

2014 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks – 100

Section I: Pages 3-6 10 marks

- Attempt questions 1-10, using the answer sheet on page 19.
- Allow about 15 minutes for this section

Section II: Pages 7-16 90 marks

- Attempt questions 11-16, using the booklets provided.
- Allow about 2 hours 45 minutes for this section

Multiple Choice	11	12	13	14	15	16	Total
							%

Blank Page

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

If
$$z = (1 - i\sqrt{3})^{2014}$$
 what is $A rg z$?
(A) $-\frac{2014\pi}{3}$
(B) $-\frac{2014\pi}{6}$
(C) $\frac{2014\pi}{3}$
(D) $\frac{2014\pi}{6}$

2.

What does the equation $x^2 + 2y^2 - 24 = 0$ represent?

- (A) Parabola
- (B) Hyperbola
- (C) Ellipse
- (D) None of these

Which of the following transformations best describes the graph below? The graph of y = f(x) is shown on the same diagram.

- (A) |y| = f(x)
- $(B) \qquad y^2 = f(x)$
- (C) y = |f(x)|
- (D) $y = [f(x)]^2$

Which expression is equal to
$$\int \frac{dx}{\sqrt{4x^2+1}}$$
?

- (A) $\sin^{-1} 2x + c$
- (B) $\log_e \left(2x + \sqrt{4x^2 + 1} \right) + c$

(C)
$$\frac{1}{2}\log_e\left(x + \sqrt{x^2 + \frac{1}{4}}\right) + c$$

(D)
$$\frac{1}{4x}\sqrt{4x^2+1} + c$$

5.

4.

A particle, *P*, of mass *m* kilograms, is suspended from a fixed point by a string of length, *l* metres with acceleration due to gravity, $g ms^{-2}$. *P* is moving with uniform circular motion about a horizontal circle with velocity ω rads / sec ond and radius *r*. The forces acting on the particle are the gravitational force and the tension force *T* along the string.

Which of the following expressions are the correct horizontal and vertical components of the force acting on *P*?

- (A) $T \sin \theta = mg$ $T \cos \theta = mr\omega$
- (B) $T \cos \theta = mg$ $T \sin \theta = mr\omega$
- (C) $T \sin \theta mg = 0$ $T \cos \theta = mr\omega^2$
- (D) $T \cos \theta mg = 0$ $T \sin \theta = mr\omega^2$

1

If TP is a common tangent to the circles in the diagram below, which line has an error in proving that *ATBP* is a cyclic quadrilateral?

- (A) $\angle TPA = \angle TPB$ (common tangent bisects $\angle APB$)
- (B) $\angle TPA = \angle PCA$ (angle between the tangent and the chord is equal to the angle in the alternate segment)
- (C) $\angle TPB = \angle PDB$ (angle between the tangent and the chord is equal to the angle in the alternate segment)
- (D) $\angle DTC = 180 \angle TDC \angle TCD$ (angle sum of a triangle) $\therefore \angle APB + \angle DTC = 180$ Opposite angles in a cyclic quadrilateral are supplementary $\therefore ATBP$ is a cyclic quadrilateral
 - A particle is moving in a circular path of radius r, with a constant angular speed of ω . The normal component of the acceleration is:
- (A) ω

7.

8.

- (B) *rω*
- (C) $r\omega^2$

(D)
$$(r\omega)^2$$

Which one of the following is the equation of the circle in the diagram above?

- (A) $(z+2)(\overline{z}+2) = 4$
- (B) $(z-2)(\overline{z}+2) = 4$
- (C) $(z-2)(\overline{z}-2) = 4$
- (D) $(z+2i)(\overline{z}-2i) = 4$

The roots of $x^3 + 5x + 3 = 0$ are α , β and γ . Which one of the following polynomials has roots $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$?

- (A) $x^3 5x^2 9 = 0$
- (B) $x^3 + 5x^2 + 9 = 0$
- (C) $x^3 125x 375 = 0$
- (D) $x^3 + 125x +375 = 0$
- 10. In the diagram, the shaded region is bounded by the *x*-axis, the line x = -1 and the curve $y = \cos^{-1} x$.

Find the volume of the solid formed when this region is rotated about x = 1.

- (A) $\frac{3+\pi^2}{2}$
- (B) $\frac{3}{2}$

(C)
$$\frac{5\pi^2}{2}$$

(D) None of the above

9.

Section II

90 marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) (i) Show that
$$\tan^3 x = \sec^2 x \tan x - \tan x$$
.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan^3 x \, dx$
b) If $\omega = \frac{1 - i\sqrt{3}}{2}$
(i) Show that $\omega^3 = -1$.
(ii) Hence calculate ω^{16}
c) (i) Find $\sqrt{5 - 12i}$ in $x + iy$ form.
(ii) Hence, or otherwise, solve the equation $z^2 + 4z - 1 + 12i = 0$
d) Consider the equation $z^3 - z^2 - 2z - 12 = 0$. Given that $z = 2cis\left(\frac{2\pi}{3}\right)$
is a root of the equation, factorise fully over the
(i) real field
(ii) complex field
1
Question 11 continued over page

Question 11 continued

e)

The following diagram shows the graph of y = f(x).

On your answer sheet, draw separate one-third page sketches of the graphs of the following

(i)
$$y = -f(x)$$
 1
(ii) $y = \sqrt{f(x)}$ 1

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The equation of the ellipse, *E*, is
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
.

The point *P* is on the ellipse with co-ordinates (x_1, y_1) .

- (i) Find the eccentricity of the ellipse.
- (ii) Find the co-ordinates of the foci and the equations of the directrices 2 of the ellipse.
- (iii) Show that the equation of the tangent at *P* is $\frac{x_1x}{25} + \frac{y_1y}{9} = 1$.
- (iv) Let the tangent at P meet a directrix at a point J. Show that $\angle PSJ$ is a 3 right angle where S is the corresponding focus.

b) Consider
$$f(x) = \sin x + \cos x$$

(i) Find A and B such that
$$sin x + cos x = A sin(x+B)$$
 2

(ii) Sketch
$$f(x) = \sin x + \cos x$$
 for $-2\pi \le x \le 2\pi$. 2

(iii) Hence, or otherwise, sketch
$$y = \frac{1}{f(x)}$$
 for $-2\pi \le x \le 2\pi$.

(iv) Sketch
$$y = \frac{f(x)}{x}$$
 2

End of Question 12

1

Question 13 (15 marks) Use a SEPARATE writing booklet.

a)

The diagram shows the locus of a point z in the complex plane such that

This locus is part of a circle. The angle between the lines from -1 to z and from 3 to z is $\frac{\pi}{3}$, as shown. Find the centre and radius of the circle.

b) Find
$$\int \frac{x^2 + 2x}{(x-2)(x^2+4)} dx$$
 3

c) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^2 x + 2\sin^2 x}$$
 using $t = \tan x$ 4

d) (i) Show that
$$\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} = \sin\theta+i\cos\theta$$
 3

(ii) Hence prove that
$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$$
, where *n* is a positive integer.

End of Question 13

Page 10

Question 14 (15 marks) Use a SEPARATE writing booklet.

- a) Find all the roots of the equation $16x^3 4x^2 8x + p = 0$ if two of the **3** roots are equal.
- b) Prove by Mathematical Induction that $2^n > n^2$ for all integers $n \ge 5$
- c) A particle of mass, *m* kilograms, is initially projected from the ground at an angle of θ , to the horizontal where $\theta = tan^{-1}\left(\frac{3}{4}\right)$ and an initial velocity of 25 m/s.

The equations of motion for the particle are

 $x = 25t \cos \theta$ $y = -\frac{1}{2}gt^2 + 25t \sin \theta$, where g is the acceleration due to gravity. (DO NOT PROVE THESE RESULTS)

(i) Show that
$$x = 20t$$
 and $y = 15t - 5t^2$ if $g = 10m/s^2$. 2

- (ii) If the particle hits a wall 40 metres from the point of projection
 - (α) find the height above the ground the particle hits. 1
 - (β) show that the velocity of the particle, at the point of impact, is $\sqrt{425} m/s$.
- (iii) At impact, the particle is instantaneously at rest. It then falls vertically to the ground with a resistance force acting against the vertical motion equal to $0.01mv^2$ Newtons.
 - (a) Show that $a = 10 0.01v^2$, where *a* is the acceleration and *v* is **1** the velocity of the particle.
 - (β) Find the velocity on returning to the ground. Answer correct to **3** 2 decimal places.

End of Question 14

3

Question 15 (15 marks) Use a SEPARATE writing booklet.

a) A wedge is cut out of a right circular cylinder of radius 4 centimetres 3 by two planes. One plane is perpendicular to the axis of the cylinder. The other plane intersects the first at an angle of 30°, along a diameter of the cylinder. Find the volume of the wedge.

b) In the acute-angled triangle XYZ, M is the midpoint of XY, Q is the midpoint of YZ and P is the midpoint of ZX. The circle through M, Q and P also cuts YZ at N as shown in the diagram.

(i)	Prove <i>MPQY</i> is a parallelogram.	1
(ii)	Prove $\angle MNY = \angle MPQ$.	1
(iii)	Prove that $XN \perp YZ$.	2

Question 15 continued over page

Question 15 continued

c)

A planet P of mass, m kilograms, moves in a circular orbit of radius R metres, around a star, S, in uniform circular motion. The position of

the planet at time t seconds is given by the equations $x = R \cos \frac{2\pi t}{T}$

(i) Show that
$$\ddot{x} = \frac{-4\pi^2}{T^2} x$$
 and $\ddot{y} = \frac{-4\pi^2}{T^2} y$

(ii) Show the acceleration of P is
$$\frac{-4\pi^2}{T^2}R$$
.

(iii) Find the force exerted by the star, S, on the planet, P.

(iv) It is known that the magnitude of the gravitational force pulling the 2 planet towards the star is given by $F = \frac{GMm}{R^2}$, where G is constant and M is the mass of the star, S, in kilograms. Show that the expression for T in terms of R, M and G is $T = 2\pi R \sqrt{\frac{R}{GM}}$.

Question 15 continued over page

2

1

1

Question 15 continued

d)

Express the volume of the torus as a definite integral in x. Do not evaluate this integral.

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.

π

a) If
$$I_n = \int_0^2 \sin^n \theta \, d\theta$$
 where $n \ge 2$,
(i) Show that $I_n = \frac{(n-1)}{n} I_{n-2}$
3

(ii) Hence or otherwise, evaluate
$$\int_{0}^{2} (4-x^{2})^{\frac{5}{2}} dx$$
. 3

b) The figure shows the circle $x^2 + y^2 = a^2$.

The point *T* lies on the circle. $\angle TOx = \theta$, where $0 \le \theta \le \frac{\pi}{2}$. The tangent to the circle at *T* meets the *x*-axis at *M*.

(i) Show that the co-ordinates of *M* are $(a \sec \theta, 0)$.

1

Question 16 continued over page

Question 16 continued

The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = a^2$ where *a*, *b*>0 are shown on the diagram below:

MP is perpendicular to Ox and P is a point on the hyperbola in the first quadrant.

- (ii) Show that the co-ordinates of *P* are $(a \sec \theta, b \tan \theta)$. 2
- (iii) If Q is another point on the hyperbola with co-ordinates 3 $(a \sec \phi, b \tan \phi)$ where $\theta + \phi = \frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the equation of the chord PQ is $y = \frac{b}{a} (\cos \theta + \sin \theta) x - b$.
- (iv) Show that every such chord passes through a fixed point and determine its co-ordinates.
- (v) State the equation of the asymptotes for the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1.$ 1
- (vi) Show that as $\theta \to \frac{\pi}{2}$, the chord PQ approaches a line parallel to an asymptote.

End of Paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Blank Page

Extension 2 Mathematics Multiple Choice Answer Sheet

Student Number_____

Completely fill the response oval representing the most correct answer.

1.	A 🔿	B)	C 🔾	D)
2.	A 🔿	B 🔵	C 🔾	D 🔘
3.	A 🔿	B	C 🔾	D 🔿
4.	A 🔿	B)	C 🔾	D 🔿
5.	A 🔿	B)	C 🔾	D 🔿
6.	A 🔿	B \bigcirc	C 🔘	D 🔿
7.	A 🔿	B)	C 🔾	D 🔿
8.	A 🔿	B)	C 🔾	D 🔿
9.	A 🔿	B	C 🔾	D 🔿
10.	A 🔿	B	С 🔘	D

BLANK PAGE

Ę	PLC Sydney M	laths Department	
Solutions for exams	and assessment tasks	Colordan Veen	
Academic Year	Ext)	Name of task/exam	Trials
1. Z= (1-is	,20 14)	5	
$Arg(1-i\sqrt{3}) = -1$	$\tan^{-1} \frac{-13}{1} - \frac{1}{1}$		
-		J.M.	rg
= _ ⁻			
_		Horizontally: -	$T \sin \theta = mr \omega^2$
$\vec{z} = (1 - i)^2$	20 14	Vertically :	T
		J	$r \cos \varphi = mg$
Arg (1-i/3)	= 20 14 Ara (1-1		D
	$= 20.14 \left(- \frac{\pi}{2} \right)$	/ A	
		6. A	
	= -20.14 m		
	3	7.	
· · A			1
·)
$2, r^2, 2^2$,		
z . $z \neq zy = 2z$	t = 0	normal con	mponent is
$x^{2} + 2y^{2} = 2x^{2}$	4	the Fac	ting towards
· · · · ·		the centre	of the stat
$\frac{\chi^2}{\chi^2} + \gamma^2$	- 1		2 in arcle
24 12	- (ω-
		·. c	
··ellipse			
• _		8. Circle in	diagram is
· . C		$\left \frac{7}{7} + 2 \right = 2$	J
n			· · · ·
3. B		· · 1(x+2) + y	- = 2
		$(1+2)^2+y$	$^{2} = 4$
4 (dx		Carilia	
$\int \sqrt{4 \chi^2 + 1}$		Consider (Z+	(z + 2) = 4
		4 = (x + iy +	2) $(x - iy + 2)$
$= \left(-\frac{d}{2} \right)$		$4 = \chi^{2} + \chi^{2}$	
$\int \frac{1}{2\sqrt{\chi^2 + (\frac{1}{2})^2}}$	2		2(xruy) + 2(1-uy) + 4
· · · · · · · · · · · · · · · · · · ·	\	$= X + y^2 $	41
$=\frac{1}{2}Ln(X+)$	1 x2+ z) + C	$0 = (x + 2)^{2} + y^{2}$	-4 Page of
Č. C.		. A	

•

PLC Sydney M	aths Department Ver 1
Academic Year	Calendar Year
Course	Name of task/exam
9. $x^3 + 5x + 3 = 0$	10. $A(y) = \pi (R^2 - r^2)$
x, B, 8	$=\overline{n}(R-r)(R+r)$
$\alpha + \beta + \gamma = -\frac{b}{a} = 0 (1)$	R = 2
$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{\alpha} = 5$	$r = 1 - \chi$
$d\beta = -\frac{d}{a} = -3$ (3)	A(y) = T(2 - 1 + x)(2 + 1 - x)
If roots & B, BY, XY	$= \pi \left(1 + \chi \right) (3 - \chi)$
sum of roots 1 at a time :	
$x\beta + \beta\gamma + \chi\gamma = 5$ from (2).	$V = 11 \int_{0}^{1+\cos y} (3-\cos y) dy$
sum of roots 2 at a time:	Note un -1.
	f = g = g
= XBX (R + + + + +)	usy = x.
	$V = \pi \begin{pmatrix} \pi \\ \ell \end{pmatrix}$
= -3(o)	$\int_{0} (3 + 2 \omega_{S} \gamma - \omega_{S}^{2} \gamma) d\gamma$
= 0	
product of roots	$\left[\left[\frac{3}{4} + 2 \sin y \right]_{0}^{2} - \int_{0}^{2} \cos y dy \right]$
$\Delta\beta\beta\gamma\lambda\gamma = \lambda^{-}\beta^{-}\delta$	$= \overline{\tau} \left[(3\overline{\tau} + 0) - 0 - (\overline{\tau}) \right]$
$= (\varkappa \beta \gamma)^{-1}$	$\left[\frac{1}{2} \cos 2y + \frac{1}{2} \right] dy$
= (-3) ⁻ = 9	$= \overline{T} \left[3T - \left[\frac{1}{2}Y + \frac{1}{4} \sin 2y \right] T \right]$
- · polynomial is	$=\pi \int 3\pi (\pi \sqrt{1})^2$
$\chi^{3} - (\lambda \beta + \beta \gamma + \lambda \delta) \chi^{2} + (\lambda \beta \gamma (\lambda + \beta + \delta))$	$\int_{-\infty}^{-\infty} \left[\left(\frac{1}{2} - 0 - 0 \right) \right]$
$-\lambda^2\beta^2\sigma^2=0$	$= 3\pi^2 - \pi^2$
$x^3 - 5x^2 + 0x - 9 = 0$	$= 5\pi^2$
$x^{2} - 5x^{2} - 9 = 0$	
	Prove of
• • A	Page 01

Solutions for exams and assessment tasks				
Academic Year	Calendar Year			
Course	Name of task/exam			
	$\omega^{3} = -2 + 2i3\dot{\omega} - 2i3\dot{\omega} - 6$			
9 1 RTS tan x = sec x tan x - tan	= - 8			
$RHS = +a_n \times (sec^2 \times -1)$	8			
= tan x (tan 2)	$(1)^{3} = -1$			
$= 4a^3x$	$\mu_{\mu} \omega^{16} = (\omega^3)^5 \omega$			
= LHS	$= (-1)^5 (-1)^$			
$\frac{1}{4} \int_{-\frac{1}{4}}^{\frac{1}{4}} ta^{3} x dy$	$= -\omega$			
Jo	$rac{1+\sqrt{3}i}{2}$			
$= \int_{0}^{\frac{1}{4}} \left(\sec^{2} x + \tan x - \tan x \right) dx$	≤ 1 √5-12i = a+ib			
= $\int ta^2 x \int \frac{\pi}{4} - \int \frac{\pi}{4} \sin x dx$	$5 - 12i = (a + ib)^2$			
$\left[\begin{array}{c} 2 \end{array} \right]_{0} \left[\begin{array}{c} \cos x \end{array} \right]_{0} \left[\cos x \right]_{0} \left[$	$5 - 12i = a^2 - b^2 + 2abi$			
$= \left(\frac{1}{2} - 0\right) + \left[\ln\left(\cos x\right)\right]^{\frac{1}{2}}$	equating: $5 = 2^2 + 2^2$			
	-12 = 2ab			
$= \frac{1}{2} + \left(\ln \frac{1}{\sqrt{2}} - \ln 1 \right)$	$b = -\frac{6}{a}$			
$= \frac{1}{2} + l_{1} \frac{1}{12}$	$\therefore 5 = a^2 - \left(\frac{-6}{a}\right)^2$			
$= \frac{1}{2} + l_n 2^{-\frac{1}{2}}$	$5 = a^2 - 36$			
$= \frac{1}{2} - \frac{1}{2} \ln 2$.	$5a^2 = a^4 - 36$			
	$(a^2 + 4)(a^2 - 9) = 0$			
$b = \frac{1-\sqrt{3}}{2}$	a=±3, a real			
$\omega^{3} = \left(\frac{1-\sqrt{3}}{2}\right)^{3}$	$b = \mp 2$			
$= \left(\frac{1-2\sqrt{3}}{4}-3\right)\left(\frac{1-\sqrt{3}}{2}\right)$	$ \sqrt{5-12i} = -\frac{1}{2}(3-2i)$			
$= \left(\frac{-2-2\sqrt{3}i}{4}\right)\left(\frac{1-\sqrt{3}i}{2}\right)$	Page of			

PLC Sydney Maths Department			
Solutions for exams and assessment ta	Calendar Vear		
Academic real	Name of task/exam		
$U Z^{2} + 4 Z - 1 + 12U = 0$	$(z - (-1 + \sqrt{3}i))(z - (-1 - \sqrt{3}i))$		
$Z = -\frac{b^{+}}{2a}\sqrt{\frac{b^{2}-4ac}{2a}}$	$= z^{2} - z \left(-1 - \sqrt{3}\right) - z \left(-1 + \sqrt{3}\right) + \left(-1 + \sqrt{3}\right) \left(-1 - \sqrt{3}\right)$		
$Z = -4 \pm \sqrt{16 - 4(-1+12i)}$	$= Z^{2} + Z + \sqrt{3} + Z + Z - \sqrt{3} + Z + 1 + 3$		
$= -4 \pm \sqrt{16 + 4 - 48i}$	$= \overline{z}^{2} + 2\overline{z} + 4$ $= \overline{z}^{2} + 3$ $= \overline{z}^{2} + 2\overline{z} + 4$ $= \overline{z}^{3} - \overline{z}^{2} - 2\overline{z} - 12$		
$= -4 \pm \sqrt{20 - 48i}$	$\frac{z^{3}+2z^{2}+4z}{-3z^{2}-6z-12}$		
$= -4 \pm 2\sqrt{5} - 12i$	i j real field		
$= -2 \pm \sqrt{5 - 12i}$	$(z^{2}+2z+4)(z-3)$		
= -2 + (3-2i)	11 complex field		
= -2+3-2i ,-2-3+2i	$\left(z - \left(-1 + \frac{1}{3}\right)\right)\left(z - \left(-1 - \sqrt{3}\right)\right)\left(z - 3\right)$		
$d = \frac{1-2\iota}{z^{3}-z^{2}-2z-12} = 0$	e, see separate sheet.		
since coefficients are real roots occur in conjugate	pairs		
$\therefore 2 \operatorname{cis} \left(\frac{2\overline{u}}{3}\right) = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$			
= -1 + 5i			
root.	Page of		

•

, PLC Sydney M	aths Department	1
Academic Year	Calendar Year	
Course	Name of task/exam	
$\frac{Q_{12}}{Q_{12}} = \frac{1}{25} + \frac{y^2}{9} = 1$	$\begin{array}{rcl} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
$= 1 - \left(\frac{3}{5}\right)^{2}$ $e = \sqrt{\frac{16}{25}} e > 0$	$9xx_{1} + 25yy_{1} = 9x_{1}^{2} + 25y_{1}^{2}$ = 225	
$e = \frac{4}{5}$ $\frac{11}{10}$ foci (±ae, o) = (±4, o)	$\frac{xx_{1} + yy_{1}}{25} = \frac{x_{1}}{25} + \frac{y_{1}}{9}$ $(x_{1}, y_{1}) \text{ live on the ellips}$ $\therefore x^{2} = 2$	e e
directrices $x = \pm \frac{a}{e}$ $x = \pm \frac{25}{4}$	$\frac{-1}{25} + \frac{4}{9} = 1$ $\frac{1}{25} + \frac{4}{9} = 1.$	
$\frac{11}{25} + \frac{y^2}{q} = 1$	= it tangent meets directrix then $x = \frac{25}{4}$, $y = ?$	
$\frac{2x}{25} + \frac{2y}{q} \frac{dy}{dx} = 0$ $\frac{2y}{q} \frac{dy}{dx} = -\frac{2x}{25}$ $\frac{dy}{dx} = -\frac{x}{25} \frac{q}{y}$ $\frac{dy}{dx} = -\frac{x}{25} \frac{q}{y}$ $at(x_1, y_1)$ $m = -\frac{qx_1}{25y_1}$	$\frac{25}{4} \frac{x}{25} + \frac{44}{9} = 1$ $\frac{x}{4} + \frac{44}{9} = 1$ $\frac{x}{4} + \frac{44}{9} = 1$ $\frac{9x}{4} + \frac{44}{9} = 36$ $\frac{44}{9} = 36 - 9x$ $\frac{y}{4} = 36 - 9x$ $\frac{y}{4} = 36 - 9x$	
	rage of	

.

	PLC Sydney Maths Department	Ver 1
Academic Year	Calendar Year	
Course	Name of task/exam	
$\therefore J\left(\frac{25}{4}, \frac{36-9\chi}{4y}\right)$ $m_{SJ} = \frac{y_2 - y_1}{\chi_2 - \chi_1}$	$s(4,0) = f(x) = sinx + \omega s$ $sinx + \omega s x = A s$ $sinx + \omega s x = A sin x$	x in $(x + B)$ cos B + A cos x size
$= \frac{36 - 9\chi}{4y}, -\frac{4y}{4y}, -\frac{25}{4} - 4$ $= 36 - 9\chi, -\frac{9}{4}$	0 equating: $1 = A \cos B$ () $1 = A \sin B$ (2) $1 = \tan B$	
$\frac{4y}{36-1x}$	$\frac{1}{4} \qquad \qquad$	
$m_{PS} = \frac{y_{1} - 0}{x_{1} - 4}$	$= \frac{1}{3641}$ $= 4 - \chi_{1}$ $= \frac{1}{72}$ $= \sqrt{2}$ $= \sqrt{2}$ $= \sqrt{2}$ $= \sqrt{2}$ $= \sqrt{2}$	si (r Tr)
$= \frac{y_{1}}{x_{1} - 4}$	-1	Sin (27 g)
$m_{ST} \times m_{PS} = \frac{y_1}{(x_1 - 4)},$	$x \left(\frac{4-x}{3}\right)$	
Since m _{st} × m _{ps} =	-)	
SJ I PS ··· < PSJ is angle.	a right)
	Page	e of

•

•

PLC Sydney Maths Department		
Solutions for exams and assessment tasks	Calendar Vear	1
Course	Name of task/exam	
$\int \frac{x^2 + 2x}{(x-2)(x^2+4)} = \int \left\{ \frac{1}{x-2} + \frac{2}{x^2+4} \right\} dx$	$= \frac{1}{2} \sqrt{2} \left[\frac{1}{4a_n} \frac{u}{\sqrt{\frac{1}{2}}} \right]_{p}$	1
$= \ln x-2 + 2 \int \frac{1}{4+x^2} dx$	r2 tan 15	- tan o
$= ln x-2 + \frac{2}{2} tan' \frac{x}{2} + \frac{1}{2} tan' \frac{x}{2} + \frac{1}{2}$	c = $\frac{1}{r_2}$ tan $\frac{1}{r_2}$	
Integral = $\ln x-2 + \tan^{-1} \frac{x}{2}$	$= \frac{1}{\sqrt{2}} + a_1^{-1} \sqrt{2}$	
$\int_{0}^{\infty} \cos^{2} x + 2 \sin^{2} x$		
$= \int_{0}^{\infty} \frac{\cos^2 \chi}{\cos^2 \chi} + \frac{2 \sin^2 \chi}{\cos^2 \chi}$		
$= \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 x dx}{1 + 2 \tan^2 x}$		
Given $u = \tan x$ $du = \operatorname{Sei}^2 x du$		
also when $x = 0$ $u = 0$ when $x = \frac{\pi}{4}$ $u = 1$.		
$\int_0^1 \frac{du}{1+2u^2}$		
$= \int_0^1 \frac{du}{2\left(\frac{L}{2}+u^2\right)}$		
$= \frac{1}{2} \int_{0}^{1} \frac{du}{\frac{1}{2} + u^{2}}$		
	Page of	

Solutions for exams and assessment tasks	aths Department Ver 1
Academic Year	Calendar Year
Course	Name of task/exam
$\frac{d}{d} = RTS$ $\frac{1+s_{100} + i\cos\theta}{1+s_{100} + i\cos\theta} = s_{100} + i\cos\theta$	$\frac{i}{1+\sin\theta+i\cos\theta} = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)$
LHS = $\frac{1+\sin\theta + i\cos\theta}{1+\sin\theta - i\cos\theta} \times \frac{1+\sin\theta + i\cos\theta}{1+\sin\theta - i\cos\theta}$	LHS = $\left(\frac{1+s_{1}\sigma+i\omega_{s}}{1+s_{1}\sigma-i\omega_{s}}\right)^{n}$
$= \frac{(1 + sine)^{2} + i \cos (1 + sine) + i \cos (1 + sine)}{(1 + sine)^{2} + \cos^{2} 2}$	$= \left(Sin \Theta + i \cos \theta \right)^{2}$ $= \left(\cos \left(\frac{\pi}{2} - \Theta \right) + i \sin \left(\frac{\pi}{2} - \Theta \right) \right)^{2}$
$\frac{-\cos^2 \varphi}{(1+\sin^2)^2+\cos^2 \varphi}$	$= \cos \left[n \left(\frac{\pi}{2} - \sigma \right) \right] + i \sin \left[n \left(\frac{\pi}{2} - \sigma \right) \right]$
$= \frac{1+2\sin\theta + \sin\theta + \cos\theta + \cos\theta \sin\theta}{(1+\sin\theta)^2 + \cos^2\theta}$	= Los (NTT)
$\frac{1}{(1+\sin^2)^2+\cos^2\theta}$	= R HS
$= 2 \sin^2 \theta + 2 \sin \theta + 2 \cos \theta + 2 \cos \theta \sin \theta$ 1+2 sing + 5.2 0 + cos ² 0	· · · proved
$= \frac{2\left[\sin^{2}\theta + \sin\theta + i\cos\theta + i\cos\theta\right]}{2\left[1 + \sin\theta\right]}$	
$= \frac{\sin(\sin(1+\sin))}{(1+\sin)}$	
= (T+sino) (sino + icoso) (oviz+T)	
= sin + i cos +	Page of

. . stown

PLC Sydney Mains Department				
Academic Vear	Calendar Year			
Course	Name of task/exam			
Q14	LHS > RHS			
a $f(x) = 1bx^{3} - 4x^{2} - 8x + p = 0$	it true for n= 5			
Let roots be d, d, B	Step 2 : Assume true for n=k			
sum roots 1 at time	$2^{k} \geq k^{2}$			
$2\alpha + \beta = \frac{4}{16}$				
$\beta = \frac{1}{4} - 2 \varkappa$	Step 3: Prove true for n=k+1			
Also P(~)=0	i.e. prove $p_{k+1} > (1-1)^2$			
P'(~)=0 since double	$\sim \sim (\kappa + i)$			
$P'(x) = 48x^2 - 8x - 8$	$2^{2} = 2^{2}, 2$			
P'(~)=0	> k2. 2 by assumption			
48 2 - 8 2 - 8 = 0	$> 2k^2$			
6 2 - 2 - 1 = 0	$new 2k^2 + k = 5$ airs			
(3x + 1)(2x - 1) = 0	50.			
	$(k+1)^2$ at $k=5$ gives			
$\beta = \frac{11}{12} \qquad \beta = -\frac{3}{4}$	36			
roots -1 -1 11	clearly $2k^2 > (k+i)^2$			
and $\frac{1}{2}, \frac{1}{2}, \frac{-3}{4}$	for all values of k 15			
	$(2^{k+1} > 2k^2 > (k+1)^2$			
by Prove by $M.I.$ for $n \ge 5$ $2^n \ge n^2$	$\therefore 2^{k+1} > (k+1)^2$			
Step 1: from them f	i proved by M.I. for			
145-25 Pin -2	all values of n 35.			
= 32 = 25	Page of			

.

PLC Sydney Mi	aths Department Ver 1
Academic Year	Calendar Year
Course	Name of task/exam
14b another method:	ې م
Step 3 : Prove true for n=k+1	
If we can prove $2^{k+1} \rightarrow (k+1)^2$ If we can prove $2^{k+1} \rightarrow (k+1)^2 > 0$ then we have proved $2^{k+1} \rightarrow (k+1)^2$	To rel
$LHS = 2^{k+1} - (k+1)^{2}$	$0 \xleftarrow{40} \longrightarrow t$
$= 2^{k} \times 2 - (k^{2} + 2k + i)$	g = 10 $x = 25 \pm cas = 0$
> $2k^{2} - (k^{2} + 2k + i)$	$y = -\frac{1}{2}gt^{2} + 25tsine$
by assumption	i we know $\tan \theta = \frac{3}{4}$
$= 2k^{2} - k^{2} - 2k - 1$	$x = 25 \pm (\frac{4}{2})$
$= k^2 - 2k - 1$	X = 20t
$= (k - 1)^2 - 2$	$y = -\frac{1}{2}(10)t^{2}+25t(\frac{3}{5})$
>o if k>3	$y = -5t^{2} + 15t$
since we have k > 5,	I d when $x = 40$
this must also be true	40 = 20 t $t = 2$
$\therefore 2^{k+i} - (k+i)^2 > 0$	$y = -5(2)^{2} + 15(2)$
$\therefore 2^{k+1} > (k+1)^2$	* -20 +30
for all values of n.25	10 metres high.
	Page of

PLC Sydney M	laths Department	Ver 1
Academic Year	Calendar Year	
Course	Name of task/exam	
if x = 20 t	$\frac{\beta}{dx} = \frac{10 - 0.01 v^2}{v^2}$ $\frac{dv}{dx} = \frac{10 - 0.01 v^2}{v}$	
$\dot{x} = 20$ if $y = 15t - 5t^{2}$ $\dot{y} = 15 - 10t$	$\frac{dx}{dv} = \frac{v}{10 - 0.01v^2}$,
at $t=2$	$\int \frac{1}{10 - 0.01 v^2} d$	´
$\dot{y} = 15 - 20$ $\dot{y} = -5$	$\begin{bmatrix} x \end{bmatrix}_{0}^{10} = \frac{1}{-0.02} \int_{0}^{10} \frac{-0.02}{10-0.02}$	<u>ev</u> dv
$V = \sqrt{\dot{x}^{2} + \dot{y}^{2}}$ = $\sqrt{20^{2} + (-5)^{2}}$	$10 = -\frac{1}{0.02} \left[ln \right 10 - 0.$	01v ²
V = (425 m/s	-0.2 = ln 10 - 0.01	, 2
$\frac{1}{2}$	$- \ln 10 - c$ - 0.2 = ln $\frac{10 - 0.01 \text{ W}^2}{10}$	
L x=10	$e^{-0.2} = \frac{10 - 0.01}{10} W^2$	
$d = mg = 0.01 mv^{2}$	$10e^{-0.2} = 10 - 0.01 \text{ W}^2$	
$a = g - 0.01 v^2$	$0.01 W^2 = 10 - 10e^{-0.2}$	
$a = 10 - 0.01 v^2$	V = 13.46 m/s	
	Page of	

PLC Sydney Maths Department		I
Academic Year	Calendar Year	
Course	Name of task/exam	
<u>ل</u> ب	III since MPQY is a parallelogr	am
	equal mf	1 QY)
M P X	Let < mNy = x $\therefore < N MP = x$	
$\gamma \longrightarrow W_N \qquad Q \qquad W \qquad Z$	since <mny <mpq<="" =="" td=""><td></td></mny>	
	(proved in 11)	
I Since m is the midpoint	then < MPQ = X.	
of Xy and P is the	Also < MYN = x (opposite	
midpoint of XZ, then	angles in	
MP 11 y Q since the ratio of	are equal	`
intercepts are equal.	$< \times mN = 2x$	
Similarly, M is the midpoint a XY and Q is the midpoint of YZ then XY 11 PQ	f (exterior angle of triangle equals sum of 2 interior opposite angles).	
since the ratio of intercepts are equal.	and since < PMN=x then < xmp = x also.	
." MPRY is a parallelogram.	· AXMN is isosceles (My= and MN=	MN MN MX
"I Since MPQN is a cyclic	$\therefore \langle MNX = 180 - 2\chi \qquad (agle of c)$	Sum XMN
quadrilateral, < mNy = < mpQ	= 90 - x	
Quadralational and the th		
interior opposite angle)	(adjacent angl	e)
	$= \chi + 90 - \kappa$	
$\cdots \leq mNY = \leq mfQ$	= 90 $\times N = \bot Y Z$ Page of	

PLC Sydney Maths Department	
Academic Year	Calendar Year
Course	Name of task/exam
$c_{1} x = R \cos \frac{2\pi t}{T}$	$accel = \sqrt{\frac{16T_{1}^{4}}{T^{4}} \left(\chi^{2} + \gamma^{2}\right)}$
$\chi = -R \sin \frac{2\pi t}{T} \times \frac{2\pi}{T}$	as $\chi^2 + \gamma^2 = R^2$ (P is on circle)
$= -R 2\pi \sin 2\pi t$ $T \qquad T$	$\therefore accel = \sqrt{\frac{16\pi^4}{T^4}} R^2$
$\dot{x} = -\frac{2\pi R}{T} \cos \frac{2\pi t}{T} \cdot \frac{2\pi}{T}$	$=\frac{4\pi^2}{\tau^2}R$
$= -\frac{4\pi^2 R}{T^2} \cos \frac{2\pi t}{T}$	$= \frac{4\pi^2 R}{T^2}$
$= -\frac{4\pi^2}{T^2} \begin{pmatrix} R \cos \frac{2\pi}{T} \\ T \end{pmatrix}$	as the accel is towards the
$\chi = -4\pi^2 x$	centre of the circle
Τ2	accel = $-4\pi^2 R$
$y = R \sin \frac{2\pi t}{T}$	
$y = R \cos \frac{2\pi t}{T} + \frac{2\pi}{T}$	Ill Force exerted by star on planet is the same as the
$= \frac{2\pi}{T} R \cos \frac{2\pi t}{T}$	force exerted by the planet on
$\ddot{y} = 2\pi R \left(-\sin 2\pi t \right) \sqrt{2\pi}$	the star.
$= -\frac{4\pi^2}{T^2} \begin{pmatrix} R & S_1' & 2\pi + \frac{1}{T} \end{pmatrix}$	$\therefore \text{ For } \boldsymbol{\omega} = \mathbf{M} \left(\frac{4\pi^2 k}{T^2} \right),$
$\dot{y} = -\frac{4\pi^2}{T^2} y$	$F = \frac{GMm}{R^2}$
$\ accel = \sqrt{ \mathbf{x} ^2 + \mathbf{y} ^2}$	$m\left(\frac{4\pi^2 R}{\tau^2}\right) = \frac{GM_m}{R^2}$
$= \sqrt{\left(-\frac{4\pi^2}{T^2}\right)^2 \chi^2 + \left(-\frac{4\pi^2}{T^2}\right)^2 \chi^2}$	$4\pi^2 R = T^2 \frac{GM}{R^2}$
$= \sqrt{\frac{16\pi^{4}}{T^{4}}} \frac{\chi^{2} + \frac{16\pi^{4}}{T^{4}}}{T^{4}} \frac{\chi^{2}}{T^{4}}$	Page of

PLC Sydney M	laths Department Ver 1
Solutions for exams and assessment tasks	Calendar Year
Course	Name of task/exam
	••••••••••••••••••••••••••••••••••••
$ ba(i) _{T_{2}}$ $\exists n = \int \sin^{n} \theta d\theta$	$\int_{0}^{(H)^{2}} \left(\int_{0}^{E} (H - u^{2})^{2} du \right)^{2} du = 2\cos \Theta$ $du = -2\sin \Theta d\Theta$
$=\int \sin^{-1}\theta \cdot \sin\theta \cdot d\theta$	$\mathcal{K} = \mathcal{O} \mathcal{H} = 2$ $\mathcal{O} = \mathbf{T} \mathcal{O} = \mathbf{O}$ \mathbf{z}
$dn = (n-1) \sin^{n-2} \phi, \cos \phi d\phi$	$=\int -(4-4\cos{\frac{5}{2}})^{\frac{5}{2}} 2\sin{\frac{9}{2}} d\theta$
$v - \cos \theta$	デ モ て
VI= SIND	= $(4 \sin^2 \theta)^3$. 2 sin θ
$-iTn = \left[-sin^{h} \Theta \cdot cos \Theta\right]_{0} +$	0 Ti
$(n-1)$ $\int \sin^{n-2} \theta \cdot \cos^2 \theta d\theta$	$= 4.2 \int \sin \theta \cdot \sin \theta d\theta$
$= 0 + \frac{1}{7} + \frac{1}{5} + \frac{1}{6} $	$=2.2 \int \sin \theta d\theta$
$T_{1} = (n-1) \int \sin^{n-2} d\Phi -$	$= 2^{6} \int \sin \frac{6}{6} d\Theta.$
(n-1) j' sm 6 do	$\int \sin \theta d\theta = I_{6}$ $= \frac{5}{6}I_{4}$
In = (n-1) In - 2 - (n-1) In	$=\frac{5}{6}\cdot\frac{3}{4}\cdot I_{\perp}$
$I_{n+(n-1)}I_{n} = (n-1)I_{n-2}$	= = × 3 × 1 Io
$f_n(1+n-1) = (n-1)I_{n-2}$	$= \frac{5}{14} \int d\theta$
$In = \frac{n-1}{n} In^{-2}$	$=\frac{5}{10}\left[\Theta\right]^{10}$
	= 5 T $= 5 T$ $= 64.5 F$
L	= 1011

•.

PLC Sydney M	Iaths Department Ver 1
Solutions for exams and assessment tasks	Calendar Year
Course	Name of task/exam
b i $a T$ a T m x $sinke x^2 ty^2 = a^2$	$P_{PQ} = \frac{b \tan \phi - b \tan \phi}{a \sec \phi}$
radius = a	eqn chord PQ:
$\cos \theta = \frac{\alpha}{000}$	$y - b + a = b + a - b + a \phi = b + $
$om = \frac{a}{\cos a}$ = a sec a	y= btare-btarb (2-asero)+btare
. wordinates of Mare	$\phi = \frac{1}{2} - \phi$
i P has the same x value	$Y = \frac{b \tan \theta - b \tan \left(\frac{\pi}{2} - \theta\right)}{a \sec \theta - a \sec \left(\frac{\pi}{2} - \theta\right)} \left[1 - a \sec \theta \right] + b \tan \theta$
as M . I value is a seco.	$= \frac{b \tan \theta - b \cot \theta}{a \sec \theta - a \csc \theta} \left[\chi - a \sec \theta \right] + b \tan \theta$
The y-value lies on the hyperbola $\frac{\chi^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{=b(tao - coto)}{a(seo - coseo)} \left[x - aseo] + btao$
$\frac{(a \sec \theta)^2}{a^2} - \frac{y^2}{b^2} = 1$	$= \frac{b}{a} \left(\frac{\frac{Sine}{103e} - \frac{\cos a}{5ine}}{\frac{1}{\cos 2e} - \frac{1}{5ine}} \right) \left[X - asei \theta \right] + b + c_1$
$\frac{q^2 \sec^2 \varphi}{q^2} = \frac{y^2}{b^2} = 1$	$= \frac{b}{a} \left[\frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta - \cos \theta} \right] \times - \operatorname{asc}(\theta) + \operatorname{b}(\tan \theta)$
$8L^2 \Theta - 1 = \frac{y^2}{b^2}$	$= \frac{b}{a} \frac{(s_{1n} - c_{01} + c_{01} + c_{01})}{(s_{1n} - c_{01} + c_{01})} \left[x - a x_{10} + b + a x_{10} +$
$\frac{4a^2 \circ = \frac{\gamma^2}{b^2}}{\frac{\gamma^2}{b^2}}$	$= \frac{b}{a} \left(\sin \phi + \cos \phi \right) \left(x - a \sec \phi \right) + b \tan \phi$ Page of
y = b tand in first quar	a

•

PLC Sydney Maths Department		Ver 1
Solutions for exams and assessment tasks		veri
Academic Year	Calendar Year	
Course	Name of task/exam	
$y = \frac{b}{c_1} (sine + cose) L - \frac{b}{c_1} (sine + cose) L$	cose) aleqo + btano	
$= \frac{b}{a} \left(\cos \theta + \sin \theta \right) x - \frac{b}{a} \left(\sin \theta \right)$	$+\omega_{12} + \omega_{12} + $	
$= \frac{b}{a} (\cos \theta + \sin \theta) \chi - \frac{b}{\chi}$	$\frac{a_{1}sina}{\cos a} - \frac{b_{1}}{a}\frac{\cos a}{\cos a} + \frac{b_{1}sin}{\cos a}$	<u>e</u>
$= \frac{b}{a} (\cos \theta + \sin \theta) x - \frac{b}{a}$	sine - b & + b sine se a se	
$i \cdot y = \frac{b}{a} (\cos \theta + \sin \theta) x - b$		
iv Every chord has an		
equation y= m2+b;		
and every chord must pass		
through the y-intercept of	-b	
. He fixed point is (0,-b)		
$y = \frac{+b}{a} x$		
VI as $0 \rightarrow \frac{1}{2}$		
$y \rightarrow \frac{b}{a}(o+i) K - b$	· ·	
$y = \frac{b}{a} \chi - b$		
which is parallel to the	·	
asymptote y = a & since		
m, = m2 for parallel lies.		
porallel to an asymptote.	Page of	

•