- Pittwoter ©Pouse © Chools 4 unit mathematics

 Criad hSC Examination 1992

 Criad hSC Examination 1992}

1. (a) Find the indefinite integrals of (i) $e^{x} \sin 2 x$ (ii) (iii) $\frac{e^{x}+e^{2 x}}{1+e^{2 x}}$
(b) Evaluate $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{4-x^{2}}}$.
2. (a) Express $\sqrt{5-12 i}$ in the form $a+i b$ where a and b are real and rational
(b) Solve $2 x^{2}-6 i x-3=0$
(c) Simplify $\frac{(\cos \theta+i \sin \theta)^{5}(\cos 2 \theta+i \sin 2 \theta)^{-2}}{(\sin 3 \theta-i \cos 3 \theta)^{4}}$
(d) If q is real and $z=\frac{3+i q}{3-i q}$ show that as q varies, the point in the complex plane which represents z lies on a circle. Find the centre and radius of this circle.
3. (a) Find the equation of the ellipse with its centre at the origin passing through the point $\left(\frac{9}{4}, 4\right)$ and one focus at the point $(0,4)$.
(b) Given the ellipse $\frac{x^{2}}{225}+\frac{y^{2}}{144}=1$, prove that the section of the tangent between the point of contact and its point of intersection with the directrix subtends a right angle at the corresponding focus.
4. (a) Sketch the graphs of (i) $y=|\tan x|$ (ii) $y=\frac{1}{1-e^{-x}}$ (iii) $y=x+\sin x$
(b) Sketch $y=\frac{4(2 x-7)}{(x-3)(x+1)}$ showing clearly the points of intersection with the x and y axis, the coordinates of any maximum or minimum points and the equation of any asymptotes.
5. (a) The circle $x^{2}+y^{2}=a^{2}$ is rotated about the x axis to form a sphere. A hole of diameter a is bored through the centre of the sphere. Find the remaining volume using cylindrical shells.
(b) A vase is such that any cross section parallel to the base is an ellipse of eccentricity $\frac{4}{5}$. If the semi minor axis of height y is equal to the distance of the curve $y^{2}=50(x-4)$ from the y axis and the height of the vase is 20 centimetres, find the volume.
6. (a) Find the factor of $P(x)=\left(x^{2}-2 x\right)^{2}-4$ over the rational, real and complex fields.
(b) If α, β and γ are the roots of the equation $z^{3}-z-4=0$, form the equation with roots $\frac{\alpha+1}{\alpha}, \frac{\beta+1}{\beta}, \frac{\gamma+1}{\gamma}$.
7. (a) A car is travelling round a section of a race track which is banked at 15°. The radius of the track is 100 metres. What is the speed at which the car can travel
without tending to slip?
(b) The effect of putting a golf ball is to give the ball an initial velocity of $V \mathrm{~m} / \mathrm{s}$ at the origin. The effect of the green is to give the ball a retardation of $\frac{1}{2} V e^{-\frac{t}{2}}$. To sink a putt, the golfer must judge V so that the ball reaches the cup with a speed v where $0<v<\frac{1}{2}$. Find the initial speed for a golfer to sink a 10 metre putt.
(c) A projectile is fired from the origin with initial velocity having x component v_{1} and y component v_{2}. Prove that the time of flight is independent of v_{1} and derive a formula for the time of flight T. (The x axis is at ground level and the y axis points vertically upwards.)
8. (a) If $x^{m} y^{n}=k$ where k is a constant, show $\frac{d y}{d x}=\frac{m y}{-n x}$
(b) (i) Factorise $1+x+x^{2}+x^{3}$.
(ii) Prove that the equation $\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}+x+c=0$ has no real roots if $c>\frac{5}{12}$. How many real roots are there if $c \leq \frac{7}{12}$?
(c) If x, y and z are real numbers, prove that $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \geq x y z(x+y+z)$.
