

Penrith Selective High School Mathematics Extension 2
 Trial HSC 2019

General Instructions:

- Reading time - 5 minutes
- Working time -3 hours
- Calculators approved by NESA may be used
- No correction tape or white out to be used
- A reference sheet is provided with this paper
- Use black pen
- In Questions 11-16, show relevant mathematical reasoning and/ or calculations

	Complex Numbers	Graphing	Polynomials	Integration	Conics	Volumes	Harder Ext 1	Resisted Motion	Total Choice
Q11									$/ 10$
Q12									$/ 15$
Q13									$/ 15$
Q14									$/ 15$
Q15									$/ 15$
Q16									$/ 15$
Total	$/ 11$	$/ 11$							

Student Number: \qquad

Teacher's Name: \qquad

Section I (10 marks)

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the Blue multiple-choice answer sheet for Questions 1-10.

1. Simplify $(5+2 i)^{2}-(3-2 i)^{2}$
A. $\quad 4(4+i)$
B. $8(2+i)$
C. $\quad 16(1+2 i)$
D. $16(1+i)$
2. Solve $x^{4}+2 x^{3}-12 x^{2}+14 x-5=0$, given that it has a triple root.
A. $\quad x=1,1,1,5$
B. $\quad x=-1,-1,-1,5$
C. $\quad x=-1,-1,-1,-5$
D. $\quad x=1,1,1,-5$
3. Evaluate $\int_{0}^{1} \frac{x^{2}}{x+1} d x$
A. $\frac{-3-\ln 4}{2}$
B. $\frac{-1+\ln 4}{2}$
C. $\quad \frac{-1-\ln 4}{2}$
D. $\frac{3-\ln 4}{2}$
4. Simplify $\frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x}$
A. 5
B. 0
C. 2
D. -4
5. If $Z=\frac{2+i t}{t+2 i}$ and given that t is a real variable. The locus of Z as t varies is given by:
A. A circle centred at $(2,0)$ and radius 1 unit
B. A circle centred at $(0,0)$ and radius 1 unit.
C. A circle centred at $(0,0)$ and radius 2 units.
D. \quad A circle centred at $(2,0)$ and radius 2 units.
6. If $y=\frac{1}{2}\left(e^{x}-e^{-x}\right)$ find x in terms of y.
A. $\quad x=\ln \left(y-\sqrt{y^{2}+1}\right)$
B. $\quad x=\ln \left(-y+\sqrt{y^{2}+1}\right)$
C. $\quad x=\ln \left(-y-\sqrt{y^{2}+1}\right)$
D. $\quad x=\ln \left(y+\sqrt{y^{2}+1}\right)$
7. A point P lies on the ellipse $\frac{X^{2}}{9}+\frac{Y^{2}}{4}=1$.

The perpendicular from P meets the directrix at M.
The focus of the ellipse is S. Find the value of the ratio $\frac{P S}{P M}$
A. $\frac{\sqrt{5}}{3}$
B. $\frac{\sqrt{3}}{5}$
C. $\frac{\sqrt{5}}{9}$
D. $\frac{2}{3}$
8. Find the volume generated when a circle of radius a units is rotated about its vertical tangent.
A. $2 \pi^{2} a^{3}$
B. $\frac{8 \pi^{2} a^{3}}{3}$
C. $\frac{4 \pi a^{3}}{3}$
D. $4 \pi^{2} a^{3}$
9. From the digits $0,1,2,3, \ldots, 9$ two digits are selected without replacement.

If they are both odd digits, what is the probability that their sum is greater than 10?
A. $\frac{3}{5}$
B. $\frac{1}{4}$
C. $\frac{2}{5}$
D. $\frac{3}{10}$
10. Find the exact value of $\int_{0}^{1} x e^{-2 x} d x$
A. $\frac{-1}{2} e^{-2}\left(e^{2}+1\right)$
B. $\frac{1}{2} e^{-2}\left(e^{2}-3\right)$
C. $\frac{1}{4} e^{-2}\left(e^{2}-1\right)$
D. $\frac{1}{4} e^{-2}\left(e^{2}-3\right)$

Section II (90 marks)

Attempt Questions 11-16.
Allow about 2 hours and 45 minutes for this section.
Answer each question in the appropriate writing booklet.
Extra writing booklets are available.
Your responses should include relevant mathematical reasoning, working and formulae.

Question 11 (15 marks)

(a) Express $\frac{9-7 i}{1+i}-\frac{5}{2+i}$ in the form $m+n i$.
(b) If $f(x)=\sqrt{4-x^{2}}$ then graph neatly on separate number planes:
(Each graph should be approx $\frac{1}{3}$ of a page showing all important features)
(i) $y=f(x)$
(ii) $y=\frac{1}{f(x)}$
(iii) $y^{2}=f(x)$
(iv) $y=x f(x)$
(c) The roots of the cubic equation $2 x^{3}+4 x^{2}-6 x+1=0$ are α, β and γ. Find the equation whose roots are $2 \alpha+1,2 \beta+1$ and $2 \gamma+1$.
(d) Find the coordinates of the point/s on the curve $x^{2}+y^{2}=x y+3$, where the tangent/s is horizontal.
(a) Shade neatly the region on the Argand Diagram represented by

$$
-2 \leq \operatorname{Im}(z) \leq 1 \quad \cup \quad \frac{-\pi}{3} \leq \operatorname{Arg} z \leq \frac{\pi}{4}
$$

(b) Given the line $y=m x+5$ and the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

Find the value/s of m such that the given line is a tangent to the ellipse.
(c) The region bounded by $y=\sqrt{9-x^{2}}$, the x-axis and the line $x=2$ is rotated about the y-axis.
(i) Using the slices method, show that the volume of a slice is given by

$$
\delta V=\pi\left(5-y^{2}\right) \delta y
$$

(ii) Hence find the exact volume of the solid of revolution.
(d) Evaluate the integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos ^{3} x}{\sin ^{2} x} d x$ leaving your answer in exact form.
(e) Differentiate the expression $\tan ^{-1} 5 x+\tan ^{-1} \frac{1}{5 x}$ and hence find the value of the expression for $x<0$.
(a) The base of a solid is a circle of radius 6 units.

Cross sections of the solid by planes perpendicular to its base are equilateral triangles.
(i) Show that the solid's volume is given by $V=\int_{-6}^{6} \sqrt{3}\left(36-x^{2}\right) d x$.
(ii) Hence find the exact volume of this solid.
(b) In a class of 15 girls, one girl is chosen to be the referee and the other girls play 7 a side soccer. In how many ways can the referee and teams be chosen?
(c) A sequence of numbers is such that $\mathrm{T}_{1}=7, \mathrm{~T}_{2}=29$ and $T_{n+2}=7 T_{n+1}-10 T_{n}$. Prove by Mathematical Induction that $T_{n}=2^{n}+5^{n}$ for $n \geq 1$.
(d) Given that w is a complex cube root of unity, evaluate exactly $1+w+w^{2}+w^{3}+\ldots \ldots+w^{1001}$
(e) (i) Express $w=-2+2 \sqrt{3} i$ in mod-arg form.
(ii) Given that w is a root of $w^{3}-a^{3}=0$, find the exact value/s of a.
(a) (i) Find the equation of the tangent at $\left(2 t, \frac{1}{t}\right)$ to $x y=2$ in general form.
(ii) Find the product of the perpendiculars from $(2,2)$ and $(-2,-2)$ to the tangent.
(b) (i) Show that $I_{n}=e-n I_{n-1}$ if $I_{n}=\int_{1}^{e}(\ln x)^{n} d x$ for $n \geq 0$.
(ii) Hence evaluate I_{5}
(c) (i) Prove that $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$
(ii) Hence solve the equation $16 x^{4}-16 x^{2}+1=0$.
(iii) Hence show that the exact value of $\left(\cos \frac{\pi}{12}+\cos \frac{5 \pi}{12}\right)$ is $\sqrt{\frac{3}{2}}$.

Question 15 (15 marks)
(a) Use the method of cylindrical shells to find the volume of the solid obtained when the region bounded by $y=4 x^{2}-x^{4}, y \geq 0, x \geq 0$ and $x \leq 2$ is rotated about the y-axis.
(b) A rock of mass 5 kg is falling through water.

The resistance of the water gives an upward force of 0.25 N and the buoyancy of the water provides a further upwards force of 6 N . Taking g as $10 \mathrm{~m} / \mathrm{s}^{2}$, find the acceleration of the rock.
(c) A particle is thrown vertically upwards with a velocity of $U \mathrm{~m} / \mathrm{s}$. It experiences a resistance which is proportional to $m v$.
(i) Show that its acceleration is given by $\ddot{x}=-g-k v$, where k is a positive constant and g is the acceleration due to gravity.
(ii) Find when the particle reaches its maximum height.
(iii) Find the greatest height, H.
(d) Two circles touch externally at A.

A common tangent touches the circles at M and N respectively.
Find the size of $\angle M A N$, giving reasons.

Question 16 (15 marks) marks
(a) (i) Calculate the area of the ellipse $x^{2}+16 y^{2}=16$.
(ii) A solid has the ellipse $x^{2}+16 y^{2}=16$ as its base. Cross-sections of the solid perpendicular to its base and parallel to the y-axis are rectangles of height 6 units.
(α) Draw this information, clearly showing a typical slice.
(β) Show that the expression for the volume of this slice is given by:

$$
\delta V=3 \sqrt{16-x^{2}} \delta x
$$

(γ) Calculate the exact volume of the solid.
(b) O is the centre of the circle. P is a fixed point on the circumference of the circle. Q is a variable point on the circle's circumference.

With $O P$ as a diameter a semi-circle is drawn.
$P Q$ meets this semi-circle at R. Prove that R is always the midpoint of $P Q$.

(d) A particle of unit mass moves in a straight line against a resistance numerically equal to $v+v^{3}$, where v is its velocity. Initially the particle is at the origin and is travelling with velocity K, where $K>0$.
(i) Show that v is related to the displacement x by $x=\tan ^{-1}\left(\frac{K-v}{1+K v}\right)$.
(ii) Show that the time t which has elapsed when the particle is travelling with velocity v, is given by $t=\frac{1}{2} \ln \left[\frac{K^{2}\left(1+v^{2}\right)}{v^{2}\left(1+K^{2}\right)}\right]$.

End of Examination

Ext 2009 HSC. Trial
Section 1 - Multiple Choice

$$
\begin{align*}
& (s+2 i)^{2}-(3-2 i)^{2} \\
& =25+20 i+4 i^{2}-\left(9-12 i+4 i^{2}\right) \\
& =25+20 i-4-(9-12 i-4) \\
& =21+20 i-(5-12 i) \\
& =21+20 i-5+12 i \\
& =16+32 i \\
& =16(1+2 i) \tag{c}
\end{align*}
$$

2. $P(x)=x^{4}+2 x^{3}-12 x^{2}+14 x-5$. has siple root

$$
\begin{aligned}
P^{\prime}(x) & =4 x^{3}+6 x^{2}-24 x+14 \\
P^{\prime \prime}(x) & =12 x^{2}+12 x-24 \\
& =12\left(x^{2}+x-2\right)
\end{aligned}
$$

Solving $P^{\prime \prime}(x)=0$:

$$
\begin{aligned}
& \quad 12\left(x^{2}+x-2\right)=0 \\
& \\
& (x+2)(x-1)=0 \\
& \therefore x=-2,1
\end{aligned}
$$

$$
P(-2)=(-2)^{4}+2(-2)^{3}-12(-2)^{2}+14(-2)-5=-81
$$

$$
P(1)=(1)^{4}+2(1)^{3}-12(1)+14(1)-5=0
$$

$\therefore x=1$ is triple root

3

$$
\begin{aligned}
\int_{0}^{1} \frac{x^{2}}{x+1} d x & =\int_{0}^{1} \frac{x^{2}-1}{x+1}+\frac{1}{x+1} d x \\
& =\int_{0}^{1} x-1+\frac{1}{x+1} d x \\
& =\left[\frac{x^{2}}{2}-x+\ln (x+1)\right]_{0}^{1} \\
& =\left[\frac{1}{2}-1+\ln (2)\right]-[0-0+\ln (1)] \\
& =\frac{2 \ln (2)-1}{2} \\
& =\frac{\ln (4)-1}{2}
\end{aligned}
$$

$$
\begin{align*}
& \alpha+\beta+\gamma+\delta=1+1+1+\delta=-2 \\
& \therefore \delta=-5 \\
& \therefore \text { roots are } 1,1,1,-5 \tag{D}
\end{align*}
$$

$$
\text { 4. } \begin{align*}
& \frac{\sin 3 x}{\sin x}-\frac{\cos 3 x}{\cos x} \\
& =\frac{\sin 3 x \cos x-\sin x \cos 3 x}{\sin x \cos x} \\
= & \frac{\sin (3 x-x)}{\sin x \cos x} \quad(\because \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \operatorname{csin} \beta \\
& =\frac{\sin 2 x}{\sin x \cos x} \\
& =\frac{2 \sin 2 x}{\sin 2 x} \quad(\because \sin 2 x=2 \sin x \cos x) \\
& =2 \tag{c}
\end{align*}
$$

5. $z=\frac{2+i t}{t+2 i} \times \frac{t-2 i}{t-2 i}$

$$
\begin{aligned}
& =\frac{2 t-4 i+c t^{2}-2 i^{2} t}{t^{2}-4 i^{2}} \\
& =\frac{(4 t)+i\left(t^{2}-4\right)}{t^{2}+4}
\end{aligned}
$$

$$
X=\frac{4 t}{t^{2}+4} \quad y=\frac{t^{2}-4}{t^{2}+4}
$$

$$
x^{2}+y^{2}=\left(\frac{4 t}{t^{2}+4}\right)^{2}+\left(\frac{t^{2}-4}{t^{2}+4}\right)^{2}
$$

$$
=\frac{16 t^{2}+t^{4}-8 t^{2}+16}{\left(t^{2}+4\right)^{2}}
$$

$$
=\frac{t^{4}+8 t^{2}+16}{\left(t^{2}+4\right)^{2}}
$$

$$
\begin{equation*}
=\frac{\left(t^{2}+4\right)^{2}}{\left(t^{2}+4\right)^{2}} \tag{B}
\end{equation*}
$$

$\therefore x^{2}+y^{2}=1^{\left(t^{2}+4\right)^{2}} \Rightarrow$ circle centre $(0,0)$ radius Iunit

$$
\begin{aligned}
& \text { 6. } \begin{aligned}
& y=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& 2 y=e^{x}-e^{-x} \quad \text { Multiply } B y \\
& e^{2 x}-2 y e^{x}-1=0 \\
& \text { This is a quadratic equation in } e^{x} \\
& e^{x}=\frac{2 y \pm \sqrt{4 y^{2}-4(1)(-1)}}{2(1)} \\
&=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2} \\
&=\frac{2 y \pm 2 \sqrt{y^{2}+1}}{2} \\
& e^{x}=y \pm \sqrt{y^{2}+1}
\end{aligned} \quad \text { Since }
\end{aligned}
$$

$$
2 y=e^{x}-e^{-x} \quad \text { Multiply Both sides by } e^{x}
$$

Since $e^{x}>0$
Taking logs of both sides: $x=\ln \left(y+\sqrt{y^{2}+1}\right)$

$$
\begin{align*}
\frac{P S}{P M} & =e \\
& =\sqrt{1-\frac{6^{2}}{a^{2}}} \\
& =\sqrt{1-\frac{4}{9}} \\
& =\frac{\sqrt{5}}{3} \tag{A}
\end{align*}
$$

$$
\begin{aligned}
& \delta V=2 \pi(a-x) \cdot(2 y) \delta x \\
&=4 \pi(a-x) y \delta x \\
&=4 \pi(a-x)\left(\sqrt{a^{2}-x^{2}}\right) \delta x \\
& \therefore V=4 \pi \int_{-a}^{a} a \sqrt{a^{2}-x^{2}}-x \sqrt{a^{2}-x^{2} \theta} \\
&=4 \pi a \times\left(\frac{1}{2} \times \pi \times a^{2}\right) \\
&=\frac{2 \pi^{2} a^{3} \text { Units }}{\text { ant }} \text { odd } \\
& \text { (1) }
\end{aligned}
$$

9.

$$
0,1,2,3,4,5,6,7,8,9
$$

Both odd $\Rightarrow 1,3,5,7,9$
sumgreater than 10:
(1) $9+7$
(2) $9+5$

$$
\begin{align*}
\therefore \text { probability } & =\frac{4}{5 C_{2}} \\
& =\frac{2}{5} \tag{c}
\end{align*}
$$

(i) $7+5$

$$
\begin{aligned}
& \int_{0}^{1} x e^{-2 x} d x \\
= & {\left[-\frac{1}{2} x e^{-2 x}\right]_{0}^{1}-\int_{0}^{1}\left(-\frac{1}{2}\right) e^{-2 x} d x } \\
= & -\frac{1}{2}\left((1) e^{-2}-0\right)+\frac{1}{2} \int_{0}^{1} e^{-2 x} d x \\
= & -\frac{1}{2} e^{-2 x} e^{-2}-\frac{1}{4}\left[e^{-2 x}\right]_{0}^{1} \\
= & -\frac{1}{2} e^{-2}-\frac{1}{4}\left(e^{-2}-1\right) \\
= & -\frac{1}{2} e^{-2}-\frac{1}{4} e^{-2}+\frac{1}{4} \\
= & -\frac{1}{4} e^{-2}+\frac{1}{4} \\
= & \frac{1}{4} e^{-2}\left(e^{2}-3\right)
\end{aligned}
$$

Examination: Hear 12 Trial HSE. 0.9
Level: C tension 2
Year: 201%
pg. (1)

(1)
$=\frac{20-30-10 i-60 i}{10}$
$=\frac{-10-70 i}{10}$
$=-1-7 i$
(1) for each
fraction

* A lot x careless algebraic errors.

* should use the same scute on x and y-dxis,
so it looks like a semi-circle nt a con cave dopa parabola.

Examination:
Level: E䎢2.
Year: 2019
g 2

(ii) $y^{2}=f(x)$

(iv) $y=x f(x)=x \sqrt{4-x^{2}}$

(1) for max. at $(\sqrt{2}, 2)$ or vicinity
(graph is not symmetrical about the y-axis).

Examination:
Level: Ext 2
Year: 2019
QUESTION: II cont.
(c) $P(x)=2 x^{3}+4 x^{2}-6 x+1=0$
has cods of α, β, γ
let $y=2 x+1$
$\therefore x=\frac{y-1}{2}$ sub into $P(x)$
$2\left(\frac{y-1}{2}\right)^{3}+4\left(\frac{y-1}{2}\right)^{2}-6\left(\frac{y-1}{2}\right)+1=0$
$\frac{2\left(y^{3}-3 y^{2}+3 y-1\right)}{8}+\frac{4\left(y^{2}-2 y+1\right)}{4}-3(y+1)+1=0$
$y^{3}-3 y^{2}+3 y-1+4 y^{2}-8 y+4-12 y+12+4=0$

$$
\begin{equation*}
y^{3}+y^{2}-17 y+19=0 \tag{1}
\end{equation*}
$$

$\therefore x^{3}+x^{2}-17 x+19=0 \quad$ (dummy variable)
(d) $x^{2}-x y+y^{2}-3=0$

Differentiate implicitly with respect to x

$$
\begin{gather*}
2 x-\left((1)(y)+(x) \frac{d y}{d x}\right)+2 y\left(\frac{d y}{d x}\right)-0=0 \\
2 x-y+(-x+2 y) \frac{d y}{d x}=0 \\
\therefore \frac{d y}{d x}(-x+2 y)=-2 x+y \\
\frac{d y}{d x}=\frac{-(2 x-y)}{-x+2 y} \tag{1}
\end{gather*}
$$

* badly done
horizontal tangent when $\frac{d y}{d x}=0$

$$
\begin{align*}
i x-2 x+y & =0 \\
\therefore y & =2 x \tag{1}
\end{align*}
$$

sib $y=2 x$ into eqn.

$$
\begin{aligned}
& x^{2}+(2 x)^{2}=x(2 x)+3 \\
& x^{2}+4 x^{2}=2 x^{2}+3 \\
& 3 x^{2}=3 \quad x^{2}=1 \quad x= \pm 1
\end{aligned}
$$

oo coordinates are $(1,2)$ and $(-1,-2)$

Question 12

b) $y=m x+5$ is tangent to $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Sul(1) in (2) $\rightarrow \frac{x^{2}}{16}+\frac{(m x+5)^{2}}{9}=1$

$$
\begin{aligned}
& 9 x^{2}+16(m x+5)^{2}=144 \\
& 9 x^{2}+16\left(m^{2} x^{2}+10 m x+25\right)=144 \\
& x^{2}\left(16 m^{2}+9\right)+160 m x+400-144=0 \\
& x^{2}\left(16 m^{2}+9\right)+160 m x+256=0
\end{aligned}
$$

$$
\Delta=(160 n)^{2}-4\left(16 m^{2}+9\right)(256)
$$

$$
\text { Since } y=m x+s \text { is a tangent, } \Delta
$$

$$
\begin{gather*}
(160 m)^{2}-4\left(16 m^{2}+9\right)(256)=0 \\
25600 m^{2}-\left(64 m^{2}+36\right)(256)=0 \\
100 m^{2}-64 m^{2}-36=0 \\
25 m^{2}-16 m^{2}-9=0 \\
-9 m^{2}=9 \\
m= \pm 1
\end{gather*}
$$

$$
\begin{aligned}
y^{2} & \therefore x^{2}=9-y^{2}(1) \\
\delta V & =\pi\left(r_{2}^{2}-r_{1}^{2}\right) \delta y \\
& =\pi\left(x^{2}-2^{2}\right) \delta y \\
& =\pi\left(x^{2}-4\right) \delta y \\
& =\pi\left(\left(9-y^{2}\right)-4\right) \delta y \\
& =\pi\left(5-y^{2}\right) \delta y
\end{aligned}
$$

$$
\begin{align*}
V & =\lim _{\delta y \rightarrow 0} \sum_{y=0}^{y=\sqrt{5}} \pi\left(5-y^{2}\right) \delta y \\
& =\pi \int_{0}^{\sqrt{5}}\left(5-y^{2}\right) d y \\
& =\pi\left[5 y-\frac{y^{3}}{3} \sqrt{\sqrt{5}}\right) \\
& =\pi\left[5 \sqrt{5}-\frac{5 \sqrt{5}}{3}\right]-0 \\
& =\frac{10 \pi \sqrt{5}}{3} \text { units }^{3}
\end{align*}
$$

Note: At $x=2$

$$
y=\sqrt{9-z^{2}}=\sqrt{5}
$$

majority wot will respect integrating to of
d)

$$
\begin{aligned}
& \int_{\pi / 6}^{\pi / 4} \frac{\cos ^{3} x}{\sin ^{2} x} d x=\int_{\pi / 6}^{\pi / 4} \frac{\cos ^{2} x \cdot \cos x d x}{\sin ^{2} x} \\
& =\int_{\pi / 6}^{\pi / 4} \frac{\left(1-\sin ^{2} x\right) \cdot \cos x d x}{\sin ^{2} x} \\
& =\int_{1 / 2}^{1 / \sqrt{2}} \frac{1-u^{2}}{u^{2}} d u \\
& =\int_{y / 2}^{1 / \sqrt{2}} \frac{1}{u^{2}}-1 d u \\
& =\left[-\frac{1}{4}-4\right]_{1 / 2}^{1 / \sqrt{2}} \\
& =\left[-\sqrt{2}-\frac{1}{\sqrt{2}}\right]-\left[-2-\frac{1}{2}\right]=\frac{5}{2}-\frac{3 \sqrt{2}}{2}=\frac{5-3 \sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12e) } \frac{d}{d x}\left[\tan ^{-1} 5 x+\tan ^{-1}\left(\frac{1}{5 x}\right)\right] \\
& =\left[\frac{1}{1+(5 x)^{2}} \times 5\right]+\left[\frac{1}{1+\left(\frac{1}{5 x}\right)^{2}} \times \frac{d}{d x}\left(\frac{1}{5 x}\right)\right] \\
& =\frac{5}{1+25 x^{2}}+\left(\frac{1}{1+\frac{1}{25 x^{2}}} \times \frac{-1}{5 x^{2}}\right) \\
& =\frac{5}{1+25 x^{2}}+\left(\frac{-1}{5 x^{2}+\frac{1}{5}}\right) \\
& =\frac{5}{1+25 x^{2}}+\left(\frac{-5}{25 x^{2}+1}\right) \\
& =0 \\
& \begin{array}{l}
\text { feould sham } \\
\text { only few } \tan ^{-1} 5 x+\tan ^{-1} \frac{1}{5^{x}}
\end{array} \\
& \sqrt{\text { orly }} \frac{d}{d x} x^{-a^{n}}=0 \\
& \begin{aligned}
\therefore \tan ^{-1}(5 x)+\tan ^{-1}\left(\frac{1}{5 x}\right) & =\int_{0} d x \\
& =C
\end{aligned}
\end{aligned}
$$

$\operatorname{sob} x=-1$:

$$
\begin{aligned}
L 4 s=\tan ^{-1}(-5)+\tan ^{-1}\left(-\frac{1}{5}\right) & =-\pi / 2 \\
\text { ie } c & =-\pi / 2
\end{aligned}
$$

$$
\therefore \tan ^{-1}(5 x)+\tan ^{-1}\left(\frac{1}{5 x}\right)=-\frac{\pi}{2} \text { when } x<0
$$

Question 13

$$
\begin{aligned}
\delta V & =\frac{1}{2} \times(2 y) x(2 y) \times \sin \frac{\pi}{3} \cdot \delta x \\
& =\sqrt{3} y^{2} \cdot \delta x \\
\delta V & =\sqrt{3}\left(36-x^{2}\right)-\delta x
\end{aligned}
$$

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=6}^{x=6} \sqrt{3}\left(36-x^{2}\right) \delta x \\
\therefore V & =\sqrt{3} \int_{6}^{6} 36-x^{2} d x \\
& =\sqrt{3}\left[36 x-\frac{x^{3}}{3}\right]_{-6}^{6} \\
& =\sqrt{3}\left[36(6)-\frac{6^{3}}{3}\right]-\sqrt{3}\left[36(-6) \div(-6)^{3}\right] \\
& =288 \sqrt{3} \text { units }^{3} \quad \text { well done for m }
\end{aligned}
$$

b) $15 \mathrm{gir} / \mathrm{s}$

total

$$
\begin{aligned}
\text { ways } & =\frac{{ }^{15} C_{1} \times{ }^{14} C_{7} \times{ }^{7} C_{7}}{2!} \\
& =25740 \text { ways }
\end{aligned}\left\{\begin{array}{l}
\text { some students } \\
\text { forgot to livid } \\
\text { by 2! }
\end{array}\right.
$$

c) Prove by mathematical induction $T_{n}=2^{n}+T^{n}$ for $n \geqslant 1$

Given $T_{1}=7, T_{2}=29 \quad T_{n+2}=7 T_{n+1}-10 T_{n}$
Step 1: Prove the fer $n=1$ and $n=2$:

$$
\begin{array}{l|l}
\text { LH }=T_{1}=7 & \text { LH }=T_{2}=29 \\
\text { RUS }=2^{\prime}+5^{\prime}=7 & \text { RHO }=2^{2}+5^{2}=29
\end{array}
$$

\therefore true for $n=1$ and $n=2$
Step 2 : Assume tree for $n=k$, where k is on integer $(k \leqslant n)$:

$$
\begin{aligned}
& T_{k}=2^{k}+5^{k} \\
& T_{k-1}=2^{k-1}+S^{k-1}
\end{aligned}
$$

Step 3: Prove true for $n=k+1$:
ie $T_{k+1}=2^{k+2}+5^{k+1}$

$$
\begin{aligned}
& L H S=T_{k+1} \\
& \left.=7 T_{k}-10 T_{k-1} \quad \text { (using } T_{n+2}=7 T_{n+1}-10 T_{n}\right) \\
& =7\left(2^{k}+5 k\right)-10\left(2^{k-1}+5^{k-1}\right) \text { using step } 2 \text {. } \\
& =7 \times 2^{k}+7 \times 5^{k}-10 \times 2^{k-1}-10 \times 5^{k-1} \\
& =7 \times 2^{k}+7 \times 5^{k}-\left(5 \times 2.2^{k-1}\right)-\left(2 \times 5.5^{k-i}\right) \\
& =7 \times 2^{k}+7 \times 5^{k}-5 \times 2^{k}-2 \times 5^{k} \\
& =2 \times 2^{k}+5 \times 5^{k} \\
& =2^{k+1}+5^{k+1} \\
& \text { = R.HS } \\
& \text { Hence proved. }
\end{aligned}
$$

Step 4 : By the Principle of Mathematical Induction the result is the for all integers $n \geqslant 1$.
d) $\omega^{3}=1$ ie $\omega=\operatorname{cis}\left(\frac{2 k \pi}{3}\right)$, where $k=0, \pm 1$

A better method:

$$
\omega=-2+2 \sqrt{3} i
$$

$$
\begin{gathered}
|\omega|=\sqrt{(-2)^{2}+(2 \sqrt{3})^{2}} \\
=\sqrt{4+12} \\
=4 \text { units } \\
\therefore \omega=4 \arg (\omega) \\
\text { Solving } a^{3}=\omega^{3}=(4 \operatorname{cis}) \\
\\
=64 \operatorname{cis}(2 \pi)
\end{gathered}
$$

$$
a^{3}=64
$$

$\therefore a=\frac{a^{3}-64}{4 \operatorname{cis}\left(\frac{2 k \pi}{3}\right) \text {, where } k \text { is an integer }}$ $k=0$, ± 1

$$
\begin{aligned}
\therefore a & =4 \operatorname{cis}(0), 4 \operatorname{cis}\left(\frac{2 \pi}{3}\right),\left(-2+2 \sqrt{3}\left(-\frac{2 \pi}{3}\right)\right. \\
& =4,(-2-2 \sqrt{3} i)
\end{aligned}
$$

e)

$$
\begin{aligned}
& w=-2+2 \sqrt{3} i \\
& w^{3}-a^{3}=0 \\
& (w-a)\left(w^{2}+a w+a^{2}\right)=0
\end{aligned}
$$

ie $\omega=a$
or $\omega^{2}+a \omega+a^{2}=0$

$$
\therefore a=-2+2 \sqrt{3} i
$$

Quedratic in a:

$$
\begin{aligned}
a & =\frac{-\omega \pm \sqrt{\omega^{2}-4\left(\omega^{2}\right)(1)}}{2(1)} \\
& =\frac{-\omega \pm \sqrt{-3 \omega^{2}}}{2} \\
& =\frac{-\omega \pm \sqrt{3} i \omega}{2} \\
\therefore a & =\frac{-\omega+\sqrt{3} i \omega}{2} \quad \text { or } \frac{-\omega-\sqrt{3} i \omega}{2}
\end{aligned}
$$

$$
\text { ie } \begin{aligned}
a & =\frac{-(-2+2 \sqrt{3} i)+\sqrt{3} i(-2+2 \sqrt{3} i)}{2} \\
& =\frac{2-2 \sqrt{3} i-2 \sqrt{3} i+6 i^{2}}{2} \\
& =\frac{-4-4 \sqrt{3} i}{2} \\
\therefore a & =-2-2 \sqrt{3} i
\end{aligned}
$$

$$
\begin{aligned}
a & =-\frac{(-2+2 \sqrt{3} i)-\sqrt{3} i(-2+2 \sqrt{3} i)}{2} \\
& =\frac{2-2 \sqrt{3} i+2 \sqrt{3} i-6 i^{2}}{2} \\
& =\frac{8}{2} \\
& =4 \\
\therefore a & =4,-2+2 \sqrt{3} i \quad-2-2 \sqrt{3} i
\end{aligned}
$$

QUESTION: 14
(a) (i)

$$
\begin{aligned}
& x y=2 \\
& \therefore y=\frac{2}{x} \\
& \frac{d y}{d x}=-\frac{2}{x^{2}}
\end{aligned}
$$

at $x=2 t, \frac{d y}{d x}=\frac{-2}{(2 t)^{2}}=\frac{-1}{2 t^{2}}$
eq. of tangent is:

$$
\begin{gathered}
y-\frac{1}{t}=\frac{-1}{2 t^{2}}(x-2 t) \\
2 t^{2} y-2 t=-(x-2 t) \\
2 t^{2} y-2 t=-x+2 t \\
\therefore x+2 t^{2} y-4 t=0
\end{gathered}
$$

(ii) perpendicular distance
from $(2,2)$ tw...(a)

$$
\begin{aligned}
& \text { from }(-2,-2) \text { to } \\
& d_{2}=\frac{\left|-2+-2\left(2 t^{2}\right)-4 t\right|}{\sqrt{1+4 t_{1}^{4}}}
\end{aligned}
$$

$$
\begin{aligned}
d_{1} & =\frac{\left|2+2\left(2 t^{2}\right)-4 t\right|}{\sqrt{1+4 t^{4}}} & & d_{2}
\end{aligned}=\frac{\mid-2+-2\left(2 t^{2}\right)-4 t}{\sqrt{1+4 t^{4}}}
$$

(1) for correct perpendicular distance implied.

$$
\therefore \text { prod } O d_{1} \text { and } d_{2}=\frac{4\left(2 t^{2}-2 t+1\right)\left(2 t^{2}+2 t+1\right)}{1+4 t^{4}}
$$

$$
=\frac{4\left(4 t^{4}+4 t^{3}+2 t^{2}-4 t^{3}-4 t^{2}-2 t+2 t^{2}+2 t+1\right)}{1+4 t^{4}}
$$

$$
=\frac{+\left(1+4 t^{4}\right)}{1+4 t^{4}}
$$

$$
=4
$$

(b)(i) $I_{n}=\int_{1}^{e}(\ln x)^{n} \cdot 1 \cdot d x$

$$
\begin{aligned}
\therefore I_{n} & =\left[x(\ln x)^{n}\right]_{1}^{e}-\int_{i}^{e} \frac{n(\ln x)^{n-1}}{x} \times x d x \\
& =e(\ln e)^{n}-1(\ln \mid)^{n}-n \int_{1}^{e}(\ln x)^{n-1} d x
\end{aligned}
$$

$$
=e-0-n I_{n-1}
$$

$$
=e-n I_{n-1}
$$

(ii)

$$
\begin{aligned}
I_{5} & =e-5 I_{4} \\
& =e-5\left(e-4 I_{3}\right) \\
& =e-5 e+20\left(e-3 I_{2}\right) \\
& =-4 e+20 e-60\left(e-2 I_{1}\right) \\
& =16 e-60 e+120\left(e-I_{0}\right)
\end{aligned}
$$

now $I_{0}=\int_{1}^{e} 1 d x$

$$
\begin{aligned}
& =[x]_{1}^{e} \\
& =e-1
\end{aligned}
$$

$$
\begin{aligned}
\therefore I_{5} & =-44 e+120 e-120 I_{0} \\
& =-44 e+120 e-120(e-1) \\
& =76 e-120 e+120 \\
& =-44 e+120
\end{aligned}
$$

* need to show the line of sortition as t's a show
question; worth 3 mark 3!

Level: Ext 2 .
Year: 2019
QUESTION: 14 cos.
(c) (i) Method I

Co

$$
\begin{aligned}
& x(\cos \theta+i \sin \theta)^{4}=\cos ^{4} \theta+4 i \sin \theta \cos ^{3} \theta+6 i^{2} \sin ^{2} \theta \cos ^{2} \theta+4 i^{3} \sin ^{3} \theta \cos \theta /(1 \\
&+i^{4} \sin ^{4} \theta
\end{aligned}
$$

equating real parts

$$
\begin{aligned}
\therefore \cos 4 \theta & =\cos ^{4} \theta-6 \sin ^{2} \theta \cos ^{2} \theta+\sin ^{4} \theta \\
& =\cos ^{4} \theta-6 \cos ^{2} \theta\left(1-\cos ^{2} \theta\right)+\left(1-\cos ^{2} \theta\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\cos ^{4} \theta-6 \cos ^{2} \theta+6 \cos ^{4} \theta \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
\end{aligned}
$$

0
Method 2.

$$
\text { LIS }=\cos 4 \theta
$$

$$
\begin{aligned}
\cos 4 \theta & =\cos (2 \theta+2 \theta) \\
& =\cos ^{2} 2 \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} 2 \theta-1 \\
& =2\left(2 \cos ^{2} \theta-1\right)-1 \\
& =2\left(4 \cos ^{4} \theta-4 \cos ^{2} \theta+1\right)-1 \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+2-1 \\
& =8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 \\
& =\text { RUS }
\end{aligned}
$$

(ii) Hence solve $16 x^{4}-16 x^{2}+1=0$

$$
\begin{aligned}
& \text { led } x=\cos \theta \\
& 16 \cos ^{4} \theta-16 \cos ^{2} \theta+1=0 \\
& 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 / 2=0 \\
& 8 \cos ^{4} \theta-8 \cos ^{2} \theta+1=-1 / 2+1 \\
& \therefore \cos 4 \theta=1 / 2
\end{aligned}
$$

Examination:
Level: $\in \pm 2$
Year: 2019
$\operatorname{pg} 4$
QUESTION: $14 \cos \frac{1}{n}$
Markers Comments
$\therefore 4 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3} \quad$ (4 rods as $\frac{1}{15}$ a quantic)
$\therefore \theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{7 \pi}{12}, \frac{11 \pi}{12} \quad \therefore x=\cos \frac{\pi}{12}, \cos \frac{5 \pi}{12}, \cos \frac{7 \pi}{2}, \cos \frac{11 \pi}{12}$
(iii) rood 2 at a time $=4 / a=-1$

$$
\cos \frac{\pi}{12} \cdot \cos \frac{\pi}{12}+\cos \frac{\pi}{12} \cos \frac{7 \pi}{12}+\cos \frac{\pi}{12} \cos \frac{11 \pi}{12} ; \cos \frac{\pi}{12} \cos \frac{7 \pi}{12}+\cos \frac{5 \pi}{12} \cos \frac{1 \pi}{12}+\cos \frac{7 \pi}{12} \cos \frac{11 \pi}{12}=-1
$$

$\left(\right.$ now $\cos \frac{11 \pi}{12}=-\cos \frac{\pi}{12}$ and $\left.\cos \frac{7 \pi}{12}=-\cos \cdot \frac{\pi}{12}\right)$

$$
\begin{aligned}
& \therefore-1=\cos \frac{\pi}{12} \cdot \cos \frac{5 \pi}{12}-\cos \frac{\pi}{12} \cos \frac{5 \pi}{12}-\cos \pi / 12 \cos \pi / 12-\cos \frac{\pi}{12} \cos \frac{5}{2}-\cos \frac{5 \pi}{2} \cos \frac{\pi}{12}+\cos \frac{5 \pi}{12} \cos \frac{\pi}{12} \\
& -1
\end{aligned}
$$

$\therefore \cos ^{2} \frac{\pi}{12}+\cos ^{2} \frac{5 \pi}{12}$
product of roots $=\frac{1}{16}$

$$
\begin{align*}
& \cos \frac{\pi}{12} \cos \frac{5 \pi}{12} \cos \frac{7 \pi}{12} \cos \frac{11 \pi}{12}=\frac{1}{16} \\
& \cos ^{2} \frac{\pi}{12} \cdot \cos ^{2} \frac{5 \pi}{12}=\frac{1}{16} \quad \text { (as } \cos \frac{7 \pi}{12}=-\cos \frac{5 \pi}{12} \\
& \cos ^{\pi / 12} \cos \frac{5 \pi}{12}=1 / 4 \quad \text { (as in list a a a dent) }
\end{align*}
$$

now $\left(\cos \frac{\pi}{12}+\cos \frac{5 \pi}{12}\right)^{2}=\cos ^{2} \frac{\pi}{12}+\cos ^{2} \frac{5 \pi}{12}+2 \cos \frac{\pi}{12} \cos \frac{5 \pi}{12}$

$$
\begin{aligned}
& \left(\cos \frac{\pi}{12}+\cos \frac{5 \pi}{12}\right)^{2}=1+2 \times(1 / 4) \\
& \left(\cos \pi / 12+\cos \frac{5 \pi}{12}\right)^{2}=3 / 2
\end{aligned}
$$

$$
\cos \frac{\pi}{12}+\cos \frac{5 \pi}{12}=\sqrt{3}
$$

(as both angles are (as both angles aredicht).

* needed to find sum of roots 2 at a time and proeluet of roots to get (1) mark
* $z^{\text {nd }}$ mark for using expansion and supplementary ing les

Examination:
Level: E平 2
Year: 2019

Markers Comments
(a)

$$
\begin{equation*}
\therefore V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{2} 2 \pi\left(4 x^{3}-x^{3}\right) \delta x \tag{0}
\end{equation*}
$$

$$
=2 \pi \int_{0}^{2}\left(4 x^{3}-x^{3}\right) d x
$$

$$
=2 \pi\left[x^{4}-\frac{x^{6}}{6}\right]_{0}^{2}
$$

$$
=2 \pi\left(2^{4}-\frac{64}{6}-0+0\right)
$$

$$
=\frac{32 \pi}{3} \text { units }^{3}
$$

(b)

个0.25N $6 \mathrm{~N} j \mathrm{j} g$

$$
\begin{aligned}
\text { weight } & =m g=5 \times 10=50 \mathrm{~N} \\
F_{\text {net }} & =50 \mathrm{~N}-6 \mathrm{~N}-0.25 \mathrm{~N} \\
& =43.75 \mathrm{~N}
\end{aligned}
$$

now $F=m \ddot{x}$

$$
\begin{aligned}
43.75 & =m \dot{x} \\
x & =\frac{43.75}{5}=8.75 \mathrm{~m} / \mathrm{s}^{2} \text { down. }
\end{aligned}
$$

(4) (i) $\operatorname{limkN}^{\text {(motion }}$

$$
\left.\begin{array}{rl}
F & =m \dot{x} \\
m \ddot{x} & =-m g-m k v \\
\ddot{x} & =-g-k v
\end{array}\right\}
$$

(1) needed to. show all the working of to gain the 1 mark.

Examination:
Level: $\in \searrow 2$
Year: 2019
QUESTION: 15
(c) (ii)

$$
\begin{aligned}
\dot{c}=\frac{d v}{d t} & =-g-k v \\
\frac{d t}{d v} & =\frac{-1}{g+k v} \\
d t & =\frac{-\frac{d v}{g+k v} \text { at } t=0, v=u}{} \text { at } t=T, v=0 \\
\int_{0}^{T} d t & =\int_{u}^{0} \frac{-1}{g+k v} d v \\
\therefore T & =\left[-\frac{1}{k} \ln (g+k v)\right]_{u}^{0} \\
& =\frac{-1}{k}[\ln (g+0)+\ln (g+k u)] \\
& =\frac{1}{k}[\ln (g+k u)-\ln (g)] \\
& =\frac{1}{k}\left[\ln \left(\frac{g+k u}{g}\right)\right] \text { seconds. }
\end{aligned}
$$

(iii)

$$
\begin{align*}
& \dot{x}=-g-k v \\
& v \frac{d v}{d x}=-g-k v \\
& \frac{d v}{d x}=\frac{-g-k v}{v} \\
& \therefore \frac{d x}{d v}=\frac{-v}{g+k v} \tag{1}
\end{align*}
$$

At $t=0, x=0, v=u$
at $x=H, v=0$ (max height)

$$
\begin{aligned}
& \int_{0}^{H} d x=\int_{u}^{0} \frac{-v}{g+k v} d v \\
& H=\frac{-1}{k} \int_{0}^{u} \frac{k v}{g+k v} d v
\end{aligned}
$$

Examination:
Level: $\epsilon+2$
Year: 2019

$$
\begin{aligned}
H & =\frac{-1}{k} \int_{u}^{0}\left(\frac{k v+g}{k v+g}-\frac{g}{g+\mu v}\right) d v \\
& =\frac{-1}{k} \int_{u}^{0} 1 d v+\frac{g}{k^{2}} \int_{u}^{0} \frac{k}{g+k v} d v \\
H & =\frac{-1}{k}[v]_{u}^{0}+\frac{9}{k^{2}}[\ln (g+k v)]_{u}^{0} \\
& =\frac{u}{k}+\frac{g}{k^{2}} \operatorname{lng}-\frac{g}{k^{2}} \ln (g+k u) \\
\therefore H & =\frac{u}{k}+\frac{9}{k^{2}} \ln \left(\frac{g}{g+k u}\right) \text { metres }
\end{aligned}
$$

(d)

Circles are cedred"Many ways at O and P respectuely.
1
*Poorly ot tempted.
 to do this, $b t$ need to ciedry label 2 angles as α and β. state fill reasons
(let $\angle A M N=\alpha$ and $\angle A N M=\beta$
(1)
$\angle O M N=90^{\circ}$ (target is perpendicular to radius at the similarly $<P N M=90^{\circ} \quad$ port of contact.).
$\therefore \angle O M A=90^{\circ}-\alpha \quad$ (subtraction of adjacent angles)
$O M=O N$ (bath radii)
$\begin{aligned}<O A M & =\operatorname{om} A \text { (equal angles are opprasite equal sides in } \triangle O A M \text {.) } \\ & =90-\alpha\end{aligned}$

$$
=90-\alpha
$$

$\therefore \angle M A B=90^{\circ}-\left(90^{\circ}-\alpha\right) \quad$ (subtraction of fadgacest angle)

$$
=\alpha
$$

Similar $y<N A B=\beta$
\therefore In MAN, $\alpha+\beta+\alpha+\beta=180^{\circ}$ (angle sum of \triangle MAN)

$$
\alpha+\beta=90^{\circ}
$$

(1): $\angle M A N=\alpha+\beta=90^{\circ}$ (sum of adjacent angles)

Question 16
ai) $x^{2}+16 y^{2}=16$

$$
\begin{aligned}
& x^{2}+16 y^{2}=16 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{1}=1 \quad, \text { hence } a=4, b=1
\end{aligned}
$$

Area $=\pi a b=\pi(4)(1)=4 \pi$ units ${ }^{2}$
ii)

$\alpha)$

$$
\begin{aligned}
\beta^{\prime} \delta V & =(6 \times 2 y) \cdot \delta x \\
& =12 y \delta x \\
& =12 \times \frac{\sqrt{16-x^{2}}}{4} \delta x \\
\therefore \delta v & =3 \sqrt{16-x^{2}} \delta x
\end{aligned}
$$

p)

$$
\text { () } \begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=-6}^{x=6} 3 \sqrt{16-x^{2}} \delta x \\
& =3 \int_{x} \sqrt{16-x^{2}} d x \\
& =3 \times \frac{1}{2} \times \pi \times 4^{2} \\
\therefore V & =24 \pi \text { units }^{3}
\end{aligned}
$$

b)

$$
\angle O R P=90^{\circ}
$$

\qquad (angle in a semi-cincle, circe with diameter op)

$$
\therefore P R=R Q
$$

(the line through the centre of circle ventre. perpendialer to chord bisects that chard)
$\therefore R_{\text {is always the midpoint of } P Q}$
(sd)

Cirques hame centre 0 and P respectively

Let $\angle A M N=\alpha$ and $\angle A N M=\beta$
$\angle O M N=\angle P N M=90^{\circ}$ (tangent is perpendiuder to radios at the point of contact)
$\angle O M A=90^{\circ}-\alpha$
Since $O M=O A$ (radii of vide, centre $e)$
$\angle O A M=90^{\circ}-\alpha$ (\angle 's opposite equal sides in $\triangle O A M$)
$\angle O A B=90^{\circ}$ (tangent 1 radius at the point of contact, cire 0)

$$
\begin{aligned}
\therefore \angle M A B= & 90^{\circ}-\left(90^{\circ}-a\right) \\
& =\alpha
\end{aligned}
$$

Similarly $\gamma \angle \overline{N A B}=\beta$
In $\triangle M A N, \quad \alpha+\beta+\alpha+\beta=180^{\circ}$ (angle sum of $\triangle M A N$,

$$
\begin{aligned}
& \therefore L \bar{M} A N=\alpha+\alpha+\beta=90^{\circ} \\
& \therefore \text { (adjacent angles) }
\end{aligned}
$$

manom
(9) $\mathrm{At} t=0, x=0$ and $v=K$
i)

$$
\begin{aligned}
& F=m \dot{x}=-\left(v+v^{3}\right) \\
& \therefore \ddot{x}=-\left(v+v^{3}\right) \quad \text { as } m=1 \mathrm{~kg}
\end{aligned}
$$

$$
x_{x}=\frac{v d v}{d x}=-\left(v+v^{3}\right)
$$

$$
\frac{d v}{d x}=-\left(1+v^{2}\right)
$$

$$
\frac{d x}{d v}=\frac{-1}{1+v^{2}}
$$

$$
\int d x=\int \frac{-1}{1+v^{2}} d v
$$

$$
x=-\tan ^{-1}(v)+c
$$

At $t=0, x=0, v=k$ $0=-\tan ^{-1}(k)+C$

$$
\therefore c=\tan ^{-1}(k)
$$

$$
\therefore x=\tan ^{-1}(k)-\tan ^{-1}(v)
$$

$$
\begin{aligned}
\tan x & =\tan \left[\tan ^{-1}(k)-\tan ^{-1}(v)\right] \\
& =\frac{\tan \alpha}{1+\tan \alpha \tan \beta} \\
& =\frac{k-v}{1+k v} \\
\therefore x & \longrightarrow \tan ^{-1}\left(\frac{k-v}{1+k v}\right)
\end{aligned}
$$

rany
this

$$
\beta=\tan ^{-1} v
$$

$$
\#
$$

$$
\tan \alpha=k
$$

$$
\tan \beta=v
$$

ii)

$$
\begin{aligned}
x^{2}=\frac{d v}{d t} & =-\left(v+v^{3}\right) \\
\frac{d t}{d v} & =\frac{-1}{v+v^{3}}=\frac{-1}{v\left(1+v^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-1}{v\left(1+v^{2}\right)} \equiv \frac{A}{v}+\frac{B v+C}{1+v^{2}} \\
& -1 \equiv A\left(1+v^{2}\right)+v(B v+C) \\
& \text { subv=0}-1 \equiv A(1+0)+0 \\
& \therefore \begin{aligned}
-1 & =-1 \\
\text { sub }=i \quad & -1=A\left(1+i^{2}\right)+i(B i+C) \\
& -1=B i^{2}+C i \\
& -1=C i-B
\end{aligned}
\end{aligned}
$$

$$
\text { where } A, B, C
$$

ore constants

Equating neal pars $\Rightarrow B=1$

$$
\begin{aligned}
& \text { Equating inaguary parts } \Rightarrow C=0 \\
& \therefore \frac{d t}{d v}=\frac{-1}{v}+\frac{v}{1+v^{2}} \\
& \int_{0}^{T} d t=\int_{k}^{v}-\frac{1}{v}+\frac{v}{1+v^{2}} d v \\
& T=\left[-\ln (v)+\frac{1}{2} \ln \left(1+v^{2}\right)\right]_{k}^{v} \\
& =-\ln (v)+\frac{1}{2} \ln \left(1+v^{2}\right)+\ln (k)-\frac{1}{2} \ln \left(1+k^{2}\right) \\
& =\ln \left(\frac{k}{v}\right)+\frac{1}{2} \ln \left(\frac{1+v^{2}}{1+k^{2}}\right) \\
& =\frac{1}{2} \ln \left(\frac{k^{2}}{v^{2}}\right)+\frac{1}{2} \ln \left(\frac{1+v^{2}}{1+k^{2}}\right) \\
& \therefore T=\frac{1}{2} \ln \left(\frac{k^{2}\left(1+V^{2}\right)}{V^{2}\left(1+k^{2}\right)}\right) \quad \text { seconds }
\end{aligned}
$$

