PENRITH HIGH SCHOOL

2014
HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions:

- Reading time -5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In questions $11-16$, show relevant mathematical reasoning and/or calculations
- Answer all Questions in the booklets provided

Total marks-100

SECTION I Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

SECTION II Pages 6-11

90 marks

- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is $-\sqrt{3}+i$ expressed in modulus-argument form?
(A) $\sqrt{2}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
(B) $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
(C) $\sqrt{2}\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
(D) $2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$

2 The sketch of the locus of an equation $|z-3|+|z+3| \leq 10$ where $z=x+i y$ can best be represented by.

3 Which of the following expressions is equivalent to $\int_{0}^{2} \sqrt{4-x^{2}} d x$.
(A) π
(B) 2π
(C) 4π
(D) 8π

4 Which expression is equal to $\int \frac{1}{\sqrt{4 x^{2}-8 x+5}} d x$?
(A) $\frac{1}{2} \sin ^{-1} 2(x-3)+C$
(B) $\frac{1}{2} \cos ^{-1} 2(x-3)+C$
(C) $\frac{1}{2} \ln \left(x-1+\sqrt{x^{2}-2 x+\frac{5}{4}}\right)+C$
(D) $\frac{1}{2} \ln \left(x-1+\sqrt{x^{2}-2 x-\frac{5}{4}}\right)+C$

5 If a, b, c, d, and e are real numbers and $a \neq 0$, then the polynomial equation $a x^{7}+b x^{5}+c x^{3}+d x+e=0$ has.
(A) only one real root.
(B) at least one real root.
(C) an odd number of nonreal roots
(D) no real roots

6 Suppose that a function $y=f(x)$ is given with $f(x) \geq 0$ for $0 \leq x \leq 4$. If the area bounded by the curves $y=f(x), y=0, x=0$, and $x=4$ is revolved about the line $y=-1$, then the volume of the solid of revolution is given by.
(A) $\pi \int_{0}^{4}\left[f(x-1)^{2}-1\right] d x$
(B) $\pi \int_{0}^{4}\left[(f(x)-1)^{2}-1\right] d x$
(C) $\pi \int_{0}^{4}\left[f(x+1)^{2}-1\right] d x$
(D) $\pi \int_{0}^{4}\left[(f(x)+1)^{2}-1\right] d x$

A conic is graphed using technology, and is shown below. The distance between the x-intercepts is $2 \sqrt{11}$ units, and the distance between the y-intercepts is 10 units.

7 The equation of the graph shown above is.
(A) $\frac{x^{2}}{25}+\frac{y^{2}}{44}=1$
(B) $\frac{x^{2}}{44}+\frac{y^{2}}{25}=1$
(C) $\frac{x^{2}}{25}+\frac{y^{2}}{11}=1$
(D) $\frac{x^{2}}{11}+\frac{y^{2}}{25}=1$

8 If $3 x^{2}+2 x y+y^{2}=2$, then the value of $\frac{d y}{d x}$ at $x=1$ is
(A) $\quad-2$
(B) 0
(C) 4
(D) not defined

9 Which diagram best represents the graph $y^{2}=(x-1)(x-3)^{2}$?

10 A person is standing on the outer edge of a circular disc that is spinning. His relative position on the disc remains unchanged. Which description below best describes the situation?
(A) The person is experiencing a force that is pushing him away from the centre of the disc.
(B) The person is experiencing a force that is pushing him towards the centre of the disc.
(C) The person is experiencing a force tangential to the edge of the disk in the direction of the motion of the disk.
(D) The person is experiencing a force tangential to the edge of the disk in the direction of the opposite direction to the motion of the disk.

Section II

90 marks

Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.
Question 11 (15 marks) Use a SEPARATE writing booklet.
a) If $z_{1}=3+4 i, z_{2}=1-i$, find
(i) $\overline{z_{1} z_{2}}$

1
(iii) $\sqrt{z_{1}}$

3
b) Sketch separately the following loci in an Argand plane and state the cartesian equations in each case.
(i) $\operatorname{Re}\left(\frac{z-2}{2}\right)=0$
(ii) $\quad \arg (z+2)=-\frac{\pi}{6}$
c) (i) Express $\frac{1+2 x^{2}}{\left(2+x^{2}\right)\left(1+x^{2}\right)}$ in the form $\frac{A}{2+x^{2}}+\frac{B}{1+x^{2}}$
(ii) Use the substitution $t=\tan x$ and your answer from part (i) to find $\int \frac{\left(1+\sin ^{2} x\right) d x}{1+\cos ^{2} x} \quad 3$ (Leave your answer in term of t)

Question 12 (15 marks) Use a SEPARATE writing booklet.
a) If $\arg z_{1}=\theta$ and $\arg z_{2}=\phi$, show that $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
b) The equation $z^{2}+(1+i) z+k=0$ has root $1-2 i$. Find the other root, and the value of k.
c) Let α, β, γ be the roots (none of which is zero) of $x^{3}+3 p x+q=0$
(i) Find expressions for $\alpha+\beta+\gamma, \alpha \beta+\beta \gamma+\alpha \gamma$ and $\alpha \beta \gamma$
(ii) Find an expression for $\frac{\alpha \beta}{\gamma}+\frac{\beta \gamma}{\alpha}+\frac{\gamma \alpha}{\beta}$
(iii) Find an expression for $\frac{\alpha \beta}{\gamma} \cdot \frac{\beta \gamma}{\alpha}+\frac{\alpha \beta}{\gamma} \cdot \frac{\gamma \alpha}{\beta}+\frac{\beta \gamma}{\alpha} \cdot \frac{\gamma \alpha}{\beta}$
(iv) Hence obtain a monic equation whose roots are $\frac{\alpha \beta}{\gamma}, \frac{\beta \gamma}{\alpha}, \frac{\gamma \alpha}{\beta}$
d) Show that $\int_{0}^{1} \frac{d x}{9-x^{2}}=\frac{1}{6} \ln 2$

Question 13 (15 marks) Use a SEPARATE writing booklet.
a) The shaded region bounded by $y=3-x^{2}, y=x^{2}-x$ and $x=1$ is rotated about the line $x=1$. The point P is the intersection of $y=3-x^{2}$ and $y=x^{2}-x$ in the second quadrant.

i) Find the x coordinate of P.
ii) Use the method of cylindrical shells to express the volume of the resulting solid of revolution as an integral [DO NOT SOLVE THE INTEGRAL]
b) (i) If $u_{n}=\frac{1}{n!} \int_{0}^{1} x^{n} e^{-x} d x$, where $n \geq 0$, show that $\frac{1}{n!}=e\left(u_{n-1}-u_{n}\right)$
(ii) Hence find the value of u_{4}
c) If a, b, c are positive real numbers;
i) Show that $a^{2}+b^{2} \geq 2 a b \quad 1$
ii) Hence prove $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$
d) If z_{1}, z_{2} are two complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$, show that

$$
\arg z_{1}-\arg z_{2}=\frac{\pi}{2}
$$

Question 14 (15 marks) Use a SEPARATE writing booklet.
a) $\quad f(x)$ is defined by the equation $f(x)=x^{2}\left(x-\frac{3}{2}\right)$, on the domain $-2 \leq x \leq 2$.

Note: each sketch should take about a third of a page.
i) Draw a neat sketch of $f(x)$, labelling all intersections with coordinate axes and turning points
ii) Sketch $y=\frac{1}{f(x)}$
iii) Sketch $y=\sqrt{f(x)}$
iv) Sketch $y=\ln (f(|x|))$
b) The points A, B, C and D lie on the circle C. From the exterior point T, a tangent is drawn to point A on C. The line $C T$ passes through D and $T C$ is parallel to $A B$.

i) Copy or trace the diagram onto your page.
ii) Prove that $\triangle A D T$ is similar to $\triangle A B C$.

The line $B A$ is produced through A to point M, which lies on a second circle.
The points A, D, T also lie on this second circle and the line $D M$ crosses $A T$ at O.
iii) Show that $\triangle O M A$ is isosceles.
iv) Show that $T M=B C$.

Question 15 (15 marks) Use a SEPARATE writing booklet.
a) Given that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$, find $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
b) The hyperbola H has an equation $x y=9 . P\left(3 p, \frac{3}{p}\right)$, where $p>0$, and $Q\left(3 q, \frac{3}{q}\right)$, where $q>0$, are two distinct arbitrary points on H.
(i) Prove that the equation of the tangent at P is $x+p^{2} y=6 p$
(ii) The tangents at P and Q intersect at T. Find the coordinates of T.
(iii) The chord $P Q$ produced passes through the point $(0,6)$. Given that the equation of this chord is $x+p q y=3(p+q)$ find;
(a) Find the equation of the locus of T
(b) Give a geometrical description of this locus
c) A light inextensible string of length $3 L$ is threaded through a smooth vertical ring which is free to turn. The string carries a particle at each end. One particle A of mass m is at rest at a distance L below the ring. The other particle B of mass M is rotating in a horizontal circle whose centre is A.
(i) Find m in terms of M.
(ii) Find the angular velocity of B in terms of g and L

Question 16 (15 marks) Use a SEPARATE writing booklet.
a) Use mathematical induction to prove that for all n where n can be any positive
integer that $(a-b)$ is a factor of $a^{n}-b^{n}$
b) A car travels around a banked circular track of radius 90 metres at $54 \mathrm{~km} / \mathrm{h}$.
(i) Draw a diagram showing all the forces acting on the car

1
(ii) Show that the car will have tendency to slip sideways if the angle at which the banked track is banked is $\tan ^{-1}\left(\frac{1}{4}\right)$.
(iii) A second car of mass 1.2 tonnes travels around the same bend at $72 \mathrm{~km} / \mathrm{h}$.

Find the sideways frictional force exerted by the road on the wheels of the car in Newtons. You may assume gravity $=10 \mathrm{~m} / \mathrm{s}^{2}$. (Answer correct to 1decimal place)
c) (i) Using $\tan (2 \theta+\theta)=\tan 3 \theta$, show that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
(ii) Find the value of x for which $3 \tan ^{-1} x=\frac{\pi}{2}-\tan ^{-1} 3 x$,
where $\tan ^{-1} x$ and $\tan ^{-1} 3 x$ both lie between 0 and $\frac{\pi}{2}$

End of Exam

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a \neq 0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Multiple Choice.
$-\sqrt{3}+i$

2 cis $5 \frac{\pi}{6}$

$$
=D .
$$

2. sum of focal lengths is a constant $\Rightarrow 2 a$

$$
\therefore a=5 \text {. }
$$

B
3.

A.
4. $\int \frac{1 d x}{\sqrt{4\left(x^{2}-2 x+\frac{5}{2}\right)}}$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{1}{\sqrt{x^{2}-2 x+\frac{5}{2}}} d x \\
& =\frac{1}{2} \int \frac{1}{\sqrt{(x-1)^{2}+\left(\sqrt{\frac{3}{2}}\right)^{2}}} \\
& =\frac{1}{2} \ln \left[(x-1)+\sqrt{x^{2}-2 x+\frac{1}{2}}+c\right. \\
& =C
\end{aligned}
$$

5. B
unreal occur in conjugate pairs since real coefficient so since the degage of polynomial is odd there must be at least 1 real root.
6.

$$
=D
$$

7. D
8. When $x=1$.

$$
\begin{gathered}
3+2 y+y^{2}=2 \\
y^{2}+2 y+1=0 \\
(y+1)^{2}=0 \\
y=-1 .
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d x} \Rightarrow 6 x+y \cdot 2+2 x \frac{d y}{d x}+2 y \frac{d y}{d x}=0 \\
2 x \frac{d y}{d x}+2 y \frac{d y}{d x}=-2 y-6 x \\
\frac{d y}{d x}(2 x+2 y)=-2 y-6 x
\end{gathered}
$$

9. $A \frac{d y}{d t}=-\frac{2 y-6 x}{2 x+2 y}$
when $x=+1$ $y=-1$
$y=0$ $2 x+2 y=0$ \therefore not defined

Question 11
$a\left(i, \quad \overline{z_{1} \bar{z}_{2}}\right.$

$$
\begin{aligned}
z_{1} z_{2} & =(3+4 i)(1-i) \\
& =3-3 i+4 i-4 i^{2} \\
& =7+i \\
\therefore \overline{z_{1} z_{2}} & =7-i
\end{aligned}
$$

(i)

$$
\begin{aligned}
&\left|\frac{z_{1}}{z_{2}}\right| \\
& \frac{z_{1}}{z_{2}}=\frac{3+4 i}{1-i} \times \frac{1+i}{1+i} \\
&=\frac{3+3 i+4 i+4 i^{2}}{1+1} \\
&=\frac{-1+7 i}{2} \\
&=-\frac{1}{2}+\frac{7}{2} i \\
&\left|\frac{z_{1}}{z_{2}}\right|=\left|\frac{-1}{2}+\frac{7}{2} i\right| \\
&=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}} \\
&=\sqrt{\frac{1}{4}+\frac{49}{4}} \\
&=\sqrt{\frac{50}{4}} \\
&=\frac{5 \sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } \\
& (x+2 y)^{2}=3+4 i \\
& x^{2}+2 x y_{i}-y^{2}=3+4 i^{1} \\
& x^{2}-y^{2}=3 \quad 2 x y=4 \\
& \therefore x y=2 \quad x^{2}=4 \\
& x^{2}-\left(\frac{2}{x}\right)^{2}=3 \quad y=\frac{2}{x} \\
& x= \pm 2 \\
& x^{4}-3 x^{2}-4=0 \\
& \left(x^{2}+1\right)\left(x^{2}-4\right)=0 \quad \therefore \quad \begin{array}{l}
x=2 \quad y=1 \\
x=-2 \\
y=-1
\end{array} \quad \therefore \sqrt{z_{1}}= \pm(2+1 i)
\end{aligned}
$$

b
(i)

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{z-2}{2}\right)=0 \\
& \frac{z-2}{2}=\frac{x+1 y-2}{2} \\
& =\frac{x-2}{2}+\frac{i y}{2} \\
& \operatorname{Re}\left(\frac{z-2}{2}\right)=0 \quad \Rightarrow \quad \frac{x-2}{2}=0 \\
& \therefore x-2=0 \\
& \text { or } x=2
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \arg (z+2)=-\frac{\pi}{6} \\
& m=\tan \frac{\sqrt{\pi}}{6}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

For y intereptitan $\frac{\pi}{6}=\frac{y}{2}$

$$
\begin{aligned}
y & =2 \tan \frac{\frac{\pi}{6}}{} \\
& =\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

\therefore equation is $y=-\frac{\sqrt{3}}{3} x-\frac{2 \sqrt{3}}{3}$ for $x>-2$.
$C(i)$

$$
\begin{align*}
& 1+2 x^{2} \equiv A\left(1+x^{2}\right)+B\left(2+x^{2}\right) \\
& \equiv A+A x^{2}+2 B+B x^{2} \\
&=A+2 B+(A+B) x^{2} \\
& A+2 B= \text { - } \tag{1}\\
& A+B=2 \tag{2}
\end{align*}
$$

(1) $)^{2}$

$$
B=-1
$$

subinto (1)

$$
\begin{aligned}
& A-2=1 \\
& A=3 . \\
& \frac{3}{2+x^{2}}+\frac{-1}{1+x^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int \frac{\left(r+\sin ^{2} x\right)}{1+\cos ^{2} x} d x & =\int \frac{1+\frac{1-\cos 2 x}{2}}{1+\frac{1+\cos 2 x}{2}} d x \\
& =\int \frac{3-\cos 2 x}{3+\cos 2 x} d x \\
& =\int \frac{3-\frac{1-t^{2}}{1+t^{2}}}{3+\frac{1-t^{2}}{1+t^{2}}} \cdot \frac{1}{1+t^{2}} d t \\
& =\int \frac{3+3 t^{2}-1+t^{2}}{\left(3+3 t^{2}+1-t^{2}\right)} \frac{d t}{\left(1+t^{2}\right)} \\
& =\int \frac{1+2 t^{2}}{\left(2+t^{2}\right)\left(1+t^{2}\right)} d t
\end{aligned}
$$

from part (i)

$$
\begin{aligned}
& =\int \frac{3}{2+t^{2}} d t-\int \frac{1}{1+t^{2} d t} \\
& =\frac{3}{\sqrt{2} \tan ^{-1} \frac{t}{\sqrt{2}}-\tan ^{-1} t+C .} \\
& =\frac{3}{\sqrt{2}} \tan ^{-1} \frac{\tan x}{\sqrt{2}}-x+c
\end{aligned}
$$

Let $t=\tan x$

$$
\frac{d t}{d x}=\sec ^{2} x
$$

$$
d t=\sec ^{2} x d x
$$

$$
d t=\left(1+t^{2}\right) d x
$$

$$
d x=\frac{1}{1+t^{2}} d t
$$

Question 12
a) Let $z_{1}=r_{1}(\cos \theta+i \sin \theta)$ and $z_{2}=r_{2}(\cos \phi+i \sin \phi)$

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{r_{1}(\cos \theta+i \sin \theta)}{r_{2}(\cos \phi+i \sin \phi)} \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}(\cos \theta+i \sin \theta)}{r_{2}(\cos \phi+i \sin \phi)} \times \frac{(\cos \phi-i \sin \phi)}{\cos \phi-i \sin \phi} \\
& =\frac{r_{1}\left(\cos \theta \cos \phi-i \sin \phi \cos \theta+i \sin \theta \cos \phi-i^{2} \sin \theta \sin \phi\right)}{\cos ^{2} \phi-i^{2} \sin ^{2} \phi} \\
& =\frac{r_{1}[(\cos \theta \cos \phi+\sin \theta \sin \phi)-i(\sin \phi \cos \theta-\sin \theta \cos \phi)]}{r_{2} \cdot\left(\cos ^{2} \phi+\sin ^{2} \phi\right)} \\
& =\frac{r_{1}[\cos (\theta-\phi)-i \sin (\phi-\theta)]}{r_{2}} \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}[\cos (\theta-\phi)+i \sin (\theta-\phi)] \\
\arg \left(\frac{z_{1}}{z_{2}}\right) & =\operatorname{a-\phi } \\
& =\arg z_{1}-\arg z_{2} .
\end{aligned}
$$

b) Let α, β be the roots

$$
\begin{aligned}
& \alpha=1-2 i \\
& \alpha+\beta=-\frac{b}{a} \\
& 1-2 i+\beta=-1-i \\
& \beta=-2+i \\
& \alpha \beta=\frac{c}{a} \\
& =k \\
& (-2+i)(1-2 i)=k \\
& k=-2+4 i+i-2 i^{2} \\
& =5 i
\end{aligned}
$$

C) $x^{3}+3 p x+q=0$
(i)

$$
\begin{gathered}
\alpha+\beta+\gamma=0 \\
\alpha \beta+\beta \gamma+\alpha \gamma=3 p \\
\alpha \beta q=-q
\end{gathered}
$$

(ii)

$$
\begin{aligned}
\frac{\alpha \beta}{\gamma}+\frac{\beta \gamma}{\alpha}+\frac{\gamma \alpha}{\beta} & =\frac{(\alpha \beta)^{2}+(\beta \gamma)^{2}+(\gamma \alpha)^{2}}{\alpha \beta \gamma} \\
& =\frac{(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2(\alpha \beta \cdot \beta \gamma+\alpha \beta \cdot \gamma \alpha+\beta \gamma \cdot \gamma \alpha)}{\alpha \beta \gamma} \\
& =\frac{(3 \rho)^{2}-2\left[\left(\alpha \gamma \beta^{2}+\alpha^{2} \beta \gamma+\gamma^{2} \beta \alpha\right)\right]}{\alpha \beta \gamma} \\
& =\frac{(3 \rho)^{2}-2[\alpha \beta \gamma(\alpha+\beta+\gamma)]}{\alpha \beta \gamma} \\
& =\frac{9 p^{2}-0}{-q} \\
& =\frac{9 \rho^{2}}{q}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{\alpha \beta^{3} \gamma+\alpha^{3} \beta \gamma+\alpha \beta \gamma^{3}}{\alpha \beta \gamma} \\
= & \frac{\alpha \beta \gamma\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)}{\alpha \beta \gamma} \\
= & \alpha^{2}+\beta^{2}+\gamma^{2} \\
= & (\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
= & 0-2(3 p) \\
= & -6 p
\end{aligned}
$$

(iv) (ii) \Rightarrow gum of roots $-\frac{3 p^{2}}{q}$

$$
\therefore x^{3}-\frac{9 p^{2}}{q} x^{2}-6 p x+q=0
$$

(iii) $\Rightarrow \begin{aligned} & \text { sum of root } \\ & 2 \text { at a time }\end{aligned}-6 p$
product of roots

$$
\begin{aligned}
\frac{\alpha_{\beta}}{\gamma} \times \frac{\beta \gamma}{\alpha} \times \frac{\gamma \alpha}{\beta} & =\alpha \beta \gamma \\
& =-q
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{9-x^{2}}=\frac{1}{6} \ln 2 . \\
& \int_{0}^{1} \frac{1}{(3-x)(3+x)} d x . \\
& \int_{0}^{1} \frac{1}{(3-x)(3+x}=\int\left[\frac{a}{(3-x)}+\frac{b}{(3+x)}\right] d x \\
& \equiv a(3+x)+b(3-x) \\
& \operatorname{Let} x=3 \\
& \text { Let } x=-3 \quad 1=6 a \\
& a=\frac{1}{6} \quad 6=\frac{1}{6} \\
& \int_{0}^{1} \frac{1}{(3-x)(3+x)}=-\frac{1}{6} \int_{0}^{\prime} \frac{-1}{3-x}+\frac{1}{6} \int^{1} \frac{1}{3+x} d x \\
&=\left[\frac{1}{6} \ln (3-x)\right]_{0}^{\prime}+\left[\frac{1}{6} \ln (3+x)\right]_{0}^{1} \\
&=\left[-\frac{1}{6} \ln 2+\frac{1}{6} \ln 3\right]+\left[\frac{1}{6} \ln 4-\frac{1}{6} \ln 3\right] \\
&=-\frac{1}{6} \ln 6 \\
&=\frac{1}{6}[4 \ln 3-\ln 2+\ln 4-\ln 3] \\
&=\frac{1}{6}[\ln 4-\ln 2] \\
&=\frac{1}{6} \ln \frac{4}{2} \\
&=\frac{1}{6} \ln 2
\end{aligned}
$$

Alternative approach: Let $x=3 \sin \theta$

$$
\begin{aligned}
& \int_{0}^{\text {Alternative approach: }} \frac{d x}{9-x^{2}}=\sin ^{-1+\left(\frac{1}{3}\right)} \operatorname{lec} \frac{1}{3} \sec \theta d \theta \quad d x=3 \cos \theta d \theta \\
&=0_{0}^{1} \frac{1}{3} \int \frac{\sec \theta(\tan \theta+\sec \theta)}{\tan \theta+\sec \theta} d \theta \\
&=\frac{1}{3}[\ln (\tan \theta+\sec \theta)] \sin ^{-1}\left(\frac{1}{3}\right) \\
&=\frac{1}{3}\left[\ln \left(\frac{1}{2 \sqrt{2}}+\frac{3}{2 \sqrt{3}}\right) \quad 0 \quad \frac{1}{3}\left[\ln \frac{4}{2 \sqrt{2}}\right]=\frac{1}{3} \ln \sqrt{2}\right. \\
&=\frac{1}{1} \ln 2
\end{aligned}
$$

Question 13

$$
\text { a(i) } \quad \begin{aligned}
P: & 3-x^{2}=x^{2}-x \\
& 2 x^{2}-x-3=0 \\
& (x+1)(2 x-3)=0 \\
\therefore & x=-1, \frac{3}{2} \\
\therefore & x \text { coord of } P_{\text {is }}-1
\end{aligned}
$$

(as $P_{\text {is in }} 2$ nd quadrant)
(ii)

$$
\begin{aligned}
h & =\left(3-x^{2}\right)-\left(x^{2}-x\right) \\
& =3+x-2 x^{2}
\end{aligned}
$$

Volume $\delta V=\int A h$.

$$
\begin{aligned}
f V & =2 \pi(1-x)\left(3+x-2 x^{2}\right) \delta x \\
V & =\lim _{\delta x \rightarrow 0} \sum_{x=-1}^{1} 2 \pi\left(3-2 x-3 x^{2}+2 x^{3}\right) \delta x \\
& =2 \pi \int_{-1}^{1} 3-2 x-3 x^{2}+2 x^{3} d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { b(i) } \quad u_{n}=\frac{1}{n!} \int_{0}^{1} x^{n} e^{\frac{d v}{a-x}} d x \quad \mu=x^{n} \quad \frac{d u}{d x}=n x^{n-1} \\
& u_{n}=\frac{1}{n!}\left\{\left[-e^{-x} \cdot x^{n}\right]_{0}^{1} \int_{0}^{1}-e^{-x} n x^{n-1} d x\right\} \\
& =\frac{1}{n!}\left\{-e^{-1}+n \int_{0}^{1} e^{-x} x^{n-1} d x\right\} \\
& =-\frac{1}{e n!}+\frac{1}{(n-1)!} \int_{0}^{1} e^{-x} x^{n^{-1}} d x \\
& u_{n}=-\frac{1}{\ln !}+u_{n-1} \\
& \therefore-\frac{1}{e^{n!}}=u_{n-1}-u_{n} . \\
& \frac{1}{n!}=e\left(u_{n-1}-u_{n}\right) \\
& \text { (ii) } \\
& u_{n}=u_{n-1}-\frac{1}{e^{n!}} \\
& u_{4}=u_{3}-\frac{1}{4 \cdot!} \\
& =u_{2}-\frac{1}{3!e}-\frac{1}{4!e} \\
& =u_{0}-\frac{1}{1!e}-\frac{1}{2!l}-\frac{1}{3!l}-\frac{1}{4!\Omega} \\
& =\frac{1}{0!} \int_{0}^{1} x^{0} e^{-x} d x-\frac{1}{2}-\frac{1}{2 x}-\frac{1}{62}-\frac{1}{24} x \\
& =\int_{0}^{1} e^{-x} d x-\frac{41}{24 e} \\
& =-e^{-1} \div\left(-e^{0}\right)-\frac{41}{24 e} \\
& =-\frac{1}{e}+1-\frac{41}{24 e} \\
& =-\frac{65}{242}+1
\end{aligned}
$$

c)

$$
\text { (1) } \begin{aligned}
(a-b)^{2} & \geqslant 0 \\
a^{2}-2 a b+b^{2} & \geqslant 0 \\
a^{2}+b^{2} & \geqslant 2 a b
\end{aligned}
$$

(ii) $a\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geqslant 9$.
L. Hs.

$$
\text { Hs. } \begin{array}{ll}
& 1+\frac{a}{b}+\frac{a}{c}+1+\frac{b}{a}+\frac{b}{c}+1+\frac{c}{a}+\frac{c}{b} \\
& 3+\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b} \\
& 3+\frac{a^{2}+b^{2}}{a b}+\frac{a^{2}+c^{2}}{a c}+\frac{b^{2}+c^{2}}{c b} \\
\geqslant & 3+\frac{2 a b}{a b}+\frac{2 a c}{a y}+\frac{2 b c}{4 b} \\
\geqslant & 9 .
\end{array}
$$

d)

Since

$$
\begin{aligned}
& \left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right| \\
& |A C|=|O B|
\end{aligned}
$$

$O A B C$ is a parallelogram with equal diagonals
\therefore it is a rectangle
$\therefore \angle A O C$ is a right angle

$$
\angle x O C-\angle x O A=90^{\circ}
$$

or $\arg z_{1}-\arg z_{2}=\frac{\pi}{2}$.

Question 14
(i)

$$
\begin{aligned}
& y=x^{3}-\frac{3 x^{2}}{2} \\
& y^{\prime}=3 x^{2}-3 x \\
& \text { Let } y^{\prime}=0
\end{aligned}
$$

(ii)

(iii)

(iv)

$b(i)$

(ii) In $\triangle A D T$ and $\triangle A B C$
$\angle T A D=\angle D C A$ (angle in the alternate segment)
are equal.
$\angle D C A=\angle C A B$ (alternate angles on parallel lines $D C$ and $A B$
are equal)
$\therefore \angle T A D=\angle C A B$. (angle)
$\angle T D A=\angle C B A$ (exterior angle of a eylic quadrilateral is equal to the interior opposite angle)
$\therefore \triangle A D T H I \triangle A B C$ (Two angles in one triangle are equal to two angles in the other.
(iii) Let $\angle T D M=x$
$\angle T A M=x$ (angle in the same segment are equal)
$\angle O M A=x$ (attermate angles on parallel lines $T 0$ and $A M$ are equal)

$$
\therefore \angle O A M=\angle O M A
$$

$\therefore \triangle O M A$ is 1 isosceles.
(iv) $\angle T M A=\angle C D A \quad\left(\begin{array}{c}\text { exterior } \\ \text { opposite angles of a cyclic quadriladeal are equal, } \\ \text { is equaluto intemor opposite) }\end{array}\right)$ is equaluto intemor opposite)
$\angle C D A=180 \angle \angle B A$ is equoulto infenor opposite) (apposite angles of a cycle quadrilateral are supplementing
$\therefore \angle C B A=180-\angle T M A \quad \therefore C B \| T M$ since cointenor angles ane $\therefore T M B C$ is a parallielogsan $\therefore T M=C B$ (oppos, te sides, of morale (a nco

Question 15
(a)

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \\
&=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} \sin c e \sin (\pi-x)=\sin x . \\
& \text { and } \cos ^{2}(\pi-x)=(-\cos x)^{2}=\cos ^{2} x \\
& \quad \frac{\pi \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& \therefore \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x \\
& \therefore \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \\
&=-\frac{\pi}{2}\left[\tan ^{-1}(\cos x)\right]_{0}^{\pi} \quad \sin c e \frac{d}{d x}(\cos x)=-\sin x . \\
&=-\frac{\pi}{2}\left[\tan ^{-1}(-1)-\tan ^{-1}(1)\right] \\
&=\frac{\pi^{2}}{4} .
\end{aligned}
$$

(b) (i)

$$
\begin{array}{ll}
x=3 p \\
y=\frac{3}{p}
\end{array} \quad \frac{d x}{d p}=3 \quad \frac{d y}{d p}=-\frac{3}{p^{2}}
$$

$$
\frac{d y}{d x}=\frac{d y}{d p} \times \frac{d p}{d x}
$$

$$
=-\frac{3}{p^{2}} \times \frac{1}{3}
$$

$$
=-\frac{1}{p^{2}}
$$

$$
y-\frac{3}{p}=-\frac{1}{p^{2}}(x-3 p)
$$

$$
p^{2} y-3 p=-x+3 p
$$

$$
x+p^{2} y=6 p
$$

(i)

$$
\begin{align*}
& x+p^{2} y=6 p \\
& x+q^{2} y=6 q \tag{2}
\end{align*}
$$

(1)-6)

$$
\begin{gathered}
\left(p^{2}-q^{2}\right) y=6(p-q) \\
\frac{(p-q)(p+q)}{(p-q)} y=6 \\
(p+q) y=6 \\
y=\frac{6}{p+q}
\end{gathered}
$$

sub into (1)

$$
\begin{aligned}
& x+\frac{6 p^{2}}{p+q}=6 p \\
& x=6 p-\frac{6 p^{2}}{p+q} \\
& (p+q) x=6 p(p+q)-6 p^{2} \\
& (p+q) x=6 p^{2}+6 p q-6 p^{2} \\
& x=\frac{6 p q}{p+q} \\
& \left.\therefore T\left(\frac{6 p q}{p+q}\right) \frac{6}{p+q}\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& x+p q y=3(p+q) \\
& \operatorname{sib}(0,6) \\
& 6 p q=3(p+q) \\
& \frac{p q}{p+q}=\frac{1}{2} \\
& x=\frac{6 p q}{p+q} \quad y=\frac{6}{p+q} \\
& x=3 \quad y=\frac{6}{p+q} . \\
& T\left(3, \frac{6}{p+q}\right) \\
& \therefore x=3 .
\end{aligned}
$$

vertical line passing through $x=3$,
c,

verticaly $T \sin 30=M g$

$$
\begin{aligned}
\frac{1}{2} T & =M g \\
\text { or } \frac{1}{2} m g & =M g \\
m & =2 M .
\end{aligned}
$$

horizontaly

$$
\begin{aligned}
T \cos 30 & =M r w^{2} \\
\frac{\sqrt{3}}{2} m g & =M \sqrt{3} L) w^{2} \\
\frac{\sqrt{3}}{2} m g & =\left(\frac{m}{2}(\sqrt{3} L) w^{2}\right. \\
w & =\sqrt{\frac{g}{L}}
\end{aligned}
$$

Question 16
(a)

Test for $n=1$
$a-b$ is a factor of $a^{\prime}-b^{\prime}$
Assume true for $n=k$
$a^{k}-b^{k}=(a-b) F$ where F is an integer.
Test for $n=k+1$

$$
\begin{aligned}
a^{k+1}-b^{k+1} & =a^{k+1}-a^{k} b+a^{k} b-b^{k+1} \\
& =a^{k}(a-b)+b\left(a^{k}-b^{k}\right) \\
& =a^{k}(a-b)+b(a-b) F \quad \text { (from assumption) } \\
& =(a-b)\left(a^{k}+b F\right)
\end{aligned}
$$

since $\left[a^{m}+b F\right]$ is another polynomial in a and b, we have show what we set out to prove.
b)

(i)

N-Normal reaction
F-Frictional fore ng-weight
(ii) Vertically $N \cos \alpha=f \sin \alpha+m g$

$$
\begin{equation*}
N \cos \alpha-F \sin \alpha=m g \tag{1}
\end{equation*}
$$

Horizontally $N \sin \alpha+f \cos \alpha=\frac{m v^{2}}{r}$
From (1) $N \cos \alpha \sin \alpha-F \sin ^{2} \alpha=m g \sin \alpha$ (3)
and (2) $N \sin \alpha \cos \alpha+F \cos ^{2} \alpha=\frac{m v^{2}}{r} \cos \alpha$ (4)
(4) $-(3)$

$$
\begin{aligned}
& F\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=\frac{m v^{2}}{r} \cos \alpha-m g \sin \alpha \\
& F=\frac{m v^{2}}{r} \cos \alpha-m g \sin \alpha, ~ *
\end{aligned}
$$

no sideway slip aten $F=0$

$$
\begin{aligned}
& \therefore m g \sin \alpha=\frac{m v^{2}}{r} \cos \alpha \\
& \tan \alpha=\frac{v^{2}}{r g} \\
& v=\frac{54 \times 1000}{60 \times 60} m s^{-1} r=90 \\
& \tan \alpha=\frac{15 \times 15}{90 \times 10} \\
&=\frac{225}{900} \\
&=\frac{1}{4} \\
& \alpha=\tan ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

(iii)
now $F=m \cos \alpha\left(\frac{v^{2}}{r}-g \tan \alpha\right)$ *

$$
\begin{aligned}
F & =1200 \cdot \frac{4}{\sqrt{17}}\left(\left(\frac{72 \times 1000}{60 \times 60}\right)^{2} \cdot \frac{1}{90}-\frac{10}{4}\right) \quad \cos \alpha=\frac{4}{\sqrt{17}} \\
& =\frac{4800}{\sqrt{17}}\left(\frac{400}{90}-\frac{10}{4}\right) \\
& =\frac{4800}{\sqrt{17}}\left(\frac{800-450}{180}\right) \\
& =\frac{4800}{\sqrt{17}} \times \frac{350}{180} \\
& =2263.665 \\
& =2263.7 \mathrm{~N}
\end{aligned}
$$

(c)
(i)

$$
\begin{aligned}
\tan (2 \theta+\theta) & =\frac{\tan 2 \theta+\tan \theta}{1-\tan 2 \theta \tan \theta} \\
& =\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}+\tan \theta\right) \div\left(1-\frac{2 \tan ^{2} \theta}{1-\tan ^{2} \theta}\right) \\
& =\left(\frac{2 \tan \theta+\tan \theta-\tan ^{3} \theta}{1-\tan ^{2} \theta}\right) \div\left(\frac{1-\tan ^{2} \theta-2 \tan ^{2} \theta}{1-\tan ^{2} \theta}\right) \\
& =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
\end{aligned}
$$

(ii) Let $\theta=\tan ^{-1} x$

$$
\begin{aligned}
& \therefore 3 \theta=3 \tan ^{-1} x \\
&=\frac{\pi}{2}-\tan ^{-1} 3 x \\
& \tan ^{-1} 3 x=\frac{\pi}{2}-3 \theta \\
& \tan \left(\tan ^{-1} 3 x\right)=\tan \left(\frac{\pi}{2}-3 Q\right) \\
& 3 x=\cot 3 Q \\
& 3 x=\frac{1-3 \tan ^{2} \theta}{3 \tan \theta-\tan ^{3} \theta} \quad(\text { from }(i)) \\
& 3 x=\frac{1-3 x^{2}}{3 x-x^{3}} \quad\left(\theta=\tan ^{-1} x \Rightarrow x=\tan \theta\right. \\
& 3 x\left(3 x-x^{3}\right)=1-3 x^{2} \\
& 9 x^{2}-3 x^{4}=1-3 x^{2} \\
& 3 x^{4}-12 x^{2}+1=0 \\
& \therefore x^{2}=\frac{6 \pm \sqrt{33}}{3} \\
& \therefore x=\sqrt{6+\sqrt{33}} \\
& \therefore
\end{aligned}
$$

