

Penrith Selective High School Mathematics Extension 2 Trial HSC 2019

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Calculators approved by NESA may be used
- No correction tape or white out to be used
- A reference sheet is provided with this paper
- Use black pen
- In Questions 11–16, show relevant mathematical reasoning and/ or calculations

l	Complex	Granhing	Polynomials	Integration	Conics	Volumes	Harder	Resisted	Total
	Numbers	Graphing	1 orynolliais	integration	comes	volumes	Ext 1	Motion	lotal
Mult.									/10
Choice									, , , , , , , , , , , , , , , , , , ,
Q11									/15
Q12									/15
Q13									/15
Q14									/15
Q15									/15
Q16									/15
Total	/11	/11	/7	/10	/9	/18	/19	/15	/100

Student Number:_____

Teacher's Name:_____

Section I (10 marks)

Attempt Questions 1–10

Allow about 15 minutes for this section

Use the Blue multiple-choice answer sheet for Questions 1–10.

- 1. Simplify $(5+2i)^2 (3-2i)^2$
 - A. 4(4+i)
 - B. 8(2+i)
 - C. 16(1+2i)
 - D. 16(1+i)
- 2. Solve $x^4 + 2x^3 12x^2 + 14x 5 = 0$, given that it has a triple root.
 - A. x = 1, 1, 1, 5B. x = -1, -1, -1, 5C. x = -1, -1, -1, -5D. x = 1, 1, 1, -5

3. Evaluate $\int_0^1 \frac{x^2}{x+1} dx$

A.
$$\frac{-3 - ln4}{2}$$

B.
$$\frac{-1 + ln4}{2}$$

C.
$$\frac{-1-ln4}{2}$$

D.
$$\frac{3-ln4}{2}$$

4. Simplify $\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x}$ A. 5 B. 0 C. 2 D. -4

5. If $z = \frac{2+it}{t+2i}$ and given that t is a real variable. The locus of z as t varies is given by:

- A. A circle centred at (2, 0) and radius 1 unit
- B. A circle centred at (0, 0) and radius 1 unit.
- C. A circle centred at (0, 0) and radius 2 units.
- D. A circle centred at (2, 0) and radius 2 units.

6. If
$$y = \frac{1}{2}(e^x - e^{-x})$$
 find *x* in terms of *y*.

A. $x = \ln(y - \sqrt{y^2 + 1})$

B.
$$x = \ln(-y + \sqrt{y^2 + 1})$$

C.
$$x = \ln(-y - \sqrt{y^2 + 1})$$

D.
$$x = \ln(y + \sqrt{y^2 + 1})$$

7. A point *P* lies on the ellipse $\frac{X^2}{9} + \frac{Y^2}{4} = 1$. The perpendicular from *P* meets the directrix at *M*.

The focus of the ellipse is *S*. Find the value of the ratio $\frac{PS}{PM}$

A.
$$\frac{\sqrt{5}}{3}$$

B.
$$\frac{\sqrt{3}}{5}$$

C.
$$\frac{\sqrt{5}}{9}$$

D.
$$\frac{2}{3}$$

8. Find the volume generated when a circle of radius *a* units is rotated about its vertical tangent.

A.
$$2\pi^2 a^3$$

B. $\frac{8\pi^2 a^3}{3}$
C. $\frac{4\pi a^3}{3}$
D. $4\pi^2 a^3$

9. From the digits 0, 1, 2, 3,, 9 two digits are selected without replacement.If they are both odd digits, what is the probability that their sum is greater than 10?

Α.	<u>3</u> 5	
В.	$\frac{1}{4}$	
C.	2 5	
D.	$\frac{3}{10}$	

10. Find the exact value of $\int_0^1 x e^{-2x} dx$

- A. $\frac{-1}{2}e^{-2}(e^2+1)$
- B. $\frac{1}{2}e^{-2}(e^2-3)$

C.
$$\frac{1}{4}e^{-2}(e^2-1)$$

D.
$$\frac{1}{4}e^{-2}(e^2-3)$$

Section II (90 marks)

Attempt Questions 11–16.

Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet.

Extra writing booklets are available.

Your responses should include relevant mathematical reasoning, working and formulae.

Question 11 (15 marks)

(a) Express
$$\frac{9-7i}{1+i} - \frac{5}{2+i}$$
 in the form $m + ni$. **2**

marks

3

(b) If $f(x) = \sqrt{4 - x^2}$ then graph neatly on separate number planes:

(Each graph should be approx $\frac{1}{3}$ of a page showing all important features)

(i)
$$y = f(x)$$
 2

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y^2 = f(x)$$
 2

$$(iv) \quad y = xf(x)$$

- (c) The roots of the cubic equation $2x^3 + 4x^2 6x + 1 = 0$ are α, β and γ . Find the equation whose roots are $2\alpha + 1, 2\beta + 1$ and $2\gamma + 1$.
- (d) Find the coordinates of the point/s on the curve $x^2 + y^2 = xy + 3$, where the tangent/s is horizontal.

Question 12 (15 marks)

(a) Shade neatly the region on the Argand Diagram represented by

$$-2 \leq Im(z) \leq 1 \quad \bigcup \quad \frac{-\pi}{3} \leq Argz \leq \frac{\pi}{4}$$

(b) Given the line y = mx + 5 and the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

Find the value/s of *m* such that the given line is a tangent to the ellipse. **3**

- (c) The region bounded by $y = \sqrt{9 x^2}$, the *x*-axis and the line x = 2 is rotated about the *y*-axis.
 - (i) Using the slices method, show that the volume of a slice is given by

$$\delta V = \pi (5 - y^2) \delta y$$

(ii) Hence find the exact volume of the solid of revolution. 2

(d) Evaluate the integral
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos^3 x}{\sin^2 x} dx$$
 leaving your answer in exact form. **3**

(e) Differentiate the expression $\tan^{-1} 5x + \tan^{-1} \frac{1}{5x}$ and hence find the value of the expression for x < 0.

3

Question 13 (15 marks)

(a) The base of a solid is a circle of radius 6 units.

Cross sections of the solid by planes perpendicular to its base are equilateral triangles.

(i) Show that the solid's volume is given by
$$V = \int_{-6}^{6} \sqrt{3}(36 - x^2) dx$$
. 3

(ii) Hence find the exact volume of this solid.

- (b) In a class of 15 girls, one girl is chosen to be the referee and the other girls play 7 a side soccer. In how many ways can the referee and teams be chosen?
- (c) A sequence of numbers is such that $T_1 = 7$, $T_2 = 29$ and $T_{n+2} = 7T_{n+1} 10T_n$. Prove by Mathematical Induction that $T_n = 2^n + 5^n$ for $n \ge 1$. 4
- (d) Given that w is a complex cube root of unity, evaluate exactly $1 + w + w^2 + w^3 + \dots + w^{1001}$ 2
- (e) (i) Express $w = -2 + 2\sqrt{3}i$ in mod-arg form. 1
 - (ii) Given that w is a root of $w^3 a^3 = 0$, find the exact value/s of a. 2

1

Question 14 (15 marks)

(a) (i) Find the equation of the tangent at $(2t, \frac{1}{t})$ to xy = 2 in general form. 2

(ii) Find the product of the perpendiculars from (2, 2) and (-2, -2) to the tangent. 2

(b) (i) Show that
$$I_n = e - nI_{n-1}$$
 if $I_n = \int_1^e (lnx)^n dx$ for $n \ge 0$.

(c) (i) Prove that
$$\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$$
 2

- (ii) Hence solve the equation $16x^4 16x^2 + 1 = 0$. **2**
- (iii) Hence show that the exact value of $\left(\cos\frac{\pi}{12} + \cos\frac{5\pi}{12}\right)$ is $\sqrt{\frac{3}{2}}$.

Question 15 (15 marks)

- (a) Use the method of cylindrical shells to find the volume of the solid obtained when the region bounded by $y = 4x^2 x^4$, $y \ge 0$, $x \ge 0$ and $x \le 2$ is rotated about the *y*-axis.
- (b) A rock of mass 5kg is falling through water.

The resistance of the water gives an upward force of 0.25N and the buoyancy of the water provides a further upwards force of 6N. Taking g as 10m/s², find the acceleration of the rock.

marks

marks

4

(c) A particle is thrown vertically upwards with a velocity of Um/s. It experiences a resistance which is proportional to mv.

	(i) Show that its acceleration is given by $\ddot{x} = -g - kv$, where k is a	
	positive constant and g is the acceleration due to gravity.	1
	(ii) Find when the particle reaches its maximum height.	3
	(iii) Find the greatest height, <i>H</i> .	3
(d)	Two circles touch externally at A.	
	A common tangent touches the circles at <i>M</i> and <i>N</i> respectively.	
	Find the size of $\angle MAN$, giving reasons.	3

Question 16 (15 marks)

(a)	(i) Calculate the area of the ellipse $x^2 + 16y^2 = 16$.	1
(0)	(i) calculate the area of the empset $\lambda = 10y = 10$.	

marks

(ii) A solid has the ellipse $x^2 + 16y^2 = 16$ as its base. Cross-sections of the solid perpendicular to its base and parallel to the *y*-axis are rectangles of height 6 units.

(α) Draw this information, clearly showing a typical slice.				
	(β) Show that the expression for the volume of this slice is given by:			
	$\delta V = 3\sqrt{16 - x^2}\delta x.$	2		

(γ) Calculate the exact volume of the solid. 1

(b) *O* is the centre of the circle. *P* is a fixed point on the circumference of the circle.

Q is a variable point on the circle's circumference.

With OP as a diameter a semi-circle is drawn.

PQ meets this semi-circle at R. Prove that R is always the midpoint of PQ.

2

(d) A particle of unit mass moves in a straight line against a resistance numerically equal to $v + v^3$, where v is its velocity. Initially the particle is at the origin and is travelling with velocity K, where K > 0.

(i) Show that
$$v$$
 is related to the displacement x by $x = \tan^{-1}\left(\frac{K-v}{1+Kv}\right)$. 3

(ii) Show that the time t which has elapsed when the particle is travelling with velocity v,

is given by
$$t = \frac{1}{2} ln \left[\frac{K^2 (1+v^2)}{v^2 (1+K^2)} \right].$$
 4

End of Examination

$$\begin{aligned} \underbrace{(x, x, y)}{2} = 209 \quad \underbrace{Hsc. Train}_{x} \\ \underbrace{Section 1 - Multiple Choice}_{x} \\ = 2s + 2qi + 4i^{2} - (9 - 12i + 4i^{2}) \\ = 2s + 2qi + 4i^{2} - (9 - 12i + 4i^{2}) \\ = 2s + 2qi + 4i^{2} - (9 - 12i - 4) \\ = 2i + 2qi - (9 - 12i - 4) \\ = 2i + 2qi - (1 - 5) + 12i \\ = 16 + 32i \\ = 16 + 32i \\ = 16 + 32i \\ = 16 + (1 + 2i) \end{aligned}$$

5.76 4. <u>sin32 - cos32</u> cosz 8:55 120 = <u>singrasz - sinzasgr</u> Sinc COSX sin (3x-x) (: sin (d= p) = sind cosp = cos ocimp) Sinz Cost Sigzcosz $= \frac{2 \sin 2x}{\sin 2x} \quad (:: \sin 2x = 2 \sinh x \cosh x)$ $= 2 \qquad \bigcirc$ 5. $z = \frac{2+it}{++2i} \times \frac{t-2i}{t-2i}$ $= \frac{2t - 4i + it^2 - 2i^2t}{t^2 - 4i^2}$ $= \frac{(4t) + i(t^2 - 4)}{t^2 + 4}$ $Y = \frac{t^2 - 4}{t^2 + 4}$ $X = \frac{4t}{\frac{1}{12+t}}$

 $\chi^{2} + \gamma^{2} = \left(\frac{4+t}{t^{2}+4}\right)^{2} + \left(\frac{t^{2}-4}{t^{2}+4}\right)^{2}$ $= \frac{16t^{2} + t^{4} - 8t^{2} + 16}{(t^{2}+4)^{2}}$ $= \frac{t^{4} + 8t^{2} + 16}{(t^{2}+4)^{2}}$ $= \frac{(t^{2}+4)^{2}}{(t^{2}+4)^{2}}$ B $\chi^{2} + \gamma^{2} = 1 \implies \text{circle centre (0,0) radius I unit}$

6. $y = \frac{1}{2}(e^{x} - e^{-x})$ $2y = e^{\chi} - e^{-\chi}$ Multiply Both sides by e^{χ} $e^{2\chi} - 2ye^{\chi} - 1 = 0$ This is a guadratic equation in e^{2t} $e^{2t} = \frac{2y \pm \sqrt{4y^2 - 4(1)(-1)}}{4y^2 - 4(1)(-1)}$ $= 2y + \sqrt{4y^2 + 4y^2}$ = 2y + 2 Jy2+1 Since $e^{\kappa} > 0$ $e^{2k} = y \pm \sqrt{y^2 + 1}$ Taking logs of both sides: 2 = In (y+Jy2+1 1º P PS PM $= \int I - \frac{b^2}{a^2}$ -) rc. 5-3 3 0 5 = 11-4 +3-= <u>J</u> (A)1ª 8. Se a-2 $SV = 2\pi(a-z).(2y)Sz$ a = $4\pi(\alpha - 2) y Sz$ = $4\pi(\alpha - 2)(\sqrt{\alpha^2 - 22^2}) Sz$ -0 2 . $V = 4\pi \int \alpha \sqrt{\alpha^{2} - \varkappa^{2}} = \varkappa \sqrt{\alpha^{2} - \varkappa^{2}}$ Oa $= 4 \pi \alpha \times (\frac{1}{2} \times \pi \chi q^2) \\= 2 \pi^2 \alpha^3 \quad Units^3$ $^{2} \pm 9^{2} = a^{2}$

9. 0,1,2,3,4,5,6,7,8,9 Both odd => 1, 3, 5, 7, 9 Sungreater than 10: 0 9+7 probability = $\frac{4}{5C_2}$ 3 9+3 1+5 = 2 $- U = \chi$ $V = -\frac{1}{2}e^{-2\chi}$ U' = 1 $V' = e^{-2\chi}$ 10. Jue-22 de $= \left[\frac{-1}{2} \varkappa e^{-2\varkappa} \right]_0^{\prime} - \int \left(-\frac{1}{2} \right) e^{-2\varkappa} d\varkappa$ $= -\frac{1}{2}((1)e^{-2} - 0) + \frac{1}{2}\int_{0}^{1} e^{-2k} dk$ $= \frac{1}{2}e^{-2} - \frac{1}{4}\left[e^{-2x}\right]_{0}^{1}$ $= -\frac{1}{2}e^{-2} - \frac{1}{4}(e^{-2} - 1)$ $= \frac{1}{2}e^{-2} - \frac{1}{4}e^{-2} + \frac{1}{4}e^{-2}$ $= \frac{1}{4}e^{-2}(e^2-3)$

ear: 2-019	(\frown	
DUESTION: 11	pg.		1arkers Comments
$\frac{9-7i}{1+i} = \frac{5}{2+i}$			
$= \left(\frac{9-7!}{1+2} \times \frac{1-i}{1-i}\right) - \left(\frac{5}{2+i}\right)$	$\times \frac{2-i}{2-i}$	ß	
$= \frac{1-4(1-4)(1+4)}{1-6^2} - \frac{10}{4}$	$\frac{p-5i}{r-i}$		fraction
$= \frac{1-161-4}{1+1} = \frac{10-5}{4+1}$ $= 2-161 (10-51)$			
= 1 - 8i - 2 + i			
= -1 - 7i			
$= \frac{18 + 9i - 14i + 7 - 5}{(1 + i)(2 + i)}$	-51		
$= \frac{20 - 10i}{1 + 3i} \times \frac{1 - 3i}{1 - 3}$	s L		(A lot f
= 20 - 30 - 10i - 60i		c	areless Igebraic errors
$= -\frac{10 - 70i}{10}$			
$y = f(-3) = \sqrt{3} = \sqrt{4} - z$		-* +	should use
		0 Se	t and y-a.
		a a	concave dows:

.

. , Desmos | Graphing Calculator

Year: 2019

-,

*

Level: Ext 2

Year: 2019

Year: 2019
Westron: 11 at:
(a) P(x) =
$$2x^2 + 4x^2 - 6x + 1 = 0$$

has costs of $d_1(3, 8$
(a) $(3, 8)$
(b) $(x - 2x^2 + 1)^2$
 $(x - 2x^{-1})^2 + 4(\frac{x^{-1}}{2})^2 - 6(\frac{x^{-1}}{2}) + 1 = 0$
 $2(\frac{y^{-3}}{2}, \frac{x^{-3}}{2}, \frac{x^{-3}}{2}) + 4(\frac{y^{-2}}{2}, \frac{x^{-1}}{2}) + 1 = 0$
 $2(\frac{y^{-3}}{2}, \frac{x^{-3}}{2}, \frac{x^{-1}}{2}) + 4(\frac{y^{-2}}{2}, \frac{x^{-1}}{2}) - 3(\frac{y^{-1}}{2}) + 1 = 0$
 $y^3 - 3y^2 + 3y^{-1} + 4y^2 - 8y + 4 - 12y + 12 + 4 = 0$
 $y^3 + y^2 - 17y + 19 = 0$
 $\therefore x^3 + x^2 - 17x + 19 = 0$ (dummy variable)
(d) $x^2 - xy + y^2 - 3 = 0$
 $Define that is implicitly with respect to x
 $2x - (1)(xy) + (x)\frac{dx}{dx} + 2y)\frac{dx}{dx} = 0$
 $\therefore \frac{dy}{dx} (-x + 2y) = -2x + 3$
 $\frac{dy}{dx} = -\frac{(2x - y)}{-x + 2y}$
horizontal to react when $\frac{dx}{dx} = 0$
 $\frac{1}{x^2 + (2x)^3} = x(2x) + 3$
 $x^2 + 4x^2 = 2x^2 + 3$
 $x^2 + 3x^2 = 3$ $x^2 = 1$ $x = 41$$

$$\begin{array}{c} (1) \\ (1) \\ (2) \\$$

L

c)
$$y = \sqrt{9-x^2} = y^2 + x^2 = 9-y^2 0$$

 $5V = \pi (r_2^2 - r_1^2) Sy$
 $= \pi (2^2 - 2^2) Sy$
 $= \pi (2^2 - 2^2)$

-

$$\begin{aligned}
& (2e) d = \left[\frac{1}{(2e)^{-1}} S_{2} + 4an^{-1} \left(\frac{1}{(5x)} \right) \right] \\
&= \left[\frac{1}{(1+(5x)^{2}} \times 5 \right] + \left[\frac{1}{(1+(\frac{1}{(5x)})^{2}} \times \frac{d}{(x+\frac{1}{(5x)})} \right] \\
&= \frac{5}{(1+25x^{2})^{2}} + \left(\frac{1}{(1+\frac{1}{25x^{2}})} \times \frac{-1}{(5x^{2})} \right) \\
&= \frac{5}{(1+25x^{2})^{2}} + \left(-\frac{5}{(25x^{2}+\frac{1}{5})} \right) \\
&= \frac{5}{(1+25x^{2})^{2}} + \left(-\frac{5}{(25x^{2}+\frac{1}{5})} \right) \\
&= \frac{5}{(1+25x^{2})^{2}} + \left(-\frac{5}{(25x^{2}+\frac{1}{5})} \right) \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&= 0 \\
&$$

-

. true for n=1 and n=2

Step 2: Assume the for
$$n = k$$
, where k is an integer $(k \le n)$:
 $T_k = 2^k + 5^k$
 $T_{k-1} = 2^{k-1} + 5^{k-1}$
Step 3: Prove true for $n = k+1$:

Step 3: Prove true for
$$n = k + 1$$
:
ie $T_{k+1} = 2^{k+1} + 5^{k+1}$

$$LHS = T_{k+1}$$

$$= 7T_{k} - 10T_{k-1} \quad (Using T_{n+2} = 7T_{n+1} - 10T_{n})$$

$$= 7(2^{k} + 5^{k}) - 10(2^{k-1} + 5^{k-1}) \quad Using \quad s \neq p 2.$$

$$= 7x2^{k} + 7x5^{k} - 10x2^{k-1} - 10x5^{k-1}$$

$$= 7x2^{k} + 7x5^{k} - (5x2\cdot2^{k-1}) + (2x5\cdot5^{k-1})$$

$$= 7x2^{k} + 7x5^{k} - 5x2^{k} - 2x5^{k} \quad do^{k-1}$$

$$= 7 \times 2^{k} + 7 \times 5^{k} - 5 \times 2^{k} - 2 \times 5^{k}$$

= $2 \times 2^{k} + 5 \times 5^{k}$
= $2^{k+1} + 5^{k+1}$
= $R + 5$ Hence Proved.

<u>Step 4</u>: By the Principle of Mathematical Induction, the result is the for all integers nZI.

d)
$$w^{3}=1$$
 ie $w = cis(\frac{2k\pi}{3})$, where $k=0,\pm1$
 $w = 1, cis\frac{2\pi}{3}, cis(-\frac{2\pi}{3})$
 $w is converses on with
 $(w-1)(w^{2}+w+1)=0$
 $since/w+ti/w^{2}+w+1=0$
 $1+w+w^{2}+w^{$$

A beller melliod :
$$\frac{2}{2} \int_{2}^{2} 5i$$

 $w = -2 \pm 2.53i$
 $|w| = \sqrt{(-2)^{2} \pm (2.53)^{2}}$
 $= \sqrt{4 \pm 12}$
 $= 4 \text{ units}$
 $= 6 \pm \text{ units}$
 $= 2 \frac{1}{3} \text{ subsection of the field of$

•

e)
$$w = -2 + 2\sqrt{3}i$$

 $w^{3} - a^{3} = 0$
 $(w-a)(w^{2} + aw + a^{2}) = 0$
 $ie \quad w = a \quad \text{or} \quad w^{2} + aw + a^{2} = 0$
 $\therefore a = -2 + 2\sqrt{3}i$
 $a = -w \pm \sqrt{2} - 4(w^{3})(n)$
 $= -\frac{w \pm \sqrt{3}}{2}$
 $= -\frac{w \pm \sqrt{3}}{2}$
 $= -\frac{w \pm \sqrt{3}}{2}$
 $= -\frac{w \pm \sqrt{3}}{2}$
 $ie \quad a = -(-2 + 2\sqrt{3}i) \pm \sqrt{3} \cdot (-2 + 2\sqrt{3}i)$
 $= \frac{2}{-2\sqrt{3}i} - 2\sqrt{3}i + 6i^{2}$
 $= -\frac{4}{-4\sqrt{3}i}$
 $a = -2 - 2\sqrt{3}i$

$$\begin{aligned} \alpha &= -(-2+2\sqrt{3}i) - \sqrt{3}i(-2+2\sqrt{3}i) \\ &= \frac{2}{2} - 2\sqrt{3}i + 2\sqrt{3}i - 6i^2 \\ &= \frac{8}{2} \\ &= \frac{8}{2} \end{aligned}$$

-: a=4, -2+252; , -2-253;

•

Examination: Trial HSC.
Level: Ext 2
Year: 2019 Pg D
Martiers comments
(a) xy=2

$$\therefore y_{z} = \frac{2}{2}$$

 $dx = -\frac{2}{2}$
 $dx = -\frac{2}{2}$

Level: Ext 2 Year: 2019 pg 2 Markers Comments QUESTION: 4- $T_n = \int (lnx)^2 l dx = (lnx)^2 v = x$ (b) (i) $\frac{du}{dx} = \frac{n(1-x)^{n-1}}{x} = 1$ $\int_{-\infty}^{\infty} I_n = \left[2c \left(I_n x \right)^n \right]_{-\infty}^{-\infty} - \int_{-\infty}^{\infty} \left(I_n x \right)^{-1} x x dc$ $\widehat{(1)}$ $= e(ne)^{n} - 1((n1)^{n} - n((nx))^{n-1}dx$ the line of substitution =e -o-nI as it's a show $= e - n I_{n-1}$ question; worth 3 marks!! () I 5=e-SI4 =e - 5(e - 4I3) =e-Se+20(e-3I2) =-4e+20e-60(e-2I) = 16e - 60e + 120(e - I) now I = { Idx $= \left[x \right]^{e}$ 1 = e - 1 00 I 5 = - 49e + 120e - 120 I 0 = -44e + 120e - 120(e - 1)= 76e -120e +120 = -44e + 120

Examination:

Examination:

Level: Cat 2.
Vee: 2019

$$(1) method 1
($\cos \theta + i\sin \theta^{\dagger} = cet\theta + i\sin 4\theta$ (by Remainers
($\cos \theta + i\sin \theta^{\dagger} = cet\theta + i\sin 4\theta$ (c) Remainers
($\cos \theta + i\sin \theta^{\dagger} = cet\theta + i\sin 4\theta$ (c) Remainers
 $= cot\theta + 4i\sin \theta ce^{2}\theta - 4ii^{2}\sin^{2}\theta ce^{2}\theta + 4i^{2}\sin^{2}\theta ce^{2}\theta + 1i^{2}\sin^{2}\theta ce^{2}\theta + 1i^{2}\cos^{2}\theta + 1i^$$$

.

Examination:

Level: CA2 PG 4 Markers Comments Year: 2019 QUESTION: 4 Cont : 40 = 13, 51, 77, 111 (4 roots as the a quartic) $\partial_{0} = \prod_{12} \sum_{12} \prod_{12} \prod_{12} \prod_{12} \sum_{12} \partial_{0} x = \cos \left[\frac{1}{2}, \cos \frac{1}{2} \right] \cos \frac{1}{2} \cos \frac{1}{$ (iii) rood 2 at a time = 4 = -1 CosT . CosT + cosT cosT + cosT cosT + cosT $\left(\text{now cost}_{\overline{12}} = -\cos \frac{\pi}{12} \text{ and } \cos \frac{\pi}{12} = \cos \frac{\pi}{12} \right)$ $\frac{1}{100} - \left(= \cos \frac{\pi}{12} \cdot \cos \frac{\pi}{12} - \cos \frac{\pi}{12} \cos \frac{\pi}{12} - \cos \frac{\pi}{12} - \cos \frac{\pi}{12} - \cos \frac{\pi}{12} \cos \frac{\pi}{12} + \cos \frac{\pi}{$ $-1 = -\cos^2 \frac{\pi}{2} - \cos^2 \frac{\pi}{2}$ $\cos^{2} \pi + \cos^{2} \pi = 1$ (a) product of roots = to $\cos \frac{3}{12} = \frac{1}{12} = \frac{1}{16} \quad (as \cos \frac{71}{12} = -\cos \frac{51}{12} \quad ote)$ $\cos \frac{7}{12} \cos \frac{51}{12} = \frac{1}{2} \quad (as in 1st gradrant)$ noW $(cos \frac{1}{12} + cos \frac{5\pi}{12}) = cos \frac{2}{12} + cos \frac{5\pi}{12} + 2cos \frac{5\pi}{12} cos \frac{5\pi}{12}$ $\left(\cos\frac{\pi}{2} + \cos\frac{\pi}{2}\right)^{2} = 1 + 2 \times (\frac{1}{4})$ $(\cos \frac{\pi}{2} + \cos \frac{\pi}{2}) = 3/2$ COSTZ + COSTZ = J3/2 (as both oncles are in the first quadrant.) xneeded to find sum of coats 2 at a time and product it roots to get O mark * 2nd mark for using expansion and supplementary ingles

Examination:
Level:
$$\mathcal{E} \cdot \mathcal{F} \cdot \mathcal{I}_{\mathcal{A}}$$

Year: 2019
QUESTION: \mathcal{E}
 $\mathcal{O}(\mathbf{i}) \quad \mathbf{z} = \frac{1}{\mathcal{M}} = -\mathbf{g} - \mathbf{k} \cdot \mathbf{v}$
 $dt = -\mathbf{g} + \mathbf{k} \cdot \mathbf{v}$
 $\mathbf{k} = -\mathbf{g} - \mathbf{k} \cdot \mathbf{k} + \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{g} - \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} + \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k}$
 $\mathbf{k} = -\mathbf{k} \cdot \mathbf{k} \cdot \mathbf{k$

` ;

.

Examination: Level: Ext 2 pg 3 Year: 2019 Markers Comments QUESTION: $H = \frac{-1}{k} \int \left(\frac{kv+g}{kv+g} - \frac{g}{g+kv} \right) dv$ $= \frac{-1}{K} \int \left[\frac{dv}{dv} + \frac{9}{K} \right] \frac{k}{g + kv} dv$ $H = \frac{1}{k} \left[v \right]_{u} + \frac{3}{k^{2}} \left[\ln \left(g + k v \right) \right]_{u}$ = "H + = hg - = h(g+ ku) $H = \frac{4}{K} + \frac{9}{K^2} \ln\left(\frac{9}{9+Ku}\right)$ metres Circles are certred Many ways at 0 and P need to clearly J) respectively. label 2 males as & and B. AB is common Enget. State Alliedsons (let < ANN = & and < ANM = P <Omn = 90° (tanget is perpendicular to radius at the
similarly <pre>pnm=90° point of contract). i, < OMA=90° - × (subtraction of adjacent angles) om = ON (bath radii) < OAM = < OMA (equal angles are opposite equal sides in 20Am.) = 90-2 (1) < DAB = 90° (tanget AB perpendicular to radius at pt. of contact) -: < MAB = 90° - (90° - d) (sistrada st adjacent angles) Similarly KNAB=B $\frac{-5}{2} \operatorname{In} \overline{M} \overline{M} \overline{N}, \quad d + \beta + d + \beta = 180^{\circ} \quad (and e sum d \Delta M \overline{M} \overline{N})$ $2d + 2\beta = 180^{\circ}$ $\lambda + \beta = 90^{\circ}$ · < MAN = d+B=90° (sum at adjacent angles)

 $(a) = 4\pi \quad (b=1) \quad (a) \quad (a)$ $\frac{\text{Puestion 16}}{\text{a}(i)} \times^2 + 16y^2 = 16$ $\frac{2^2}{16} + \frac{y^2}{1} = 1$ $= \pi(4)(i) =$ Area = TTab MY. ii) 1 > good allempt $\begin{aligned} & .z^{2} t / 6y^{2} = / 6 \\ & 16y^{2} = 16 - z^{2} \\ & y^{2} = 1 - \frac{z^{2}}{16} \\ & y = t - \sqrt{1 - \frac{z^{2}}{16}} \end{aligned}$ B) SV= (6x2y). Sr = 12y Sr = 12 x J16-22 Sr SV = 3 JT6-22 Szc $ig = \pm \frac{516 - x^2}{110}$ $V = \lim_{S_{x \to 0}} \sum_{x = -6}^{x = -6} 3 \sqrt{16 - x^2} S_{x}$ $= 3 \int \sqrt{16 - x^2} \, dx$ 3× ±× TT × 42 = 24π units³

manyting 6) LORP = 90° (-Not p- (angle in a semi-with diameter :PR=RØ (the line through the centre of circle centre. perpendialor to chord bisects that chord) " Lis always the midpoint of PQ (S J) Circles have centre () and P respectively Let $LAMN = \alpha$ and $LANM = \beta$ 20MN = 2PNM = 90° (Hangert is perpendicular to radius at the point of contact) $LOMA = 90^{\circ} - K$ Since OM = OA (radii of vide, centre 0) LOAM = 90°-a (i's opposede equalsidus in DOAM) (OAB = 90° (tangent 1 radius at the point of cartact, unle c) : LMAB = 90°- (90°-a) Similarly , LNAB = B $\alpha + \beta + \alpha + \beta = 180^{\circ}$ largle sum of DMANS In SMAN, $x \pm p = 90$ ' 2MAN = x+p = '90° (adjacent ongles)

$$\frac{\partial \alpha}{\partial x} = \frac{\partial \alpha}{\partial x} = \frac{\partial \alpha}{\partial y} =$$

.

¢

$$\frac{-1}{v(1+v^{2})} = \frac{A}{v} + \frac{Bv+C}{1+v^{2}} \quad \text{where } A, B, C$$

$$\frac{-1}{v(1+v^{2})} = V (Bv+C)$$
Sub $v = 0$

$$\frac{-1}{-1} = A(1+v^{2}) + v(Bv+C)$$
Sub $v = i$

$$\frac{-1}{-1} = A(1+v^{2}) + v(Bv+C)$$

$$\frac{-1}{-1} = Bi^{2} + Ci$$

$$\frac{-1}{-1} = Ci - B$$
Equating real point $\Rightarrow B = 1$
Equating inary parts $\Rightarrow C = 0$

$$\frac{-1}{\sqrt{2}} + \frac{v}{1+v^{2}}$$

$$\int dt = -\frac{1}{\sqrt{2}} + \frac{v}{1+v^{2}} dv$$

$$\int dt = \int_{C} -\frac{1}{\sqrt{2}} + \frac{v}{1+v^{2}} dv$$

$$\int bus \ \text{sequences}$$

$$T = \left[-\ln(v) + \frac{1}{2}\ln(1+v^{2})\right]_{K}$$

$$= -\ln(v) + \frac{1}{2}\ln(1+v^{2}) + \ln(K) - \frac{1}{2}\ln(1+k^{2})$$

$$= \ln\left(\frac{K}{\sqrt{v^{2}}}\right) + \frac{1}{2}\ln\left(\frac{1+v^{2}}{1+k^{2}}\right)$$

$$= \frac{1}{2}\ln\left(\frac{k^{2}(1+v^{2})}{\sqrt{2}(1+k^{2})}\right) \quad \text{second s}$$

P . 6 !