

YEAR 12 TRIAL HSC EXAMINATION 2005

MATHEMATICS

EXTENSION 2

Time Allowed: 3 hours (plus 5 minutes reading time)

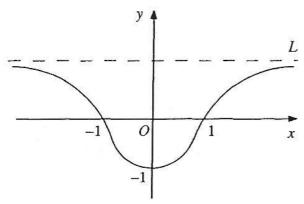
INSTRUCTIONS TO CANDIDATES:

- ALL questions should be attempted.
- All questions are of equal value (15 marks).
- Part marks are shown on the right hand side.
- Marks may not be awarded for careless or badly arranged work.
- Standard integrals are provided on the back page.
- Board-approved calculators may be used.
- If you use a second booklet for a question, place it inside the first.

QUESTION 1. (START A NEW BOOKLET)

Marks

(a)



The diagram shows the graph of y = f(x) where $f(x) = \frac{x^2 - 1}{x^2 + 1}$.

(i) Find the equation of the asymptote L.

1

(ii) On separate diagrams sketch the following graphs, showing any intercepts on the coordinate axes and the equations of any asymptotes:

8

$$y = \{f(x)\}^2$$
, $y = \sqrt{f(x)}$, $y = \frac{1}{f(x)}$ and $y = e^{f(x)}$

(iii) The function f(x) with its domain restricted to $x \ge 0$ has an inverse $f^{-1}(x)$. Find $f^{-1}(x)$ as a function of x.

2

- (b) Consider the function $f(x) = \ln(1 + \cos x)$, $-2\pi \le x \le 2\pi$ where $x \ne \pi$, $x \ne -\pi$.
 - (i) Show that the function f is even and the curve y = f(x) is concave down for all values of x in its domain.

2

(ii) Sketch the graph of the curve y = f(x).

OUESTION 2. (START A NEW BOOKLET)

Marks

- (a) Find all the complex numbers z = a + ib, a, b real, such that $|z|^2 iz = 16 2i$.
- (b) z and w are two complex numbers such that |z| = 4, $\arg z = \frac{5\pi}{6}$, |w| = 2, $\arg w = \frac{\pi}{3}$.
 - (i) Express each of z and w in the form a + ib, where a and b are real.
 - (ii) In an Argand diagram the points P and Q represent the complex numbers z and w respectively. Find the distance PQ in simplest exact form.
- (c) (i) Express $\sqrt{3} + i$ in modulus / argument form.
 - (ii) On an Argand diagram sketch the locus of the point P representing the complex number z such that $\left|z \left(\sqrt{3} + i\right)\right| = 1$, and find the set of possible values of |z| and argz.
- (d) In an Argand diagram the points P, Q and R represent the complex numbers z_1 , z_2 and $z_2 + i(z_2 z_1)$ respectively.
 - (i) Show that *PQR* is a right-angled triangle.
 - (ii) Find in terms of z_1 and z_2 the complex number represented by the point S such that PQRS is a rectangle.

QUESTION 3. (START A NEW BOOKLET)

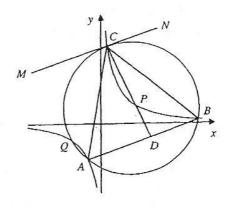
Marks

- (a) $P(x) = 16x^4 32x^3 + 16x^2 + kx 5$ where k is an integer. P(x) has two rational roots which are opposites of each other, and two non-real roots.
 - (i) If α is a non-real root of P(x), show that $Re(\alpha) = 1$ and $|\alpha| > 1$.
 - (ii) If the rational roots are $\pm \beta$, deduce that $\beta^2 < \frac{5}{16}$.
 - (iii) Find the rational roots and the value of k.
 - (iv) Factorise P(x) completely into irreducible factors over real numbers. 2
- (b) The equation $x^3 + px 1 = 0$ has three real, non-zero roots α, β, γ .
 - (i) Find the values of $\alpha^2 + \beta^2 + \gamma^2$ and $\alpha^4 + \beta^4 + \gamma^4$ in terms of p, and hence show that p must be strictly negative.
 - (ii) Find the monic equation, with coefficients in terms of p, whose roots are $\frac{\alpha}{\beta \gamma}$, $\frac{\beta}{\gamma \alpha}$, $\frac{\gamma}{\alpha \beta}$.
- (c) The equation $x^3 x^2 3x + 2 = 0$ has roots α, β, γ . Use the value of $\alpha + \beta + \gamma$ to find the monic polynomial equation with roots $2\alpha + \beta + \gamma$, $\alpha + 2\beta + \gamma$, $\alpha + \beta + 2\gamma$.

QUESTION 4. (START A NEW BOOKLET)

Marks

(a) $P(c\theta, \frac{c}{\theta})$ and $Q(-c\theta, -\frac{c}{\theta})$ where $\theta > 0$ and c > 0, are two points on the rectangular hyperbola $xy = c^2$. The circle with centre P and radius PQ cuts the hyperbola again at points $A(c\alpha, \frac{c}{\alpha})$, $B(c\beta, \frac{c}{\beta})$ and $C(c\gamma, \frac{c}{\gamma})$. CP produced meets AB at D. MCN is tangent to the circle at C.



(i) Show that the circle cuts the hyperbola at points $(ct, \frac{c}{t})$ where t satisfies the equation $t^4 - 2t^3\theta - 3t^2\left(\theta^2 + \frac{1}{\theta^2}\right) - \frac{2}{\theta}t + 1 = 0$. Hence deduce that $\alpha\beta\gamma\theta = -1$.

2

(ii) Show that $CPD \perp AB$. Hence show that MCN ||AB|.

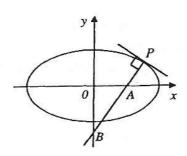
_

(iii) Show that CA = CB.

3

4

(b) $P(a\cos\theta, b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a > b > 0. The normal to the ellipse at P has equation $ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$. This normal cuts the x axis at A and the y axis at B.



(i) Show that $\triangle OAB$ has area $\frac{(a^2 - b^2)^2}{2ab} \sin \theta \cos \theta$.

3

3

(ii) Find the maximum area of $\triangle OAB$ and the coordinates of P when this maximum occurs.

QUESTION 5. (START A NEW BOOKLET)

Marks

(a) (i) Find
$$\int \frac{\cos^2 x}{1-\sin x} dx$$

(ii) Find
$$\int \frac{1}{x(x^2+1)} dx$$

(b) (i) Use the substitution
$$u = e^x$$
 to find $\int \frac{e^x}{\sqrt{e^{2x} + 1}} dx$.

(ii) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1 - \cos x} dx$.

(c) (i) If
$$I_n = \int_0^t \frac{1}{(1+x^2)^n} dx$$
, $n = 1, 2, 3, ...$, show that
$$2nI_{n+1} = (2n-1)I_n + \frac{t}{(1+t^2)^n}$$
 for $n = 1, 2, 3, ...$

(ii) Hence find the value of I_3 in terms of t.

QUESTION 6. (START A NEW BOOKLET)

Marks

- (a) The circle $x^2 + (y-3)^2 = 1$ is rotated about the line x = 5.
 - (i) Use the method of cylindrical shells to show that the volume generated is given by $4\pi \int_{-1}^{1} (5-x)\sqrt{1-x^2} dx$.

3

(ii) Hence find the volume.

3

(b) The base of a particular solid is the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. Find the volume of this solid if every cross section perpendicular to the major axis is an equilateral triangle with one side on the base of the solid.

5

(c) The region between the curve $y = x^2 + 1$ and y = 3 - x is rotated about the x axis. By taking slices perpendicular to the x axis, find the volume of the solid generated.

QUESTION 7. (START A NEW BOOKLET)

Marks

- (a) A particle of mass m kilograms is dropped from rest in a medium where the resistance to motion has magnitude $\frac{1}{10}mv^2$ Newtons when the speed of the particle is vms^{-1} . After t seconds, the particle has fallen x metres, and has velocity vms^{-1} and acceleration ams^{-2} . The particle hits the ground $\ln(1+\sqrt{2})$ seconds after it is dropped. Take $g=10ms^{-2}$.
 - (i) Draw a diagram showing the forces acting on the particle. Deduce that $a = \frac{1}{10}(100 - v^2)$.
 - (ii) Express v as a function of t. Hence find the speed with which the particle hits the ground, giving the answer in simplest exact form.
 - (iii) Find in simplest exact form the distance fallen by the particle before it hits the ground.
- (b) A particle is projected from a point O with speed V and angle of elevation α . At a certain point P on its trajectory, the direction of motion of the particle and the line OP are inclined (in opposite senses) at equal angles β to the horizontal. Show that:
 - (i) the time taken to reach P from O is $\frac{4V \sin \alpha}{3g}$
 - (ii) $3\tan \beta = \tan \alpha$

QUESTION 8. (START A NEW BOOKLET)

Marks

2

3

(a) Solve the inequality

$$\left|2x-3\right| \le \frac{1}{2}x+1$$

(b) Prove by mathematical induction

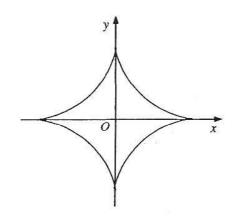
$$12^n > 7^n + 5^n$$
 for $n \ge 2$

(c) Consider the curve defined by the parametric equations $\begin{cases} x = t^2 + t - 1 \\ y = te^{2t} \end{cases}$.

(i) Show that
$$\frac{dy}{dx} = e^{2t}$$

- (ii) Hence show that the tangent to the curve at the point on the curve where t = -1 passes through the origin.
- (d) Use De Moivre's Theorem to show that $(\cot \theta + i)^n + (\cot \theta i)^n = \frac{2\cos n\theta}{\sin^n \theta}$.

(e)



The diagram shows the graph of the relation $|x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} = L^{\frac{1}{2}}$ for some L > 0.

Show that the area of the region enclosed by the curve is $\frac{2}{3}L^2$.