

2014 HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions 11 16, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the booklets provided

Total marks–100

Jages

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

90 marks

- Attempt Questions 11–16
- Allow about 2 hours 45 minutes for this section

Student Name:

Teacher Name:

This paper MUST NOT be removed from the examination room

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- 1 What is $-\sqrt{3} + i$ expressed in modulus-argument form?
 - (A) $\sqrt{2}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ (B) $2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ (C) $\sqrt{2}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$ (D) $2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$

2 The sketch of the locus of an equation $|z-3|+|z+3| \le 10$ where z = x+iy can best be represented by.

3 Which of the following expressions is equivalent to $\int_{0}^{2} \sqrt{4-x^2} dx$.

- (A) *π*
- (B) 2*π*
- (C) 4π
- (D) 8π

4 Which expression is equal to
$$\int \frac{1}{\sqrt{4x^2 - 8x + 5}} dx$$
?

(A) $\frac{1}{2}\sin^{-1}2(x-3)+C$ (B) $\frac{1}{2}\cos^{-1}2(x-3)+C$

(C)
$$\frac{1}{2} \ln \left(x - 1 + \sqrt{x^2 - 2x + \frac{5}{4}} \right) + C$$

(D)
$$\frac{1}{2}\ln\left(x-1+\sqrt{x^2-2x-\frac{5}{4}}\right)+C$$

5 If a,b,c,d, and e are real numbers and $a \neq 0$, then the polynomial equation $ax^7 + bx^5 + cx^3 + dx + e = 0$ has.

- (A) only one real root.
- (B) at least one real root.
- (C) an odd number of nonreal roots
- (D) no real roots
- 6 Suppose that a function y = f(x) is given with $f(x) \ge 0$ for $0 \le x \le 4$. If the area bounded by the curves y = f(x), y = 0, x = 0, and x = 4 is revolved about the line y = -1, then the volume of the solid of revolution is given by.

(A)
$$\pi \int_{0}^{4} \left[f(x-1)^{2} - 1 \right] dx$$

(B) $\pi \int_{0}^{4} \left[\left(f(x) - 1 \right)^{2} - 1 \right] dx$
(C) $\pi \int_{0}^{4} \left[f(x+1)^{2} - 1 \right] dx$
(D) $\pi \int_{0}^{4} \left[\left(f(x) + 1 \right)^{2} - 1 \right] dx$

Use the following information to answer the next question.

7 The equation of the graph shown above is.

(A)
$$\frac{x^2}{25} + \frac{y^2}{44} = 1$$

(B) $\frac{x^2}{44} + \frac{y^2}{25} = 1$
(C) $\frac{x^2}{25} + \frac{y^2}{11} = 1$
(D) $\frac{x^2}{11} + \frac{y^2}{25} = 1$

8 If
$$3x^2 + 2xy + y^2 = 2$$
, then the value of $\frac{dy}{dx}$ at $x = 1$ is

- (A) –2
- (B) 0
- (C) 4
- (D) not defined

9 Which diagram best represents the graph $y^2 = (x-1)(x-3)^2$?

10 A person is standing on the outer edge of a circular disc that is spinning. His relative position on the disc remains unchanged. Which description below best describes the situation?

- (A) The person is experiencing a force that is pushing him away from the centre of the disc.
- (B) The person is experiencing a force that is pushing him towards the centre of the disc.
- (C) The person is experiencing a force tangential to the edge of the disk in the direction of the motion of the disk.
- (D) The person is experiencing a force tangential to the edge of the disk in the direction of the opposite direction to the motion of the disk.

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations. **Question 11** (15 marks) Use a SEPARATE writing booklet.

- a) If $z_1 = 3 + 4i$, $z_2 = 1 i$, find
 - (i) $\overline{z_1 z_2}$ 1

(ii)
$$\left| \frac{z_1}{z_2} \right|$$
 2

(iii)
$$\sqrt{z_1}$$
 3

b) Sketch separately the following loci in an Argand plane and state the cartesian equations in each case.

(i)
$$\operatorname{Re}\left(\frac{z-2}{2}\right) = 0$$
 2

(ii)
$$\arg(z+2) = -\frac{\pi}{6}$$
 2

c) (i) Express
$$\frac{1+2x^2}{(2+x^2)(1+x^2)}$$
 in the form $\frac{A}{2+x^2} + \frac{B}{1+x^2}$ 2

(ii) Use the substitution $t = \tan x$ and your answer from part (i) to find $\int \frac{(1 + \sin^2 x) dx}{1 + \cos^2 x}$ (Leave your answer in term of t) Question 12 (15 marks) Use a SEPARATE writing booklet.

a) If
$$\arg z_1 = \theta$$
 and $\arg z_2 = \phi$, show that $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ 3

- b) The equation $z^2 + (1+i)z + k = 0$ has root 1-2i. Find the other root, and the value of k.
- c) Let α, β, γ be the roots (none of which is zero) of $x^3 + 3px + q = 0$
 - (i) Find expressions for $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \alpha\gamma$ and $\alpha\beta\gamma$ 1
 - (ii) Find an expression for $\frac{\alpha\beta}{\gamma} + \frac{\beta\gamma}{\alpha} + \frac{\gamma\alpha}{\beta}$ 2

(iii) Find an expression for
$$\frac{\alpha\beta}{\gamma} \cdot \frac{\beta\gamma}{\alpha} + \frac{\alpha\beta}{\gamma} \cdot \frac{\gamma\alpha}{\beta} + \frac{\beta\gamma}{\alpha} \cdot \frac{\gamma\alpha}{\beta}$$
 2

(iv) Hence obtain a monic equation whose roots are
$$\frac{\alpha\beta}{\gamma}, \frac{\beta\gamma}{\alpha}, \frac{\gamma\alpha}{\beta}$$
 2

d) Show that
$$\int_{0}^{1} \frac{dx}{9-x^2} = \frac{1}{6} \ln 2$$
 3

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) The shaded region bounded by $y = 3 - x^2$, $y = x^2 - x$ and x = 1 is rotated about the line x = 1. The point *P* is the intersection of $y = 3 - x^2$ and $y = x^2 - x$ in the second quadrant.

1

3

i)	Find the x coordinate of P .

ii) Use the method of cylindrical shells to express the volume of the resulting solid of revolution as an integral [DO NOT SOLVE THE INTEGRAL]

b) (i) If
$$u_n = \frac{1}{n!} \int_0^1 x^n e^{-x} dx$$
, where $n \ge 0$, show that $\frac{1}{n!} = e(u_{n-1} - u_n)$ 3

(ii) Hence find the value of u_4 2

c) If *a*,*b*,*c* are positive real numbers;

i) Show that $a^2 + b^2 \ge 2ab$ 1

ii) Hence prove
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$
 2

d) If
$$z_1, z_2$$
 are two complex numbers such that $|z_1 + z_2| = |z_1 - z_2|$, show that 3

$$\arg z_1 - \arg z_2 = \frac{\pi}{2}$$

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) f(x) is defined by the equation $f(x) = x^2 \left(x \frac{3}{2} \right)$, on the domain $-2 \le x \le 2$. Note: each sketch should take about a third of a page.
 - i) Draw a neat sketch of f(x), labelling all intersections with coordinate axes and turning points 2

ii) Sketch
$$y = \frac{1}{f(x)}$$
 2

iii) Sketch
$$y = \sqrt{f(x)}$$
 2

iv) Sketch
$$y = \ln(f(|x|))$$
 2

b) The points *A*, *B*, *C* and *D* lie on the circle *C*. From the exterior point *T*, a tangent is drawn to point *A* on *C*. The line *CT* passes through *D* and *TC* is parallel to *AB*.

3

- i) Copy or trace the diagram onto your page.
- ii) Prove that $\triangle ADT$ is similar to $\triangle ABC$.

The line *BA* is produced through *A* to point *M*, which lies on a second circle. The points *A*, *D*, *T* also lie on this second circle and the line *DM* crosses *AT* at *O*.

iii)	Show that $\triangle OMA$ is isosceles.	2
iv)	Show that $TM = BC$.	2

Question 15 (15 marks) Use a SEPARATE writing booklet.

a) Given that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
, find $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$ 2

b) The hyperbola *H* has an equation xy = 9. $P\left(3p, \frac{3}{p}\right)$, where p > 0, and $Q\left(3q, \frac{3}{q}\right)$, where q > 0, are two distinct arbitrary points on *H*.

(i) Prove that the equation of the tangent at P is
$$x + p^2 y = 6p$$
 2

- (ii) The tangents at P and Q intersect at T. Find the coordinates of T.
- (iii) The chord *PQ* produced passes through the point (0, 6). Given that the equation of this chord is x + pqy = 3(p+q) find;
 - (a) Find the equation of the locus of T 3

3

1

- (b) Give a geometrical description of this locus
- c) A light inextensible string of length 3L is threaded through a smooth vertical ring which is free to turn. The string carries a particle at each end. One particle *A* of mass *m* is at rest at a distance *L* below the ring. The other particle *B* of mass *M* is rotating in a horizontal circle whose centre is *A*.

(i)	Find m in terms of M .	2
(ii)	Find the angular velocity of B in terms of g and L	2

Question 16 (15 marks) Use a SEPARATE writing booklet.

a) Use mathematical induction to prove that for all *n* where *n* can be any positive

```
integer that (a-b) is a factor of a^n - b^n
```

- b) A car travels around a banked circular track of radius 90 metres at 54 km/h.
 - (i) Draw a diagram showing all the forces acting on the car1(ii) Show that the car will have tendency to slip sideways if the angle at which
the banked track is banked is $\tan^{-1}\left(\frac{1}{4}\right)$.3

3

(iii) A second car of mass 1.2 tonnes travels around the same bend at 72 km/h. 3 Find the sideways frictional force exerted by the road on the wheels of the car in Newtons. You may assume gravity = 10 m/s^2 . (Answer correct to 1decimal place)

c) (i) Using
$$\tan(2\theta + \theta) = \tan 3\theta$$
, show that $\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$ 2

(ii) Find the value of x for which $3\tan^{-1} x = \frac{\pi}{2} - \tan^{-1} 3x$, 3

where $\tan^{-1} x$ and $\tan^{-1} 3x$ both lie between 0 and $\frac{\pi}{2}$

End of Exam

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a}, a \neq 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}})$$

NOTE:
$$ln x = log_e x, x > 0$$

$$\frac{M \cup Hiple Choice}{1 - \sqrt{3} + i}$$

$$\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt$$

... not defined

4

a(1) 7, 2, 7, 2,=(3+41)(1-1) $= 3 - 3i + 4i - 4i^{2}$ $=7+1^{\circ}$ · ZZ=7-1 (1) $\left| \frac{z_{1}}{z_{2}} \right|$ $OR \quad \frac{|Z_1|}{|Z_2|} = \frac{\sqrt{9+16}}{\sqrt{1+1}}$ $\frac{t_{1}}{t_{2}} = \frac{3+41}{1-1} \times \frac{1+1}{1+1}$ $=\frac{5}{\sqrt{2}}$ $= 3+3i'+4i'+4i'^{2}$ = 1+1= <u>55</u> = -1+7i= - 2+ 7: $\left|\frac{7}{2}\right| = \left|\frac{1}{2} + \frac{1}{2}\right|$ = (-1)2+12)2 - 4+4 $= \frac{\sqrt{-4}}{2}$ (iii) $(2x+iy)^{2} = 3+4i$ $x^{2}+2xyi-y^{2}=3+4i$ $x^{2}-y^{2}=3$ 2xy=4 $\therefore 2xy=2$ $y=\frac{2}{2}$ $\chi^2 = 4$ ス=さ2 x4-3x2-4=0 (12+1)(x2-4)=0 ∴ >(=2 y=1 >(=2 y=-1

b (i) $Re\left(\frac{z-2}{2}\right)=0$ $\frac{2-2}{2} = \frac{2}{2}$ $= \chi - 2 + \frac{iy}{2}$ $\operatorname{Re}\left(\frac{7-2}{2}\right)=0 \Rightarrow \frac{\chi-2}{2}=0$

or x=2

$$C(1) \quad (+2t^{2} \equiv A(+x^{2}) + B(2+x^{2}))$$

$$\equiv A+Ar^{2}+2B+B_{1}x^{2}$$

$$= A+2B+(R+B)x^{2}$$

$$A+2B=1 - (1)$$

$$A+B=2 - -(2)$$

$$O = B=-1$$
sub-into(1)
$$A-2=1$$

$$A=3,$$

$$\frac{3}{2tx^{2}} + \frac{-1}{1+x^{2}}$$
(i)
$$\int \frac{(t+s)n^{2}x}{1+cos^{2}x} dx = \int \frac{1+1-cos2x}{1+1+\frac{1+cos2x}{2}} dx$$

$$= \int \frac{3-cos2x}{3+cos2x} dx \qquad dt = sec^{2}x dt$$

$$= \int \frac{3-\frac{1-t+2}{3+cos2x}}{3+cos2x} dx \qquad dt = (1+t^{2}) dt$$

$$= \int \frac{3-\frac{1-t+2}{3+cos2x}}{(3+3t^{2}+1+t^{2})} (1+t^{2})$$

$$= \int \frac{(1+2t^{2})}{(3+3t^{2}+1+t^{2})} dt$$

$$from part (i)$$

$$= \int \frac{3}{\sqrt{2}} tan^{-1} \frac{t}{\sqrt{2}} - x + c$$

c)
$$x^{3} + 3px + q = 0$$

(i) $x + p + y = 0$
 $x\beta + p + x\delta = 3p$
 $x\beta q = -q$
(ii) $x + p + y = 0$
 $x\beta q = -q$
(iii) $x + p + y + p = (x\beta + y\beta + y\alpha) - 2(x\beta + p + x\beta + x\delta + p + x\delta)$
 $= (x\beta + p + y\alpha) - 2(x\beta + p + x\beta + x\delta + y)$
 $= (3p)^{2} - 2[x\beta + x^{2}\beta + x^$

$$e^{-\frac{1}{3}} = \frac{3}{3} \int \frac{\sec (1 + \sin (1 + \sec))}{\tan (1 + \sec)} d\theta = \frac{3}{3} \int \frac{1}{3} \int \frac{\sec (1 + \sin (1 + \sec))}{\tan (1 + \sec)} d\theta = \frac{3}{252}$$

$$= \frac{1}{3} \left[\ln (1 + \sin (1 + \sec)) - \frac{1}{3} \int \frac{1}{$$

Question 13

$$V = \begin{cases} \lim_{x \to 0} \sum_{x = -1}^{2} 2\pi (3 - 2x - 3x^{2} + 2x^{3}) \\ = 2\pi \int_{-1}^{1} 3 - 2x - 3x^{2} + 2x^{3} \\ = -1 \end{cases}$$

$$\begin{array}{l} (1) & (a-b)^{2} \geq 0 \\ a^{2} \cdot 2ab + b^{2} \geq 0 \\ a^{2} \cdot b^{2} \geq 2ab \end{array} \\ (i) & a \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) + b\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) + c\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq q, \\ 1 \cdot 4s. & 1 + \frac{a}{b} + \frac{a}{c} + 1 + \frac{b}{a} + \frac{b}{c} + 1 + \frac{c}{a} + \frac{c}{b} \\ 3 + \frac{a^{2} + b^{2}}{ab} + \frac{a^{2} + c^{2}}{ac} + \frac{b^{2} + c^{2}}{cb} \\ \geq 3 + \frac{2ab}{ab} + \frac{2ac}{ac} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{ab} + \frac{2ac}{cc} + \frac{2bc}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + c^{2}}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + c^{2}}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + c^{2}}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + c^{2}}{cb} \\ \geq q. \end{array}$$

$$\begin{array}{c} 3i + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + c^{2}}{cb} \\ = \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + b^{2}}{cb} + \frac{a^{2} + b^{2}}{cb} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + c^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} + \frac{b^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c} \\ = \frac{a^{2} + b^{2}}{c$$

$$\begin{aligned} \underbrace{Question}_{0} & 15 \\ (a) \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^{2} x} dx \\ &= \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^{2} x} \quad \sin(x - s) = \sin x \\ & \operatorname{and} \cos(\pi - x) = (-\cos x)^{1} = \cos^{2} x \\ & \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx - \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx \\ & \vdots & 2 \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \cos^{2} x} dx \\ & \vdots \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx = \frac{\pi \pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^{2} x} dx \\ & = -\frac{\pi}{2} \left[\tan^{-1}(\cos x) \right]_{0}^{\pi} \quad \sin(x - dx) \\ & = -\frac{\pi}{2} \left[\tan^{-1}(1) - \tan^{-1}(1) \right] \\ &= \frac{\pi^{2}}{4} \end{aligned}$$

$$(b) (1) \quad x = 3p \\ y = \frac{\pi}{2} \quad dx = \frac{dy}{dp} \times \frac{dp}{dx}$$

$$y - \frac{3}{p^{2}} = -\frac{1}{p^{2}} \left(\frac{x-3p}{y} \right)$$

$$p^{2}y - 3p = -x + 3p$$

$$x + p^{2}y = 6p$$

(i)
$$x + p^{2}y = 6p - 0$$

 $x + q^{2}y = 6q - 3$
()-0 $(p^{-}-q^{-})y = 6(p-q)$
 $(p+q)y = 6$
 $y = \frac{6}{p+q}$
 $x + \frac{6p^{2}}{p+q} = 6p$
 $x = 6p - \frac{6p^{2}}{p+q}$
 $(p+q)x = 6p(p+q) - 6p^{2}$
 $(p+q)x = 6p^{2} + 6pq - 6p^{2}$
 $x = \frac{6pq}{p+q}$
 $\therefore T (\frac{6pq}{p+q}, \frac{6}{p+q})$
 $(iii) x + pqy = 3(p+q)$
 $x = \frac{6pq}{p+q}$
 $x = \frac{6pq}{p+q}$

С,

Question 16
(a)
Test for n=1

$$a-b$$
 is a factor of $a'-b'$
Assume time for n=k
 $a^{k}-b^{k} = (a-b)F$ where F is an integer
Test for n=k+1
 $a^{k+1}-b^{k+1} = a^{k+1}-a^{k}b+a^{k}b-b^{k+1}$
 $= a^{k}(a-b)+b(a^{k}-b^{k})$
 $= a^{k}(a-b)+b(a^{k}-b^{k})$
 $= a^{k}(a-b)+b(a^{k}-b)F$ (from assumption)
 $= (a-b)(a^{k}+bF)$
since $[a^{m}+bF]$ is another polynomial in a and b,
we have show what we set out to prove.
b)
 q_{am} (i)
 q_{am} (i)
 q_{am} (ii)
 q_{am} (iv)
 $q_{$

no sideway slip when
$$F=0$$

$$\therefore mg^{sin} \measuredangle = \frac{mv^{2}}{r} \cos \measuredangle$$

$$\tan \measuredangle = \frac{v^{2}}{rg}$$

$$v = \frac{54 \times 1000}{60 \times 60} \text{ ms}^{-1} (=90).$$

$$\tan \measuredangle = \frac{15 \times 15}{90 \times 10}$$

$$= \frac{225}{900}$$

$$= \frac{4}{7}$$

$$(iii) \text{ now } f = m\cos \measuredangle (\frac{v^{2}}{r} - g \tan \measuredangle) \\ K = \tan^{-1}(\frac{1}{4}).$$

$$(iii) \text{ now } f = m\cos \measuredangle (\frac{v^{2}}{r} - g \tan \measuredangle) \\ K = \tan^{-1}(\frac{12 \times 1000}{60 \times 60})^{2} \cdot \frac{1}{90} - \frac{10}{10}.$$

$$= \frac{4800}{\sqrt{17}} \left(\frac{400}{90} - \frac{10}{4} \right)$$

$$= \frac{4800}{\sqrt{17}} \left(\frac{800 - 450}{180} \right)$$

$$= 2263 \cdot 665^{\circ} ...$$

$$= 2263 \cdot 7 \text{ M}$$

(c).
(i)
$$\tan(2\alpha + \alpha) = \frac{\tan 2\alpha + \tan \alpha}{1 - \tan 2\alpha \tan \alpha}$$

$$= \left(\frac{2\tan \alpha}{1 - \tan^{2}\alpha} + \tan \alpha\right) \div \left(1 - \frac{2\tan^{2}\alpha}{1 - \tan^{2}\alpha}\right)$$

$$= \left(\frac{2\tan \alpha + \tan \alpha - \tan^{3}\alpha}{1 - \tan^{2}\alpha}\right) \div \left(\frac{1 - \tan^{2}\alpha - 2\tan^{2}\alpha}{1 - \tan^{2}\alpha}\right)$$

$$= 3\tan \alpha - \tan^{3}\alpha$$

$$= 3\tan \alpha - \tan^{3}\alpha$$

(ii) Let
$$Q = \tan^{1}x$$

$$\therefore 3Q = 3\tan^{1}x$$

$$= \frac{\pi}{2} - \tan^{-1}3x$$

$$\tan^{-1}3x = \frac{\pi}{2} - 3Q$$

$$\tan^{-1}3x = \frac{\pi}{2} - 3Q$$

$$\tan(\tan^{-1}3x) = \tan(\frac{\pi}{2} - 3Q)$$

$$3x = \cot 3Q$$

$$3x = \frac{1 - 3\tan^{2}Q}{3\tan Q - \tan^{9}Q} \quad (from(i))$$

$$3x = \frac{1 - 3x^{2}}{3x - x^{2}} \quad (Q = \tan^{-1}x \Rightarrow x = \tan Q)$$

$$3x(3x - x^{3}) = 1 - 3x^{2}$$

$$9x^{2} - 3x^{2} = 1 - 3x^{2}$$

$$3x(3x - x^{2}) = 1 - 3x^{2}$$

$$3x^{2} - 12x^{2} + 1 = 0$$

$$\therefore x^{2} = \frac{6 \pm \sqrt{32}}{3}$$

$$\therefore x = \sqrt{\frac{6 \pm \sqrt{32}}{3}}$$