CPittwater © A/ouse Crial DSC Examinazion

Mathematics Extension 2

2002

1. (a) Find:
(i) $\int \cot x \operatorname{cosec}^{2} x d x$
(ii) $\int \frac{\sec ^{2} x}{3-\tan x} d x$
(b) Prove that $\int_{5 \frac{1}{2}}^{6 \frac{1}{2}} \frac{d x}{\sqrt{(x-5)(7-x)}}=\frac{\pi}{3}$ by using the substitution of $\mu=x-6$.
(c) (i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
(ii) Hence or otherwise evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\cos ^{5} x+\sin ^{5} x} d x$
(d) $\int \frac{1}{4+5 \cos x} d x$.
2. (a) Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^{3}}{\cos x} d x$
(b) Find $\int \sin ^{3} 2 x \cos ^{2} x d x$
(c) Find $\int \frac{4 x-3}{\sqrt{6+2 x-3 x^{2}}} d x$
(d) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \sin ^{2} x d x$ for $n \geq 0$, show that $I_{n}=\frac{n-1}{n+2} I_{n-2}$ for $n \geq 2$. Hence or otherwise evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x \sin ^{2} x d x$.
3. (a) (i) Given $z_{1}=1-i$ and $z_{2}=-1+\sqrt{3} i$, evaluate $\left|z_{1} z_{2}\right|$ and $\arg \left(z_{1} z_{2}\right)$.
(ii) Find $z_{1} z_{2}$ in Cartesian form, and hence show that $\cos \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
(b) If z is a complex number for which $|z|=1$, show that:
(i) $1 \leq|z+2| \leq 3$ and
(ii) $-\frac{\pi}{6} \leq \arg (z+2) \leq \frac{\pi}{6}$
(c) (i) Given that $z+\frac{1}{z}=k$, a real number, show that z lies either on the real axis or on the unit circle, centre the origin.
(ii) If z lies on the real axis, show that $|k| \geq 2$. If z lies on the unit circle, show that $|k| \leq 2$.
4. (a) Find integers a and b such that $(x+1)^{2}$ is a factor of $x^{5}+2 x^{2}+a x+b$
(b) The equation $z^{2}+(1+i) z+k=0$ has a root $1-2 i$. Find the other root, and the value of k.
(c) Let α, β and δ be the roots (none of which is zero) of $x^{3}+3 p x+q=0$.
(i) Obtain the monic equation whose roots are $\frac{\alpha \beta}{\delta}, \frac{\beta \delta}{\alpha}, \frac{\delta \alpha}{\beta}$
(ii) Deduce that $\delta=\alpha \beta$ if and only if $(3 p-q)^{2}+q=0$.

5 (a) The region bounded by the circle $x^{2}+y^{2}=4$ and the parabola $y^{2}=3 x$ is rotated about the x-axis. By including appropriate diagrams in each case, find the volume of the solid of revolution by using:
(i) circular discs
(ii) cylindrical shells
(b) In the solid shown $A B C D$ and $E F G H$ are squares of side 6 m and 10 m respectively. $B C G F$ is a trapezium of height 12 m . Cross-sections parallel to the ends are squares. Show that at a distance x from the base $A B$, the area of the cross-section is $\left(6+\frac{x}{3}\right)^{2}$. Hence, by taking slices of thickness δx find the total volume of the solid.

6. (a) Show that the ellipse $4 x^{2}+9 y^{2}=36$ and the hyperbola $4 x^{2}-y^{2}=4$ intersect at right angles.
(b) You are given that the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\left(a^{2}>b^{2}\right)$ at the point $P\left(x_{1}, y_{1}\right)$ is $a^{2} y_{1} x-b^{2} x_{1} y=\left(a^{2}-b^{2}\right) x_{1} y_{1}$.
(i) The normal meets the major axis of the ellipse at G. S is a focus of the ellipse. Show that $G S=e P S$, where e is the eccentricity of the ellipse.
(ii) The normal at the point $P(5 \cos \theta, 3 \sin \theta)$ on $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ cuts the major and minor axes of the ellipses at G and H respectively. Show that as P moves on the ellipse, the mid-point of $G H$ describes another ellipse with the same eccentricity at the first.
7. (a) The equation of a curve is $x^{2} y^{2}-x^{2}+y^{2}=0$.
(i) Show that the numerical value of y is always less than 1
(ii) Find the equations of the asymptotes
(iii) Show that $\frac{d y}{d x}=\frac{y^{3}}{x^{3}}$
(iv) Sketch the curve.
(b) Sketch the following curves on separate axes showing all intercepts and turning points
(i) $y=\cos ^{2} x$
(ii) $y=x^{3}-4 x$
(iii) $y=|x|^{3}-4|x|$
8. (a) For the complex number $w=\sqrt{3}-i$, find w^{6} in the form $a+i b$ where a and b are real numbers.
(b) Given that $\arg (z-3)=\arg (z+3)+\frac{\pi}{3}$, show that the locus of points satisfying this equation represents the major arc of a circle where $A(-3,0)$ and $B(3,0)$ are the two fixed points on the arc. State the equation of the locus.
(c) (i) Show the vector diagram representing the complex numbers $z, w, z+w, z-w$
(ii) By geometrical reasons or otherwise, prove that when the complex numbers z and w are such that $|z|=|w|$, then $\frac{z+w}{z-w}$ is purely imaginary.
(d) The graph of $y=f(x)$ is sketched below. There is a stationary point at $(0,1)$.

Use this graph to sketch the following without using calculus, showing essential features:
(i) $y=\frac{1}{f(x)}$
(ii) $y=f\left(\frac{1}{x}\right)$

