

2010 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 120

- Attempt questions 1-8
- All questions are of equal value

1	2	3	4	5	6	7	8	Total	Total
								/120	%

Question 1 (15 marks) Start a new sheet of writing paper.

a) Find

$$\int_{0}^{\frac{\pi}{4}} \tan^4 x \sec^2 x \, dx \, . \tag{2}$$

b) Find
$$\int \frac{dx}{\sqrt{x^2 - 6x + 8}} dx$$
 2

$$\int_{2}^{5} \frac{2x+2}{(x-1)(2x-1)} dx = \log_{e} \left(\frac{256}{27}\right).$$

d) Find
$$\int \sin(\log_e x) dx$$
. 4

e) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find 4
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{(3\cos x + 4\sin x + 5)}.$$

End of Question 1

Marks

3

Question 2 (15 marks) Start a new sheet of writing paper. Marks

iii)

If $z = \sqrt{3} + i$ and w = 1 - i

i) Write
$$\frac{z}{w}$$
 in the form $a+ib$ where a and b are real. 1

ii) Write
$$\frac{z}{w}$$
 in mod-arg form.

Hence, or otherwise, show that
$$\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 2

iv) Express
$$\left(\frac{z}{w}\right)^{12}$$
 in the form $a+ib$ where a and b are real.

b) The points Z, W and O on the Argand diagram represent the complex numbers z, w and o respectively. If z=3+i and o=0+0i. Find the complex number w, in a+ib form where a and b are real, if ΔOZW in anti-clockwise order, is right-angled at Z and the distance from Z to W is twice the distance from O to Z.

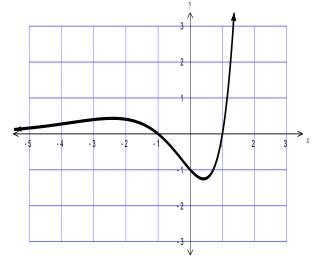
c) The point P on the Argand diagram represents the complex number z = x + iy which satisfies $(z)^2 = 2 - (\overline{z})^2$. Find the equation of the locus of P in terms of x and y. What type of curve is this locus?

d) If z is a complex number such that $z = r(\cos \theta + i \sin \theta)$, where r is real, show that $\arg(z+r) = \frac{1}{2}\theta$.

End of Question 2

2

2


3

3

Question 3 (15 marks) Start a new sheet of writing paper.

The diagram shows the graph of y = f(x).

a)

Draw separate one-third page sketches of the graphs of the following:

i)
$$y = \frac{1}{f(x)}$$

ii)
$$|y| = f(x)$$
 1

iii)
$$y = [f(x)]^2$$

iv)
$$y = \sqrt{f(x)}$$
 2

$$\mathbf{v}) \qquad \mathbf{y} = \mathbf{x} \big(f(\mathbf{x}) \big) \tag{2}$$

b) i) Express the complex number 1+i in the form r(cos θ + i sin θ).
ii) Hence prove that (1+i)ⁿ + (1-i)ⁿ = 2(2^{n/2} cos nπ/4) where n is a positive integer.
iii) If (1+x)ⁿ = p₀ + p₁x + p₂x² + ... + p_nxⁿ, prove that
3

$$p_{0} - p_{2} + p_{4} - \dots = 2^{\frac{n}{2}} \cos \frac{n\pi}{4} \text{ and } p_{1} - p_{3} + p_{5} - \dots = 2^{\frac{n}{2}} \sin \frac{n\pi}{4}.$$

End of Question 3

Mathematics Extension 2 Trial HSC Examination 2010

Question 4 (15 marks) Start a new sheet of writing paper.

Consider the hyperbola *H* with equation $\frac{(x-1)^2}{16} - \frac{(y+3)^2}{25} = 1$

i)	Find the centre, the eccentricity and the co-ordinates of the foci of <i>H</i> .	3
ii)	Write down the equations of the directrices and the asymptotes of <i>H</i> .	3
iii)	Sketch <i>H</i> showing all of the above features.	1

b) Using the focus-directrix definition of the ellipse, centred at the origin, 2 prove that the sum of the focal lengths is constant.

c) Given the hyperbola $x^2 - y^2 = a^2$

a)

- i) Show that $(a \sec \theta, a \tan \theta)$ are the parametric coordinates of a point on the hyperbola.
- ii) Show that the equation of the tangent to $x^2 y^2 = a^2$ at $(a \sec \theta, a \tan \theta)$ is $x y \sin \theta = a \cos \theta$.
- iii) Prove that the area of the triangle bounded by a tangent and the asymptotes 3 is a constant.

End of Question 4

Marks

Qu	iesti	ion 5 (15 marks) Start a new sheet of writing paper.	Marks
a)		Consider $P(x) = x^4 - 6x^2 - 8x - 3$.	
	i)	Given that $P(x)$ has a zero of multiplicity 3, express $P(x)$ as a product of linear factors.	2
	ii)	Sketch the graph of $P(x)$.	2

b) P(x) is a polynomial of the form $P(x) = ax^3 + bx^2 + cx + d$, where a, b, c 4 and d are real. P(x) has roots of 5 and i and when divided by (x-2) the remainder is 15. Find P(x).

c) i) Show that
$$(1 - \sqrt{x})^{n-1} - (1 - \sqrt{x})^n = (1 - \sqrt{x})^{n-1} \sqrt{x}$$
.

ii) If
$$I_n = \int_0^1 (1 - \sqrt{x})^n dx$$
 for $n \ge 0$ show that $I_n = \frac{n}{n+2} I_{n-1}$ for $n \ge 1$.

iii) Hence show that
$$\frac{1}{I_n} = {}^{n+2}C_n$$
 for $n \ge 0$.

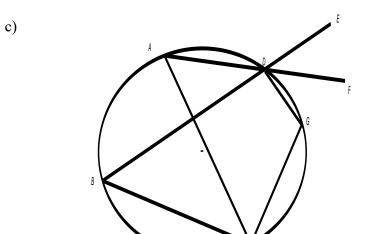
d) If
$$a > 0, b > 0, c > 0, d > 0$$
, show that $\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} \ge 4$ 2

End of Question 5

2

Question 6 (15 marks) Start a new sheet of writing paper.

a) i) Prove that
$$\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta$$
 3


ii) Show that roots of the equation $16x^4 - 20x^2 + 5 = 0$ are $x = \sin \frac{k\pi}{5}$, 2 where k = 1, 2, 3, 4.

iii) Construct an equation whose roots are each 1 greater than those of $16x^4 - 20x^2 + 5 = 0$

iv) Hence or otherwise find the exact value of
$$\sum_{k=1}^{4} \frac{1}{1+\sin\frac{k\pi}{5}}$$

b) Find the equation of the tangent to the curve

$$5x^2 - 6xy + y^2 - 2x + 4y - 3 = 0$$
 at the point (1,2). 3

AC bisects $\angle BCG$ ADF and BDE are straight lines.

Prove that *FD* bisects $\angle EDG$.

End of Question 6

Mathematics Extension 2 Trial HSC Examination 2010

3

Marks

Mathematics Extension 2 Trial HSC Examination 2010

mination 2010

The *n*th derivative of f(x) is $\frac{d^n}{dx^n}f(x) = \frac{d^{n-1}}{dx^{n-1}} \left[\frac{d}{dx}f(x)\right]$.

Question 7 (15 marks)

Show that $\frac{d^n}{dx^n}(x^n) = n!$

a)

i)

ii) Prove, by mathematical induction, that for all positive integers, n $\frac{d^n}{dx^n}(x^n \ln x) = n!(\ln x + \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n})$

Start a new sheet of writing paper.

b) A railway line has been constructed around a circular curve of radius 500m. The distance between the rails is 1.5m and the outside rail is 0.1m above the inside rail.

- i) Draw a diagram showing all forces on the train.
- ii) Show that $tan\theta = \frac{v^2}{gr}$, given that there is no sideways force on the wheels for a train on this curve.
- iii) Find the optimal speed for the train around this curve. (Take $g = 9.8 m/s^2$) 1
- A particle of mass *m* projected vertically upwards with initial speed *u* m/s experiences a resistance of magnitude *Kmv* Newtons when the speed is *v* m/s where *K* is a positive constant. After T seconds the particle attains its maximum height *h*. Let the acceleration due to gravity be $g m/s^2$.
 - i) Show that the acceleration of the particle is given by $\ddot{x} = -(g + Kv)$ where 1 x is the height of the particle t seconds after the launch.

ii) Prove that T is given by
$$T = \frac{1}{K} \log_e \left(\frac{g + Ku}{g} \right)$$
 seconds.

iii) Prove that h is given by
$$h = \frac{u - gT}{K}$$
 metres.

End of Question 7

page 8

3

Marks

2

3

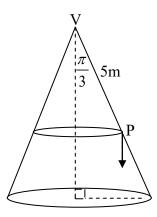
1

2

c)

Question 8 (15 marks) Start a new sheet of writing paper.

a)


b)

A particle is projected from the origin with initial velocity U to pass through a point (a,b).

- i) Show that the Cartesian equation of the motion of the particle is given by $y = \frac{-gx^2}{2U^2} \sec^2 \alpha + x \tan \alpha$. You must DERIVE all equations of motion.
- ii) Prove that there are two possible trajectories if: $(U^2 - gb)^2 > g^2(a^2 + b^2)$

A circular cone of semi-vertical angle $\frac{\pi}{3}$ is fixed with its vertex upwards.

A particle P of mass m kg is attached to the vertex at V by a light inextensible string of length 5m. The particle P rotates with uniform angular velocity ω rad/sec in a horizontal circle whose centre is vertically below V, on the outside surface of the cone and in contact with it. Let T be the tension in the string, N the normal reaction force and mg the gravitational force at P.

i)	Resolve the forces on P in the horizontal and vertical directions.	3
ii)	Show that $T = \frac{m}{4} (2g + 15\omega^2)$ and find a similar expression for <i>N</i> .	4
iii)	Show that for the particle to remain in uniform circular motion on the	2

surface of the cone, then $\omega^2 < \frac{2g}{5}$, where g is the acceleration due to gravity.

End of Examination

Mathematics Extension 2 Trial HSC Examination 2010

Marks

3

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

c

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x, \quad x > 0$

Mathematics Extension 2 Trial HSC Examination 2010

BLANK PAGE

PLC Sydney Maths Department

	Solutions for exam	s and assessment tasks			ver i
	Academic Year	Yr 12	Calendar Year	2010	
	Course	Ext.2,	Name of task/exam	Trial Exam	
	ant's seciend	m	$= \int ln \left(\frac{x}{2x} \right)$ $= ln \frac{4}{2}$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}_{2}^{2}$ $= ln\left(\frac{1}{3^{3}}\right)$	
di	u = tan x $x = sec^2 x d m$. .	$= \ln \frac{4}{4}$	$\frac{1}{3} - \ln\left(\frac{1}{33}\right)$ $\frac{1}{34} \times \frac{3^{3}}{1}$:
	u ⁴ du 5 + C		$= lin 44$ $= lin \left(\frac{256}{27}\right)$)	
				. •	
	san x + c				
6) 5	$\frac{dn}{\sqrt{\pi^2-6n+8}}$	•			·
= ∫	$\frac{dn}{(x-3)^2-1}$,		- - -	
		x2-6x+8)+C	e) 1/2 dr		
C) -	$\int \frac{2\pi+2}{(\pi-1)(2\pi-1)} d\pi$	- A B	A() 3.057	c+4smr+5 t=tann	
22	$\frac{+2}{1} = -$	$A + \frac{B}{2x-1}$		t=tann dt=leectr	
	= X	$\frac{4}{2\pi - 1} - \frac{6}{2\pi - 1}$		$dn = \frac{2}{5cc^2n}$	
•••	(n-1)(2n-1)	$=\int \frac{4}{n-1} - \frac{6}{dn-1}$	- dr	$=\frac{2}{1+z^{2}}$ x = 0, t=0	
	= 4	$\ln(x-1) - 3\ln(2)$	x-I)	n = 0, t=0 n = 1/2 $r = 1Pag$	ge of 19

Ver 1

PLC Sydney Maths Department

Solutions for exams and assessment tasks

Academic Year	Yr 12	Calendar Year	2010)
Course	Ext. 2.	Name of task/exam	Trial	Exam

 $= \int \frac{\frac{2}{1+t^{2}} dt}{\frac{1+t^{2}}{0}} + 4\left(\frac{2t}{1+t^{2}}\right) + 5$ d) (sur (log n) du u= sun (bgr) v=n $du = \frac{1}{n} \cos(\log n)$ dv = 1 $= \int \frac{2}{3-3t^2+8t+5+5t^2} dt$ = nsmi(logn) - fn. 1 cos(logn) th =n=mi(logn) - fcos(logn)an $= \int \frac{2}{2t^2+8t+8} \frac{dt}{dt}$ u = cos(logx) = ndu=1sin(logn) du=1 $= \int \frac{\chi}{t^2 + 4t + 4} dt$ = noniflogn) - n cos(logn) + (n. I swi(Logn) dn $= \int \frac{1}{(t+2)^{2}} dt$ = n sin (bog x) - n cos (log x) $=\left(\frac{-1}{t+2}\right)$ - (sin (log 2) dn : 2 Smi (logex) $-\left[\frac{-1}{3}+\frac{1}{2}\right]$ = x sin (log x) - x cos (log x) 2.1 $:= \int \sin(\ln n) = \frac{\pi}{2} (\sin n)$ = n (sin (logen) - was (logen)) Page 2 of 19

PLC Sydney Maths Department

Solutions for exam	s and assessment tasl	KS	
Academic Year	Yr12	Calendar Year	2010
Course	Ext. 2.	Name of task/exam	Trial Exam

4

Question 2:	$(\dot{1})$ $(12 \text{ cis} \frac{517}{12} = \frac{\sqrt{3}-1}{2} + \frac{1}{2} (13+1)$
a) $Z = \sqrt{3} + i \qquad \omega = 1 - i$	i equating real parts
i) $\frac{z}{\omega} = \frac{\sqrt{3}+i}{1-i}$	$\sqrt{2}\cos \frac{5\pi}{12} = \frac{\sqrt{3}-1}{2}$
$= \frac{13+i}{1-i} \times \frac{1+i}{1+i}$	$\frac{5}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$
$= \frac{(3 + \sqrt{3}) + (1 - 1)}{(1 + 1)}$	$= \frac{\overline{3-1}}{2\overline{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$
= ((3-1)+i((3+1))	$\frac{1}{12} \cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$
$ = \sqrt{(13)^2 + (1)^2}$	$\left(\frac{z}{\omega}\right)^{2} = \left(\frac{2 c_{i} s \frac{\pi}{6}}{\sqrt{2} c_{i} s (-\pi)}\right)^{2}$
= 2	$= \left(\sqrt{2} \text{ G'S } \frac{5\pi}{12}\right)^{12}$
$\arg Z = \frac{11}{6}$	$= 2^6 \operatorname{cis} 5\pi$
$\therefore z = 2 \operatorname{cis} \overline{b}$	$= 64 \left(\cos 5\pi + i \sin 5\pi\right)$
$ -i = \sqrt{(i)^{2} + (-i)^{2}}$	= 64(-1+0i)
$ \omega = \sqrt{2}$	= -64 NW
$\alpha g W = - \frac{1}{4}$	$b) = 3 + i \qquad I = \frac{3}{2}$
$\omega = \left[2 \operatorname{cis} \left(-\frac{\pi}{4} \right) \right]$	0 = 0 + 0i
$\frac{Z}{\omega} = \frac{2 \operatorname{cis} \overline{Z}}{\sqrt{2} \operatorname{cis} (-\overline{Z})}$	$\omega = 7 \qquad \qquad$
,	2 $\overrightarrow{z_0}$ rotated dockwise 90' = $\overrightarrow{z_W}$ 2 $(0-\overrightarrow{z})(-i) = W - \overrightarrow{z}$
$= \sqrt{2} \operatorname{cis}\left(\frac{\pi}{6} - \frac{\pi}{4}\right)$	$2(-z)(-i) + z = \omega$
$= 12 \text{ as } \frac{5\pi}{12}$	2Zi + Z = W
	2(3+i)i + 3+i = 0 6i - 2 + 3+i = 0 3 Page of 19
	$\omega = 1 + 7i$

.:

Ver l

PLC Sydney Maths Department

Solutions for exam	s and assessment tas	ks	
Academic Year	Yr12	Calendar Year	2010
Course	Ext. 2,	Name of task/exam	Trial Exam

So

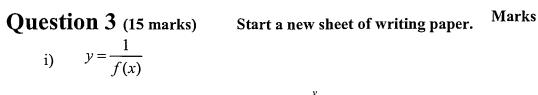
c)
$$P$$
 : $z = 2 + i y$
 $(x + i y)^2 = 2 - (x - i y)^2$
 $1^2 + 2xyi - y^2 = 2 - (x^2 - 2xiy - y^2)$
 $x^2 + 2xyi - y^2 = 2 - x^2 + 2xyi + y^2$
 $2x^2 - 2y^2 = 2$
 $x^2 - y^2 = 1$
 $\therefore rect. hylorbola$
d) In^2
 $z = p$
 $z = 180 - 180 + p$
 $z = 120 - 180 + p$
 z

$$\frac{2}{2} \operatorname{arg} (\overline{z}+r) = \operatorname{arg} (r \operatorname{Cis} \Theta + r)$$

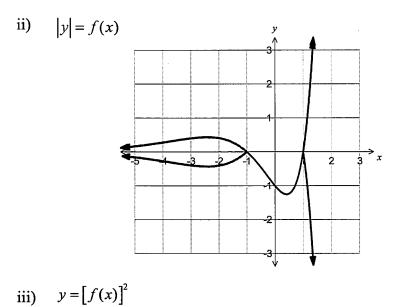
$$= \operatorname{arg} (r \operatorname{Cis} \Theta + r + \operatorname{irs.} \Theta)$$

$$= +\operatorname{arg}^{-1} \left[\frac{r \operatorname{Sin} \Theta}{r (\omega \operatorname{SO} + 1)} \right]$$

$$= +\operatorname{arg}^{-1} \frac{\operatorname{Sin} \Theta}{\omega \operatorname{SO} + 1}$$

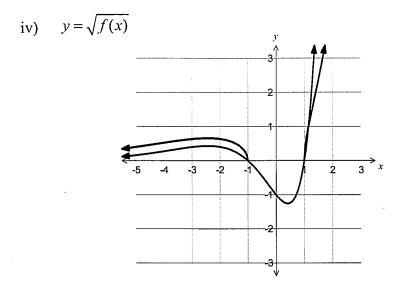

$$\operatorname{Sin} \Theta = 2 \operatorname{Sin}^{-1} \frac{2}{2} \cos^{-\frac{1}{2}} \frac{2}$$

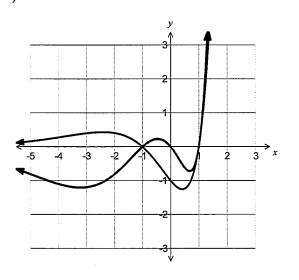
÷


;

Page 4 of 19

Ver l





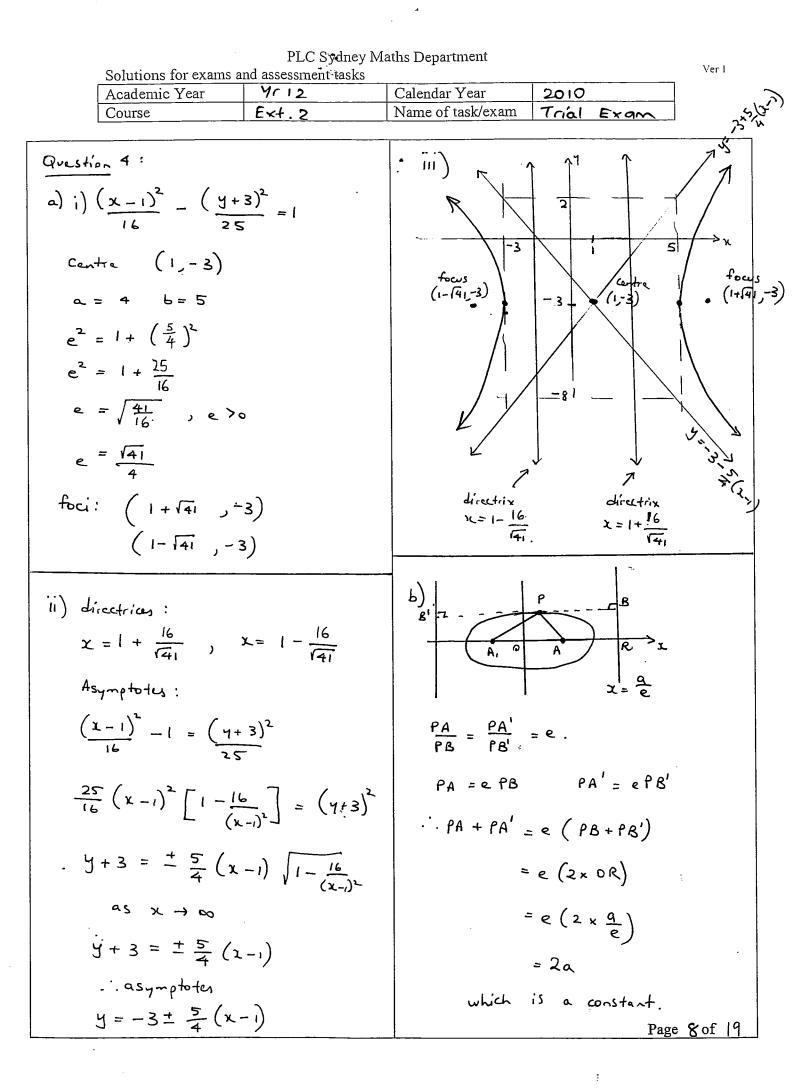
$$[f(x)]^2$$

page 5 of 19

v)
$$y = x(f(x))$$

Page 6 of 19

PLC Sydney Maths Department


Solutions for exame	s and assessment tas	sks			Ver
Academic Year	Yr 12	Calendar Year	2010	2	
Course	Ext. 2.	Name of task/exam	Trial	Exam	

4

36);) 1+i = rzcis T4	: Similarly,
$(1+i)^{n} = 2^{\frac{n}{2}} \operatorname{cis} \frac{\pi n}{4}$	$(1+i)^{n} - (1-i)^{n} = 2i 2^{N_2} s_{in}^{n} \frac{\pi_1}{4}$ and
$(1-i)^n = 2^{\frac{n}{2}} \operatorname{cis}\left(-\frac{\pi}{4}\right)$	$(1+x)^{2} - (1-x)^{2} = 2\rho_{1}x + 2\rho_{3}x^{3} + \dots$ let x = i
$(1+i)^{n} + (1-i)^{n} = 2^{\frac{n}{2}} \operatorname{cis} \frac{\pi}{4} + 2^{\frac{1}{2}} \operatorname{cis}$	
$=2^{\frac{2}{2}}\left[\cos\frac{\tan}{4}+i\sin\frac{\tan}{4}+\right]$	D/
COSTIN -is. TN	
$= 2^{\frac{1}{2}} \left[2\omega s \frac{\pi n}{4} \right]$	
$= 2 \left[2^{\frac{n}{2}} \cos \frac{\pi n}{4} \right]$	· · · · · · · · · · · · · · · · · · ·
$ (1 + \lambda L)^{2} = \rho_{0} + \rho_{1} \chi + \rho_{2} \chi^{2} + \dots + \rho_{n} \chi^{n} $	
$(1-\chi)^{n} = P_{0} - P_{1}\chi + P_{2}\chi^{2} - \dots + P_{n}\chi^{n}$	
$(1+\chi)^{2} + (1-\chi)^{2} = 2\rho_{0} + 2\rho_{2}\chi^{2} + 2\rho_{4}\chi^{4} + \dots$	÷
Let $x = i$ $(x + 2p_n)x^n$	
$(1+i)^{2} + (1-i)^{2} = 2\rho_{0} + 2\rho_{2}(-i) + 2\rho_{4}(-i)^{2}$	
····+2p,(-)	
$2\left[2^{N_2}\cos\frac{\pi n}{4}\right] = 2\rho_0 - 2\rho_{2^+}2\rho_{4^-}$	
$2^{\nu_{2}}\cos\frac{\pi n}{4} = \rho_{0} - \rho_{2} + \rho_{4} - \dots$	Page 7 of 19

:

Ver l

PLC Sydney Maths Department

Solutions for exams a	• •				Ve
Academic Year	Yr 12	Calendar Year	201	10	7
Course	Ext. 2	Name of task/exam	Trial	Exam	

c) $x^2 - y^2 = a^2$ $y - a s_{1.0} = 1$ $y - a s_{1.0} = 1$ $y - a s_{1.0} = 1$	$\left(x - \frac{\alpha}{c_{0.5}}\right)$
i) (a seco, a tare) LHS = (a seco) ² - (a tare) ² $ \begin{array}{c} y - a s_{irre} \\ \zeta_{0se} = \frac{\chi}{s_{irre}} \\ \zeta_{0se} = \frac{\chi}{s_{irre}} \end{array} $	a silo coso
$= a^{2} \left(sec^{2} \theta - tan^{2} \theta \right) \qquad $	= X 1035 - a
$= \alpha^{2}(1) \qquad \qquad$	
8	a (1- 5120)
-	a cos a
parametric coordinates of a point on the hyperbola si2-y2=a2 X - Sint y = 0	650
$x^{2} = x^{2} = a^{2}$ (iii) asymptotes of x^{2}	$-y^2 = a^2$
2x - 2y dy = 0	=-X.
5	
2x = 2y dy dx : Solve x - Si-oy	= 9 603 8 8
$\frac{dy}{dx} = \frac{x}{y}$	x
	+ x si 0
at (aseco, a taro) X-x s. a = a	
$m_{targ} = \frac{\alpha_{l} S_{ll} e}{\alpha_{l} s_{ll} e}$	
$= \frac{1}{4050} \div \frac{5}{4050} + \frac$	Si- O
$= \frac{1}{5in\sigma}$	- (since u=1)
-	
$y = a \tan \theta = \frac{1}{s_{i} \cdot \theta} \left(x - a x \cdot \theta \right)$ Consider $y = -x$	
$S_{1,0}$ $X = q_{0,0} + s_{1,1}$	ہ (- <i>ب)</i> Page 9 of 19

:

Ver l

PLC Sydney Maths Department

Solutions for exams	and assessment tasks		
Academic Year	Yr12	Calendar Year	2010
Course	Ext. 2	Name of task/exam	Trial Exam

X + X Sive = a Cose
$x(1+2)=a\cos\theta$
$\begin{cases} X = \alpha \cos \theta \\ 1 + \sin \theta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$y = -\alpha \cos \theta$ (since $y = y$) $1 + \sin \theta$
$d_{0A} = \sqrt{\left(\frac{a\cos\theta}{1-s_{1-\theta}} - 0\right)^{2} + \left(\frac{a\cos\theta}{1-s_{1-\theta}}\right)^{2}}$
$= \sqrt{2\left(\frac{\alpha\cos s}{1-s}\right)^2}$
$= \sqrt{2} \left(a \cos \theta \right)$
Similarly
$d_{OB} = \sqrt{2} \left(\alpha \omega_{JO} \right)$ $1 + S, O$
:. A = 1 6h
$= \frac{1}{2} \int_{2} \frac{1}{1-S_{1}} \frac{1}{5} \int_{2} \frac{1}{1+S_{1}} \frac{1}{5} \frac{1}{5} \int_{2} \frac{1}{1+S_{1}} \frac{1}{5} \frac{1}{5} \int_{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} \int_{2} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \int_{2} \frac{1}{5} \frac{1}$
$= a^2 \cos^2 \theta$ $1 - \sin^2 \theta$
$= \alpha^2 \cos^2 \alpha$
$= a^2$
which is a constant

Page 10 of 19

٠.

PLC Sydney Maths Department Solutions for exams and assessment tasks

Academic Year	Yr12	Calendar Year	2010	
Course	Ext. 2	Name of task/exam	Trial Exam	•

Question 5	b) P(x)= an +bn +cx+d
$a_{1}P(x) = x^{4} - 6x^{2} = 8x - 3$	P(x) = k(n-5)(n+i)(n-i)
$P(-1) = (-1)^4 - 6 - 8(-1) - 3$	= k(n-5)(n+1)
= 1 - 6 + 8 - 3 = 0	$= k(x^3 + x - 5x^2 - 5)$
$P'(x) = 4n^3 - 12n - 8$	$P(x) = k(x^3 - 5x^2 + x - 5)$
P'(-1) = -4 + 12 - 8	P(2) = 15
20	P(2) = k(8 - 20 + 2 - 5)
$P''(x) = 12x^2 - 12$	
$P^{\frac{1}{2}}(-1) = 12 - 12$	15 = k(-15)
=0 $P(x) = (n+1)^{3} (n-a)$	k = -1 : $P(n) = -x^3 + 5x^2 - x + 5$
	P(n) = -n + 5n - n
$= (x+1)^{3}(x-3)$	$\therefore a = -1$
	b=5 $c=-1$
	d = 5
$y = (x - 3)(x + 1)^2$	$(-)$ $(1-\overline{p}x)^{-1} - (1-\overline{r}x)^{-1}$
	$=(1-5\pi)^{-1}(1-(1-5\pi))$
	$=(1-5\pi)^{n-1}(1-1+5\pi)^{n}$
	$=(1-5\pi)^{n-1}5\pi$
	$(n) In = \int (1 - \sqrt{x})^n dn dn$
	$u = (1 - \sqrt{2}x)$ $u = 1$ $u = 1$
	$u = (1 - \sqrt{x}) - \frac{1}{2} \frac{1}{x^2}$ $du = n(1 - \sqrt{x}) - \frac{1}{2} \frac{1}{x^2}$ Page of 9

Ver l

•

PLC Sydney Maths Department

Solutions for exams a	and assessment task		······	
Academic Year	Yr12	Calendar Year	2010	
Course	Ext. 2	Name of task/exam	Trial Exam	

$= \left[\chi \left(1 - \sqrt{\chi} \right)^{n} \right]_{0}^{1} + \frac{n}{2} \int_{\sqrt{\chi}}^{1} \frac{\left(1 - \sqrt{\chi} \right)^{n-1}}{\sqrt{\chi}} n dx$	ln = (n+2)!
$= \left(0 \right) + \frac{n}{2} \int \left(1 - 5x \right)^{-1} \cdot 5x dx$	$=$ C_{2}
$= \frac{N}{2} \int (1 - (\pi)^{-1} - (1 - (\pi)^{2}) dm$	$ \begin{array}{c} d \end{pmatrix} \underbrace{a}_{b} + \underbrace{b}_{c} + \underbrace{c}_{d} + \underbrace{d}_{a} \\ b & c & d & a \end{array} $
$= \frac{N}{2} I n - 1 - \frac{N}{2} I n$	$2\sqrt{\frac{q.b}{bc}} + 2\sqrt{\frac{c}{d}}$
2In = nIn - 1 - nIn	$= 2\sqrt{\frac{1}{2}} + 2\sqrt{\frac{1}{2}}$
$(n+2) \operatorname{In} = n \operatorname{In}_{-1}$ $\operatorname{In} = \frac{n}{n+2} \operatorname{In}_{-1}$	$= 2\left(\int_{a}^{a} + \int_{a}^{c}\right)$
(m) $I_n = \frac{n}{n+2}$ I_{n-1}	$= 2\left(2\sqrt{\frac{2}{\epsilon}},\frac{\epsilon}{a}\right)$ $= 4(1)$
$= \frac{n}{n+2} \cdot \frac{n-1}{n+1} \text{In-2}$	74
$= \frac{n}{n+2} \cdot \frac{n-1}{n+1} \cdot \frac{n-2}{n} \text{In-2}$	a a
$= \frac{n}{n+2} \cdot \frac{n-1}{n+1} \cdot \frac{n-2}{n} \cdots \frac{2}{4} I_{1}$	
$= \frac{n}{n+2} \cdot \frac{n-1}{n+1} \cdot \frac{n-2}{n} \times \cdots \times \frac{2}{4} \times \frac{1}{3} I$	-
= n! 2! (n+2)!	Page 12 of 19

PLC Sydney Maths Department

Solutions for exams	and assessment tasks	S		
Academic Year	Yr12	Calendar Year	2010	
Course	Ext, 2	Name of task/exam	Trial	Exam

Questionb	501" to 16x4 - 20x2+5=0
$(\cos\theta + i\sin\theta)^{5} = \cos 5\theta + i\sin 5\theta$	
$= \cos \theta + 5\cos \theta i \sin \theta - 10\cos \theta x$	$\chi = sus \pm sus d sus d sus 31 5$
	·· sun 211 ·
-10 cos 0 isun 30 + 5 cos 0 sun 6	
tism ⁶ 0	$k = \frac{kT}{5}, k = 1, 2, 3, 4$
Equating imaginary:	
5059= 505905m0-	(iii) $y = x + 1$
$10\cos^2_{65}m^3\Theta + \sin^5\Theta$	$\therefore x = y^{-1}$
=5(1-sin20)2.sen0 -	16(y-1) - 20(y-1) + 5 = 0
10 (1-sun20). sun30+ sun 0	$16(y^{4}-4y^{3}+6y^{2}-4y^{4})$
=5(1-2sm20+sm0)sm0	$-20(y^2-2y+1)+5=0$
-10 sm3 0-4 10 sm 50 + sm 50	16,4,6443+9642-644416
= 5 sun 0 - 10 sun 3 0 + 5 sun 50	$-20y^{2} + 40y - 20 + 5 = 0$
-10 sin30 + 10 sin 50 + sin 50	16y ⁴ -64y ³ +76y ² -24y+1=0
= 165m 50 - 20 5m30 + 55m8	
(i) let x = sun O	$\frac{1}{10} \cdot 16x^4 - 64x^3 + 76x^2 - 24x + 1=0$
$16\pi^{5} - 20\pi^{3} + 5\pi = 0$	(iv) For (iii)
$\pi (16\pi^4 - 20\pi^2 + 5) = 0$	
sin 50=0	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\delta} + \frac{1}{5}$
50 = 0, T, 2T, 3T, 4T	= roots 3 at a time
	roots Aatatime
	Page 13 of 19

Ver 1

			Maths Department		Ver I
	Academic Year	and assessment tasks	Calendar Year	2010	
	Course	Ext. 2	Name of task/exam	Trial Exam	
			· · · · · · · · · · · · · · · · · · ·		<u> </u>
3	$\frac{24}{16} \div \frac{1}{16}$	-	C)		E
2	24×16 16 1			G	F
= 2			B		
b) 5	$5x^2-6xy+y^2$	- 2x+4y-3=		C	
lor.	- 6n dy + y(-6)+2ydy-2 an			
-	+ 4 dy = c	D.	Let CACG ∴ < BCA	= x (Ac bisacte	< BCG)
	6n+2y) dy		. TADB	= x (angles sta co same c equal).	inding arc are
	dy =	6y+2-107 4-6x+2	Y SEDF	= X (vertically angles eq	opposite
	,	•	SDC =	180-58CG (0)	pposite
at ((1,2)		_	-x $-x$	clic quad supplementary
	dy = 60	2) + 2 - 10 - 6 + 2 (2)	· · < FDG =	- 180 - 5000 -	
			= 16	io - (180-22)-X (and of 2 x-z	straight by
	= 4	·	-	x	
L	= 2		SEDF :		
y-	2 = 2 (n-	ı)	·. FD	bisects SEDG	
9-	-2 = 2n - 2			·	
	y=22			Page	e 4 of 9

PLC Sydney Maths Department

Solutions for exams	and assessment task	S			
Academic Year	Yr12	Calendar Year	2010		· ·
Course	Ext. 2	Name of task/exam	Trial	Exan	

Questron 7 a) $\frac{d}{dx}(x^n) = n x^{n-1}$ dx	$\frac{d^{k+1}}{dx^{k+1}}(x^{k+1}, \ln x)$
a) $\frac{d}{d}(x) = n x$	
$\frac{d^2}{d x^2} (x^n) = \frac{d}{anc} (n x^{n-1})$	$=\frac{d}{an}\left(\frac{d^{k}}{dx^{k}}\left(x^{k+1}\ln n\right)\right)$
dx^2	an lan
$= n(n-1) \mathcal{X}^{-1}$	$=\frac{d^{k}}{dx^{k}}\left(\frac{d}{dn}\left(\chi^{k+1},lnn\right)\right)$
$\frac{d^{3}}{d\kappa^{3}}(\kappa^{n}) = n(n-l)(n-2)\kappa^{-3}$	$= \frac{d^{k}}{k} \left((k+1) \mathcal{X}^{k} . lnn \right)$
$\frac{d^{3}}{dx^{3}}(x^{n}) = n(n-1)(n-2)x^{n-3}$ $\frac{d^{n}}{dx^{n}}x^{n} = n(n-1)(n-2)\cdots(n-(n+1))$ $= n(n-1)(n-2)\cdots(1)x^{n-3}$ $= n!$	$+\chi^{k+1} \cdot \downarrow_{\chi}$
= $n(n-1)(n-2)(1)x$	kj
	dre
$ \frac{d^{n}}{dn^{n}}(x^{n} \ln n) = n! (\ln n + \frac{1}{r} + \frac{1}{2} + \frac{1}{r}) $	$= (k+1) \left[\frac{d^{k}}{dx^{k}} \left(x^{k} . ln x \right) \right]$
Fornel	
$\frac{d}{dn}(n\ln n) = \frac{\pi \cdot 1}{n} + 1. \ln n$	$+ \frac{d^{k}}{dn^{k}}(n^{k})$
= 1+lnn	$= (k+1) k! (lmn+\frac{1+1}{1+1}++\frac{1}{1+1})$
= !! (1+ en x)	+ k!
Assume true for n=k	= (k+1)k! (lmn+ (+)+1 + 1) + (k+1)
de (nelnn) dr'e (nelnn)	$= (k+1)! \left[lun + \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2} + $
= k! $(lnn+\frac{1}{1}+\frac{1}{2}++\frac{1}{n})$	Page 15 of 19

Ver I

PLC Sydney Maths Department

Solutions for exams	and assessment task	S		
Academic Year	Yr12	Calendar Year	2010]
Course	Ex+.2.	Name of task/exam	Trial Exam]

7b) $r = 500 m$	c) $+\uparrow$ \downarrow mg \downarrow R
i) ~N	i) $m\ddot{x} = -mg - kmV$
e mg	$\dot{x} = -g - \kappa v$ $\dot{x} = -(g + \kappa v)$
ii) vert: Ncoso - Fsino - mg = 0	$ \stackrel{"}{=} \frac{dv}{dt} = -(g+Kv) $
$\frac{horiz}{r}: N \sin \theta + F \cos \theta = \frac{mv^2}{r}$	$\frac{dt}{dY} = -\frac{1}{g+kv}$
if no sideways force F = 0 N coso = mg	$t = \int -\frac{1}{9+Kv} dV$
$N \sin \theta = \frac{mv^2}{r}$	$t = -\int \frac{1}{g + \kappa v} dv$
$\therefore \tan \theta = \frac{mv^2}{r} \div mg$	$t = -\left[\frac{1}{\kappa}\int\frac{k}{g+\kappa v}dv\right]$
$=\frac{hv^2}{r}\times\frac{1}{hg}$	$t = -\frac{1}{k} \ln (g + kv) + c$
$\frac{1}{r_g} + \frac{1}{r_g}$	when $t=0$ $V=u$. $\therefore 0 = -\frac{1}{k} \ln (g+ku) + c$
iii) we know to do. 1 by pyth	$C = \frac{1}{k} \ln (g + K u)$
x = 1.496	$\therefore t = \frac{1}{k} \ln(g + Ku) - \frac{1}{k} \ln(g + Kv)$
$\therefore v^2 = rg\left(\frac{o \cdot l}{1.496}\right)$	at max height $V=0$, $t=T$ $T=\frac{1}{k}\ln(g+ku)-\frac{1}{k}\ln(g)$
$V = 18 \cdot 1 \text{ m/s}$	$T = \frac{1}{\kappa} \left(\frac{9 + \kappa u}{9} \right)$ Page 16 of 19

:

.

PLC Sydney Maths Department А

	Solutions for exam	PLC Sydney M s and assessment tasks	laths Department		Ver l
	Academic Year	Yr12	Calendar Year	2010	
	Course	Ext,2	Name of task/exam	Trial Exam]
•••~	· · ·		a have		
•••)	;; ;; = - (g +	Kv)	at ma	× Y=0, X=	
,	$v \frac{dv}{dx} = -(g$	+ K v)		$\sum_{k=1}^{k} \log \frac{1}{k} + \frac{1}{k}$	-
	$\frac{dv}{dx} = -($	$\frac{9+\kappa v}{v}$	$h = \frac{1}{k} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$x + \frac{9}{k} \ln\left(\frac{-9}{9}\right)$	L tKu)
	$\frac{dx}{dr} = -\frac{1}{2}$	<u>v</u>	$=\frac{1}{k}$	и + g (- т)]
			2	Since TK=b(9+ Ku)
	$\chi = -\int \frac{v}{g + \kappa v}$	dv t		-TK = -4	$\left(\begin{array}{c} \frac{9+K_{u}}{a} \end{array}\right)$
		kv+g)v	-	-TK = Ln	
3	$k = -\int \left(\frac{1}{k} - \right)$	$\frac{g}{k} \frac{1}{kv+g} dv = \frac{1}{k}$		$-T = \frac{1}{k}$	
	$X = -\int \left(\frac{1}{k}\right)^{k}$	$-\frac{g}{k}\frac{1}{kv+g}dv$	h = 1 k	- [u - g T]	
	$\chi = -\int \left(\frac{1}{k}\right)^{k}$	$-\frac{g}{L^2}\frac{k}{kv+g}dv$	Question 8		Initial
		$-\frac{q}{k^2} \ln(kV+g) +$	a);); y=	-9	Conditions
			_		u y
١	when V=u)	(=0:		-gt+<	z =Ucos d
0	$=-\int \frac{u}{k} - \frac{u}{k}$	$\frac{1}{2} \ln \left(k u + g \right) + c$	usin K =	0 + C, ý	= Using
			$y = -g^{-1}$	t+usind 1	t=0 L=0
	$=\frac{\mu}{K}-\frac{q}{k^2}$		y= -1		Y=0
· · L =	$-\frac{1}{1}V + 9$	$\ln\left(kv+g\right)+\frac{\mu}{k}-\frac{g}{k}$	5/10/0=	0 + 0 + c 2	
	- L²	· · · · · · · ·	ing ten	$= -\frac{1}{2}gt^2 + uts$	Su ol
	·····			rag	e17 of 19

÷

PLC Sydney Maths Department

Solutions for exams	s and assessment tas	ks	
Academic Year	4112	Calendar Year	2010
Course	Ext. 2	Name of task/exam	Trial Exam

 ¥ = 0	$b^2 - 4ac > 0$
ι = C ₃	(-2u²a)² -4(ga²)(2u²b+ga²)>0
$\mu \cos \alpha = C_3$	
$-i\chi = u\cos \alpha$	4 u a - 8 ga bu - 4 ga >0
$x = ut \cos \alpha + c_4$	$\frac{1}{2} 4a^2$
$0 = 0 + C_{4}$	$u^4 - 2gbu^2 - g^2a^2 > 0$
$\therefore x = Ut \cos \alpha$	$\left[\left(\begin{array}{c} 2 \\ 1 \end{array}\right)^2 \right] $
Cartesian equation:	$\left[\left(u^2-gb\right)^2=u^4-2u^2gb+g^2b^2\right]$
$t = \frac{x}{u \cos \alpha}$	$(u^2 - gb)^2 - g^2a^2 - g^2b^2 > 0$
$y = -\frac{1}{2}g\left(\frac{\chi}{u\cos\kappa}\right)^{2} + u\left(\frac{\chi}{u\cos\kappa}\right)s_{in}$	$\alpha (u^2 - gb)^2 > g^2a^2 + g^2b^2$
$y = -L q \frac{x^2}{\omega^2 \cos^2 x} + x \tan x$	$(u^2-gb)^2 > g^2(a^2+b^2)$
$y = -\frac{gx^2}{2u^2} \text{Sec} x + x \tan \alpha$	b) i) Vert: Toos & + N sind - mg = 0
2 m ²	T cos & + N sin & = mg ()
") (a, b) satisfies	horiz: TSINK-Noosk=mrw ²
$b = -qa^{2}(1^{2}, 1)$	$\therefore \cos \frac{1}{3} = \frac{1}{2} \sin \frac{1}{3} = \frac{1}{2}$
$b = -\frac{qa^2}{2u^2} \left(+\frac{qa^2}{2u^2} + i \right) + a + a - x$	$\therefore T\left(\frac{1}{2}\right) + N\left(\frac{\sqrt{3}}{2}\right) = mg$
$2u^2b = -ga^2 + an^2d - ga^2 + 2uato$	T + 13N = 2mg
ga2 tan 2 - 2 u2 a tand + (2 u2 b+ ga2	$T\left(\frac{\sqrt{3}}{2}\right) - N\left(\frac{1}{2}\right) = mr\omega^{2}$
if 2 trajectoris \$>0	$13T - N = 2mr\omega^2$
	Page 18 of 19

. •

Ver I

PLC Sydney Maths Department

Solutions for exams	s and assessment tas	ks		Ver I
Academic Year	Yr12	Calendar Year	2010	
Course	Ext. 2.	Name of task/exam	E Trial Exe	am

$(1) N = \sqrt{3}T - 2mr\omega^{2}$	iii) need N>0
$\therefore T + \sqrt{3} \left[\sqrt{3} T - 2mr \omega^2 \right] = 2mg$	$2\frac{13 \text{ mg}}{4} - \frac{513}{4} \text{ mw}^2 > 0$
$T + 3T - 213 mrw^2 = 2mg$	
$4T = 2mg + 2/3 mr \omega^2$	$2\overline{3g} - 5\overline{3}\omega^2 > 0$
$T = \frac{m}{4} \left[2g + 2i3 r \omega^2 \right]$	5(3w² - 2(3g < 0
we know $\frac{10}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{5}$	$\omega^2 < 2\overline{13}9 = 5\overline{13}$
	$\omega^2 < \frac{2g}{5}$
$\therefore T = \frac{m}{4} \left[2g + 2i3 \cdot \frac{5i3}{2} \omega^2 \right]$	
$\therefore T = \frac{m}{4} \left[2g + 15 \omega^2 \right]$	end of exam
$N = 13T - 2mr\omega^2$	
$= \sqrt{3} \left[\frac{m}{4} \left(2g + 15w^{2} \right) \right] - 2m \frac{53}{2} w^{2}$	
$= 13 \left[\frac{2mg}{4} + \frac{15mw}{4} \right] - 513mw^{2}$	
$=\frac{\sqrt{3}}{4}\left[2mg+15m\omega^{2}-20m\omega^{2}\right]$	
$N = \frac{13}{4} m \left(2g - 5 w^2 \right)$	
	Page 19 of 19

: