(k+1)-B_{n}(0)
$$

Sum of RHS

$$
\begin{aligned}
& n\left(O^{n-1}+n^{n-1}+k^{n-1}\right) \\
= & n \sum_{m=0}^{n-m^{n-1}}
\end{aligned}
$$

(v)

$$
\begin{aligned}
\sum_{m=0}^{135} m^{4} & =\frac{1}{5}\left(B_{5}(136)+B_{5}(0)\right) \\
B_{5}(x) & =5 \int B_{0}(x) d x \\
B_{5}(x) & =x^{5}-\frac{5}{2} x+\frac{5}{3} x^{3}-\frac{x}{6}+C \\
& =\frac{1}{5}\left(136^{5}-\frac{5}{2} \times 136^{4}+\frac{5}{3} \times 136-\frac{1}{6} \times 136+1 C\right) \\
& \equiv 9134962308
\end{aligned}
$$

