

2014
 TRIAL
 HIGHER SCHOOL CERTIFICATE
 EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen Black is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 100
Section I: Pages 3-6
10 marks

- Attempt questions $1-10$, using the answer sheet on page 19 .
- Allow about 15 minutes for this section

Section II: Pages 7-16

90 marks

- Attempt questions 11-16, using the booklets provided.
- Allow about 2 hours 45 minutes for this section

Multiple Choice	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	Total

Blank Page

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.
1.

If $z=(1-i \sqrt{3})^{2014}$ what is $\operatorname{Arg} z$?
(A) $-\frac{2014 \pi}{3}$
(B) $-\frac{2014 \pi}{6}$
(C) $\frac{2014 \pi}{3}$
(D) $\frac{2014 \pi}{6}$
2. What does the equation $x^{2}+2 y^{2}-24=0$ represent?
(A) Parabola
(B) Hyperbola
(C) Ellipse
(D) None of these
3. Which of the following transformations best describes the graph below? The graph of $y=f(x)$ is shown on the same diagram.

(A) $|y|=f(x)$
(B) $y^{2}=f(x)$
(C) $y=|f(x)|$
(D) $y=[f(x)]^{2}$
4.

Which expression is equal to $\int \frac{d x}{\sqrt{4 x^{2}+1}}$?
(A) $\sin ^{-1} 2 x+c$
(B) $\log _{e}\left(2 x+\sqrt{4 x^{2}+1}\right)+c$
(C) $\frac{1}{2} \log _{e}\left(x+\sqrt{x^{2}+\frac{1}{4}}\right)+c$
(D) $\frac{1}{4 x} \sqrt{4 x^{2}+1}+c$
5. A particle, P, of mass m kilograms, is suspended from a fixed point by a string of length, l metres with acceleration due to gravity, $g m s^{-2} . P$ is moving with uniform circular motion about a horizontal circle with velocity ω rads / sec ond and radius r. The forces acting on the particle are the gravitational force and the tension force T along the string.

Which of the following expressions are the correct horizontal and vertical components of the force acting on P ?
(A) $T \sin \theta=m g$
$T \cos \theta=m r \omega$
(B) $\quad T \cos \theta=m g$
$T \sin \theta=m r \omega$
(C) $T \sin \theta-m g=0$

$$
T \cos \theta=m r \omega^{2}
$$

(D) $\quad T \cos \theta-m g=0$

$$
T \sin \theta=m r \omega^{2}
$$

6.

If TP is a common tangent to the circles in the diagram below, which line has an error in proving that $A T B P$ is a cyclic quadrilateral?

(A) $\quad \angle T P A=\angle T P B$ (common tangent bisects $\angle A P B$)
(B) $\quad \angle T P A=\angle P C A$ (angle between the tangent and the chord is equal to the angle in the alternate segment)
(C) $\angle T P B=\angle P D B$ (angle between the tangent and the chord is equal to the angle in the alternate segment)
(D) $\angle D T C=180-\angle T D C-\angle T C D$ (angle sum of a triangle)
$\therefore \angle A P B+\angle D T C=180$
Opposite angles in a cyclic quadrilateral are supplementary
$\therefore A T B P$ is a cyclic quadrilateral
7. A particle is moving in a circular path of radius r, with a constant angular speed of ω. The normal component of the acceleration is:
(A) ω
(B) $\quad r \omega$
(C) $r \omega^{2}$
(D) $\quad(r \omega)^{2}$
8.

Which one of the following is the equation of the circle in the diagram above?
(A) $(z+2)(\bar{z}+2)=4$
(B) $(z-2)(\bar{z}+2)=4$
(C) $(z-2)(\bar{z}-2)=4$
(D) $\quad(z+2 i)(\bar{z}-2 i)=4$
9.

The roots of $x^{3}+5 x+3=0$ are α, β and γ. Which one of the following polynomials has roots $\alpha \beta, \beta \gamma$ and $\alpha \gamma$?
(A) $x^{3}-5 x^{2}-9=0$
(B) $x^{3}+5 x^{2}+9=0$
(C) $x^{3}-125 x-375=0$
(D) $x^{3}+125 x-+375=0$
10. In the diagram, the shaded region is bounded by the x-axis, the line $x=-1$ and the curve $y=\cos ^{-1} x$.

Find the volume of the solid formed when this region is rotated about $x=1$.
(A) $\frac{3+\pi^{2}}{2}$
(B) $\frac{3}{2}$
(C) $\frac{5 \pi^{2}}{2}$
(D) None of the above

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) (i) Show that $\tan ^{3} x=\sec ^{2} x \tan x-\tan x$.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$
b) If $\omega=\frac{1-i \sqrt{3}}{2}$
(i) Show that $\omega^{3}=-1$.
(ii) Hence calculate ω^{16}
c) (i) Find $\sqrt{5-12 i}$ in $x+i y$ form.
(ii) Hence, or otherwise, solve the equation $z^{2}+4 z-1+12 i=0$
d) Consider the equation $z^{3}-z^{2}-2 z-12=0$. Given that $z=2 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$ is a root of the equation, factorise fully over the
(i) real field
(ii) complex field

Question 11 continued over page

Question 11 continued

e) The following diagram shows the graph of $y=f(x)$.

On your answer sheet, draw separate one-third page sketches of the graphs of the following
(i) $y=-f(x)$
(ii) $y=\sqrt{f(x)}$

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The equation of the ellipse, E, is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.

The point P is on the ellipse with co-ordinates $\left(x_{1}, y_{1}\right)$.
(i) Find the eccentricity of the ellipse.
(ii) Find the co-ordinates of the foci and the equations of the directrices of the ellipse.
(iii) Show that the equation of the tangent at P is $\frac{x_{1} x}{25}+\frac{y_{1} y}{9}=1$.
(iv) Let the tangent at P meet a directrix at a point J. Show that $\angle P S J$ is a right angle where S is the corresponding focus.
b) Consider $f(x)=\sin x+\cos x$
(i) Find A and B such that $\sin x+\cos x=A \sin (x+B)$
(ii) Sketch $f(x)=\sin x+\cos x$ for $-2 \pi \leq x \leq 2 \pi$.
(iii) Hence, or otherwise, sketch $y=\frac{1}{f(x)}$ for $-2 \pi \leq x \leq 2 \pi$.
(iv) Sketch $y=\frac{f(x)}{x}$

Question 13 (15 marks) Use a SEPARATE writing booklet.

a) The diagram shows the locus of a point z in the complex plane such that

$$
\arg (z-3)-\arg (z+1)=\frac{\pi}{3}
$$

This locus is part of a circle. The angle between the lines from -1 to z and from 3 to z is $\frac{\pi}{3}$, as shown.
Find the centre and radius of the circle.
b) Find $\int \frac{x^{2}+2 x}{(x-2)\left(x^{2}+4\right)} d x$
c) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos ^{2} x+2 \sin ^{2} x}$ using $t=\tan x$
d) (i) Show that $\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}=\sin \theta+i \cos \theta$
(ii) Hence prove that $\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right)$, where n is a positive integer.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) Find all the roots of the equation $16 x^{3}-4 x^{2}-8 x+p=0$ if two of the roots are equal.
b) Prove by Mathematical Induction that $2^{n}>n^{2}$ for all integers $n \geq 5$
c) A particle of mass, m kilograms, is initially projected from the ground at an angle of θ, to the horizontal where $\theta=\tan ^{-1}\left(\frac{3}{4}\right)$ and an initial velocity of $25 \mathrm{~m} / \mathrm{s}$.

The equations of motion for the particle are
$x=25 t \cos \theta$
$y=-\frac{1}{2} g t^{2}+25 t \sin \theta$, where g is the acceleration due to gravity.
(DO NOT PROVE THESE RESULTS)
(i) Show that $x=20 t$ and $y=15 t-5 t^{2}$ if $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(ii) If the particle hits a wall 40 metres from the point of projection
(α) find the height above the ground the particle hits.
(β) show that the velocity of the particle, at the point of impact, is $\sqrt{425} \mathrm{~m} / \mathrm{s}$.
(iii) At impact, the particle is instantaneously at rest. It then falls vertically to the ground with a resistance force acting against the vertical motion equal to $0.01 m v^{2}$ Newtons.
(α) Show that $a=10-0.01 v^{2}$, where a is the acceleration and v is the velocity of the particle.
(β) Find the velocity on returning to the ground. Answer correct to 2 decimal places.

Question 15 (15 marks) Use a SEPARATE writing booklet.

a) A wedge is cut out of a right circular cylinder of radius 4 centimetres by two planes. One plane is perpendicular to the axis of the cylinder.
The other plane intersects the first at an angle of 30°, along a diameter of the cylinder. Find the volume of the wedge.

b) In the acute-angled triangle $X Y Z, M$ is the midpoint of $X Y, Q$ is the midpoint of $Y Z$ and P is the midpoint of $Z X$. The circle through M, Q and P also cuts $Y Z$ at N as shown in the diagram.

(i) Prove $M P Q Y$ is a parallelogram.
(ii) Prove $\angle M N Y=\angle M P Q$.
(iii) Prove that $X N \perp Y Z$.

Question 15 continued over page

Question 15 continued

c) A planet P of mass, m kilograms, moves in a circular orbit of radius R metres, around a star, S, in uniform circular motion. The position of the planet at time t seconds is given by the equations $x=R \cos \frac{2 \pi t}{T}$ and $y=R \sin \frac{2 \pi t}{T}$, where T is a constant.

(i) Show that $\ddot{x}=\frac{-4 \pi^{2}}{T^{2}} x$ and $\ddot{y}=\frac{-4 \pi^{2}}{T^{2}} y$
(ii) Show the acceleration of P is $\frac{-4 \pi^{2}}{T^{2}} R$.
(iii) Find the force exerted by the star, S, on the planet, P.
(iv) It is known that the magnitude of the gravitational force pulling the planet towards the star is given by $F=\frac{G M m}{R^{2}}$, where G is constant and M is the mass of the star, S , in kilograms. Show that the expression for T in terms of R, M and G is $T=2 \pi R \sqrt{\frac{R}{G M}}$.

Question 15 continued

d)

A donut shaped solid called a torus is formed by revolving $(x-b)^{2}+y^{2}=a^{2}, 0<a<b$ about the y-axis.

Express the volume of the torus as a definite integral in x. Do not evaluate this integral.

Question 16 (15 marks) Use a SEPARATE writing booklet.

a) If $I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta$ where $n \geq 2$,
(i) Show that $I_{n}=\frac{(n-1)}{n} I_{n-2}$
(ii) Hence or otherwise, evaluate $\int_{0}^{2}\left(4-x^{2}\right)^{\frac{5}{2}} d x$.
b) The figure shows the circle $x^{2}+y^{2}=a^{2}$.

The point T lies on the circle. $\angle T O x=\theta$, where $0 \leq \theta \leq \frac{\pi}{2}$. The tangent to the circle at T meets the x-axis at M.
(i) Show that the co-ordinates of M are $(a \sec \theta, 0)$.

Question 16 continued

The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=a^{2}$ where $a, b>0$ are shown on the diagram below:

$M P$ is perpendicular to $O x$ and P is a point on the hyperbola in the first quadrant.
(ii) Show that the co-ordinates of P are $(a \sec \theta, b \tan \theta)$.
(iii) If Q is another point on the hyperbola with co-ordinates $(a \sec \phi, b \tan \phi)$ where $\theta+\phi=\frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the equation of the chord $P Q$ is $y=\frac{b}{a}(\cos \theta+\sin \theta) x-b$.
(iv) Show that every such chord passes through a fixed point and determine its co-ordinates.
(v) State the equation of the asymptotes for the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
(vi) Show that as $\theta \rightarrow \frac{\pi}{2}$, the chord $P Q$ approaches a line parallel to an asymptote.

End of Paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Blank Page

Extension 2 Mathematics Multiple Choice Answer Sheet

Student Number

\qquad

Completely fill the response oval representing the most correct answer.
1.
A

B

C

D
2.
A
B
C

D

3.
A \qquad
B
C

D
4.
A
B
C
D
5.
A
B

C

D
6.
A \qquad
B
C

D
7.
A
B
C
D
8.
A
B

C \bigcirc
D
9.
A
B

C

D
10.
A

B

C

D

BLANK PAGE

Calendar Year	2014
Name of task/exam	Trials

$$
\begin{aligned}
& 1 . z=(1-i \sqrt{3})^{2014} \\
& \begin{aligned}
& \operatorname{Arg}(1-i \sqrt{3})=\tan ^{-1} \frac{-\sqrt{3}}{1}+\frac{\pi}{3} \\
&=-\frac{\pi}{2} \\
& \therefore z=(1-i \sqrt{3})^{2014} \\
& \operatorname{Arg}(1-i \sqrt{3})^{2014}=2014 \operatorname{Arg}\left(1-i\left(\frac{-3}{3}\right)\right. \\
&=2014\left(-\frac{\pi}{3}\right) \\
&=-\frac{2014 \pi}{3} \\
& \therefore A
\end{aligned}
\end{aligned}
$$

2.

$$
\begin{gathered}
x^{2}+2 y^{2}-24=0 \\
x^{2}+2 y^{2}=24 \\
\frac{x^{2}}{24}+\frac{y^{2}}{12}=1 \\
\therefore \text { ellipse } \\
\therefore C
\end{gathered}
$$

3. B
4. $\int \frac{d x}{\sqrt{4 x^{2}+1}}$

$$
\begin{aligned}
& =\int \frac{d x}{2 \sqrt{x^{2}+\left(\frac{1}{2}\right)^{2}}} \\
& =\frac{1}{2} \ln \left(x+\sqrt{x^{2}+\frac{1}{4}}\right)+c
\end{aligned}
$$

Horizontally: $T \sin \theta=m r \omega^{2}$
Vertically: $T \cos \theta=m g$

$$
\therefore D
$$

6. A
7.

normal component is the F acting towards the centre of the circle

$$
\begin{aligned}
\therefore a & =r \omega^{2} \\
\therefore & C
\end{aligned}
$$

8. Circle in diagram is

$$
\begin{aligned}
& |z+2|=2 \\
& \therefore \sqrt{(x+2)^{2}+y^{2}}=2 \\
& (x+2)^{2}+y^{2}=4 .
\end{aligned}
$$

Consider $(z+2)(\bar{z}+2)=4$

$$
\begin{aligned}
& 4=(x+i y+2)(x-i y+2) \\
& 4=x^{2}+y^{2}+2(x+i y)+2(x-i y)+4 \\
& 0=x^{2}+y^{2}+42 \\
& 0=(x+2)^{2}+y^{2}-4 \text { Page of }
\end{aligned}
$$

$$
\therefore C \quad \therefore A
$$

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
\begin{align*}
& \text { 9. } x^{3}+5 x+3=0 \\
& \alpha, \beta, \gamma \\
& \alpha+\beta+\gamma=-\frac{b}{a}=0 \tag{1}\\
& \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=5 \tag{2}\\
& \alpha \beta \gamma=-\frac{d}{a}=-3 \tag{3}
\end{align*}
$$

If roots $\alpha \beta, \beta \gamma, \alpha \gamma$
sum of roots 1 at a time: $\alpha \beta+\beta \gamma+\alpha \gamma=5$ from (2)

Sum of roots 2 at a time:

$$
\begin{aligned}
& \alpha \beta \beta \gamma+\alpha \beta \alpha \gamma+\beta \gamma \alpha \gamma \\
& =\alpha \beta \gamma(\beta+\alpha+\gamma) \\
& =-3(0) \\
& =0
\end{aligned}
$$

product of roots

$$
\begin{aligned}
\alpha \beta \beta \gamma \alpha \gamma: & =\alpha^{2} \beta^{2} \gamma^{2} \\
& =(\alpha \beta \gamma)^{2} \\
& =(-3)^{2} \\
& =9
\end{aligned}
$$

\therefore polynomial is

$$
\begin{array}{cl}
x^{3}-(\alpha \beta+\beta \gamma+\alpha \gamma) x^{2}+(\alpha \beta \gamma(\alpha+\beta+\gamma)) x & \\
-\alpha^{2} \beta^{2} \gamma^{2}=0 \\
x^{3}-5 x^{2}+0 x-9=0 \\
x^{3}-5 x^{2}-9=0 & =\frac{3 \pi^{2}-\frac{\pi^{2}}{2}}{} \begin{array}{l}
\quad=\frac{5 \pi^{2}}{2} \\
\therefore A
\end{array} \quad \therefore C \quad \text { Page of }
\end{array}
$$

10. $A(y)=\pi\left(R^{2}-r^{2}\right)$

$$
\begin{aligned}
& =\pi(R-r)(R+r) \\
R & =2 \\
r & =1-x \\
\therefore A(y) & =\pi(2-1+x)(2+1-x) \\
& =\pi(1+x)(3-x) \\
V & =\pi \int_{0}^{\pi}(1+\cos y)(3-\cos y) d y
\end{aligned}
$$

Note $y=\cos ^{-1} x$

$$
\cos y=x
$$

$$
\begin{aligned}
\therefore V & =\pi \int_{0}^{\pi}\left(3+2 \cos y-\cos ^{2} y\right) d y \\
& =\pi\left[[3 y+2 \sin y]_{0}^{\pi}-\int_{0}^{\pi} \cos ^{2} y d y\right] \\
& =\pi\left[(3 \pi+0)-0-\int_{0}^{\pi}\left(\frac{1}{2} \cos 2 y+\frac{1}{2}\right) d y\right] \\
& =\pi\left[3 \pi-\left[\frac{1}{2} y+\frac{1}{4} \sin 2 y\right]_{0}^{\pi}\right] \\
& =\pi\left[3 \pi-\left(\frac{\pi}{2}-0-0\right)\right]
\end{aligned}
$$

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

QI
ai RTS $\tan ^{3} x=\sec ^{2} x \tan x-\tan x$

$$
\begin{aligned}
\text { RHS } & =\tan x\left(\sec ^{2} x-1\right) \\
& =\tan x\left(\tan ^{2} x\right) \\
& =\tan ^{3} x \\
& =\text { CHS }
\end{aligned}
$$

ii) $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$
$=\int_{0}^{\frac{\pi}{4}}\left(\sec ^{2} x \tan x-\tan x\right) d x$
$=\left[\frac{\tan ^{2} x}{2}\right]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} d x$
$=\left(\frac{1}{2}-0\right)+[\ln (\cos x)]^{\frac{\pi}{x}}$
$=\frac{1}{2}+\left(\ln \frac{1}{\sqrt{2}}-\ln 1\right)$
$=\frac{1}{2}+\ln \frac{1}{\sqrt{2}}$
$=\frac{1}{2}+\ln 2^{-\frac{1}{2}}$
$=\frac{1}{2}-\frac{1}{2} \ln 2$.
b. $\omega=\frac{1-\sqrt{3} i}{2}$
$i \quad \omega^{3}=\left(\frac{1-\sqrt{3} i}{2}\right)^{3}$

$$
=\left(\frac{1-2 \sqrt{3} i}{4}-3\right)\left(\frac{1-\sqrt{3} i}{2}\right)
$$

$$
=\left(\frac{-2-2 \sqrt{3} i}{4}\right)\left(\frac{1-\sqrt{3} i}{2}\right)
$$

$$
w^{3}=\frac{-2+2 \sqrt{3} i-2 \sqrt{3} i-6}{8}
$$

$$
=-\frac{8}{8}
$$

$$
=-1
$$

$$
\therefore \omega^{3}=-1
$$

ii $\omega^{16}=\left(\omega^{3}\right)^{5} \times \omega$

$$
\begin{aligned}
= & (-1)^{5} \omega \\
= & -\omega \\
O R \quad & \frac{-1+\sqrt{3} i}{2}
\end{aligned}
$$

$C i \sqrt{5-12 i}=a+i b$

$$
\begin{aligned}
& 5-12 i=(a+i b)^{2} \\
& 5-12 i=a^{2}-b^{2}+2 a b i
\end{aligned}
$$

equating:

$$
\begin{aligned}
5 & =a^{2}-b^{2} \\
-12 & =2 a b \\
b & =-\frac{6}{a} \\
\therefore 5 & =a^{2}-\left(-\frac{6}{a}\right)^{2} \\
5 & =a^{2}-\frac{36}{a^{2}} \\
5 a^{2} & =a^{4}-36 \\
\left(a^{2}+4\right) & \left(a^{2}-9\right)=0 \\
a & = \pm 3, a \text { real } \\
\therefore b & =2 \\
\therefore \sqrt{5-12 i} & = \pm(3-2 i)
\end{aligned}
$$

Page of

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

ii) $z^{2}+4 z-1+12 i=0$

$$
z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
z=\frac{-4 \pm \sqrt{16-4(-1+12 i)}}{2}
$$

$$
=\frac{-4 \pm \sqrt{16+4-48 i}}{2}
$$

$$
=\frac{-4 \pm \sqrt{20-48 i}}{2}
$$

$$
=\frac{-4 \pm 2 \sqrt{5-12 i}}{2}
$$

$$
=-2 \pm \sqrt{5-12 i}
$$

$$
=-2 \pm(3-2 i)
$$

$$
=-2+3-2 i,-2-3+2 i
$$

$$
=1-2 i,-5+2 i
$$

$d z^{3}-z^{2}-2 z-12=0$
since coefficients are real roots occur in conjugate pairs

$$
\begin{aligned}
\therefore 2 \operatorname{cis}\left(\frac{2 \pi}{3}\right) & =2\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =-1+\sqrt{3} i
\end{aligned}
$$

$\therefore-1-\sqrt{3} i$ is also a root.

$$
\begin{aligned}
& \therefore(z-(-1+\sqrt{3} i))(z-(-1-\sqrt{3} i)) \\
& =z^{2}-z(-1-\sqrt{3} i)-z(-1+\sqrt{3} i)+(-1+\sqrt{3} i)(-1-\sqrt{3} i) \\
& =z^{2}+z+\sqrt{3} i z+z-\sqrt{3} i z+1+3 \\
& =z^{2}+2 z+4
\end{aligned}
$$

$$
\therefore z^{2}+2 z+4 \begin{aligned}
& \frac{z-3}{z^{3}-z^{2}-2 z-12} \\
& \frac{z^{3}+2 z^{2}+4 z}{-3 z^{2}-6 z-12} \\
& \frac{-3 z^{2}-6 z-12}{}
\end{aligned}
$$

\therefore i real field

$$
\left(z^{2}+2 z+4\right)(z-3)
$$

ii complex field

$$
(z-(-1+\sqrt{3} i))(z-(-1-\sqrt{3} i))(z-3)
$$

e, see separate sheet.

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

1k(i)

11e ii)

Q12
a

$$
\begin{aligned}
\frac{x^{2}}{25} & +\frac{y^{2}}{9}=1 \\
i e^{2} & =1-\left(\frac{b}{a}\right)^{2} \\
& =1-\left(\frac{3}{5}\right)^{2} \\
e & =\sqrt{\frac{16}{25}} \quad e>0 \\
e & =\frac{4}{5}
\end{aligned}
$$

ii foci $(\pm a e, 0)$

$$
=(\pm 4,0)
$$

directrices

$$
\begin{aligned}
& x= \pm \frac{a}{e} \\
& x= \pm \frac{25}{4}
\end{aligned}
$$

"iii

$$
\begin{aligned}
& \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \\
& \frac{2 x}{25}+\frac{2 y}{9} \frac{d y}{d x}=0 \\
& \frac{2 y}{9} \frac{d y}{d x}=-\frac{2 x}{25} \\
& \frac{d y}{d x}=-\frac{x}{25} \times \frac{9}{y} \\
& \text { at }\left(x_{1}, y_{1}\right) \\
& m=\frac{-9 x_{1}}{25 y_{1}}
\end{aligned}
$$

\therefore eqn tangent:

$$
\begin{aligned}
& y-y_{1}=-\frac{9 x_{1}}{25 y_{1}}\left(x-x_{1}\right) \\
& 25 y y_{1}-25 y_{1}^{2}=-9 x x_{1}+9 x_{1}^{2} \\
& 9 x x_{1}+25 y y_{1}=9 x_{1}^{2}+25 y_{1}^{2} \\
& \div 225 \\
& \frac{x x_{1}}{25}+\frac{4 y_{1}}{9}=\frac{x_{1}^{2}}{25}+\frac{y_{1}^{2}}{9} \\
& \therefore \frac{\left(x_{1}, y_{1}\right) \text { lies on the ellipse }}{25}+\frac{x_{1}^{2}}{25}=1 \\
& \therefore \frac{x x_{1}}{9}+\frac{4 y}{9}=1 .
\end{aligned}
$$

iv If tangent meets directrix then $x=\frac{25}{4}, y=$?

$$
\begin{gathered}
\frac{25}{4} x_{1} \\
25 \\
\frac{x_{1}}{4}+\frac{4 y_{1}}{9}=1 \\
9 x_{1}+4 y y_{1}=36 \\
4 y_{1}=1 \\
y=\frac{36-9 x_{1}}{4 y_{1}}
\end{gathered}
$$

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
\begin{aligned}
& \therefore J\left(\frac{25}{4}, \frac{36-9 x_{1}}{4 y_{1}}\right) \quad s(4,0) \quad b \quad f(x)=\sin x+\cos x \\
& m_{5 J}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{\frac{36-9 x_{1}}{4 y_{1}}-0}{\frac{25}{4}-4} \\
& =\frac{36-9 x}{4 y}, \div \frac{9}{4} \\
& =\frac{4\left(36-9 x_{1}\right)}{4 \times 9 y_{1}}=\frac{36\left(4-x_{1}\right)}{36 y_{1}} \\
& =\frac{4-x_{1}}{y_{1}} \\
& =\frac{y_{1}}{x_{1}-4} \\
& m_{S T} \times m_{P S}=\frac{y_{1}}{\left(x_{1}-4\right)} \times \frac{\left(4-x_{1}\right)}{y_{1}} \\
& =-1 \\
& \text { since } m_{s J} \times m_{p s}=-1 \\
& S J \perp P S \\
& \therefore<\text { PSJ is a right } \\
& \text { angle. }
\end{aligned}
$$

Calendar Year	
Name of task/exam	

12 b ii)

12 b iii)

12 b iv)

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

Q13
a.

Let O be centre of circle

$$
A(-1,0) \quad B(3,0)
$$

$$
\angle A O B=\frac{2 \pi}{3} \quad \text { (angle centre }
$$ twice angle $\triangle A O B$ is isosceles at circumference) Drop perpendicular from O to real axis. Call this point C.

$$
\therefore O C \perp A B
$$

C is midget $A B$

$$
\therefore c(1,0)
$$

$$
\therefore C B=2 \text { units. }
$$

$$
\angle C O B=\frac{\pi}{3} \quad(\text { isosceles } \Delta)
$$

$$
\begin{aligned}
\tan 60 & =\frac{2}{h} \\
h=\frac{2}{\tan 60} & =\frac{2}{\sqrt{3}} \\
\sin 60 & =\frac{2}{r} \\
r=\frac{2}{\sin 60} & =\frac{2}{\sqrt{3} / 2} \\
& =\frac{4}{\sqrt{3}} .
\end{aligned}
$$

\therefore Centre $\left(1, \frac{2}{\sqrt{3}}\right) \quad R=\frac{4}{\sqrt{3}}$ units
$\stackrel{b}{-} \int \frac{x^{2}+2 x d x}{(x-2)\left(x^{2}+4\right)}$

$$
\frac{x^{2}+2 x}{(x-2)\left(x^{2}+4\right)}=\frac{A}{(x-2)}+\frac{B x+C}{\left(x^{2}+4\right)}
$$

$$
x^{2}+2 x=A\left(x^{2}+4\right)+(B x+C)(x-2)
$$

$$
x^{2}+2 x=A x^{2}+4 A+B x^{2}-2 B x+C x-2 C
$$

equating

$$
\begin{align*}
& 1=4+B \\
& 2=-2 B+C \tag{2}\\
& 0=4 A-2 C \tag{3}\\
& \therefore 4 A=2 C \\
& 2 A=C
\end{align*}
$$

$$
\begin{aligned}
\therefore 2 & =-2 B+2 A \\
1 & =-B+A \\
1 & =B+A
\end{aligned}
$$

$$
A=1, \quad C=2, \quad B=0
$$

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
\begin{aligned}
& \therefore \int \frac{x^{2}+2 x d x}{(x-2)\left(x^{2}+4\right)}=\int\left\{\frac{1}{x-2}+\frac{2}{x^{2}+4}\right\} d x \\
& =\frac{1}{2} \sqrt{2}\left[\tan ^{-1} \frac{u}{\sqrt{\frac{1}{2}}}\right]_{0}^{1} \\
& =\ln |x-2|+2 \int \frac{1 d x}{4+x^{2}} \\
& =\frac{1}{\sqrt{2}}\left(\tan ^{-1} \frac{1}{\sqrt{\frac{1}{2}}}-\tan ^{-1}\right. \\
& =\ln |x-2|+\frac{2}{2} \tan ^{-1} \frac{x}{2}+c \\
& =\frac{1}{\sqrt{2}} \tan ^{-1} \frac{1}{\frac{1}{\sqrt{2}}} \\
& \therefore \text { Integral }=\ln |x-2|+\tan ^{-1} \frac{x}{2}+c \text {. } \\
& \text { c. } \int_{0}^{\frac{\pi}{4}} \frac{d x}{\cos ^{2} x+2 \sin ^{2} x} \\
& u=\tan x \\
& =\int_{0}^{\pi / 4} \frac{\frac{d x}{\cos ^{2} x}}{\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{2 \sin ^{2} x}{\cos ^{2} x}} \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x d x}{1+2 \tan ^{2} x} \\
& \text { Given } u=\tan x \\
& d x=\sec ^{2} x d x \\
& \begin{array}{rll}
\text { also when } x=0 & u=0 \\
\text { len } x=\frac{\pi}{4} & u=1 .
\end{array} \\
& \therefore \int_{0}^{1} \frac{d u}{1+2 u^{2}} \\
& =\int_{0}^{1} \frac{d u}{2\left(\frac{1}{2}+u^{2}\right)} \\
& =\frac{1}{2} \int_{0}^{1} \frac{d u}{\frac{1}{2}+u^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { di RTS } \\
& \frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}=\sin \theta+i \cos \theta \\
& \text { LbS }=\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta} \times \frac{1+\sin \theta+i \cos \theta}{1+\sin \theta+i \cos \theta} \\
& =\frac{(1+\sin \theta)^{2}+i \cos \theta(1+\sin \theta)+i \cos \theta(1+\sin \theta)}{(1+\sin \theta)^{2}+\cos ^{2} \theta} \\
& \frac{-\cos ^{2} \theta}{(1+\sin a)^{2}+\cos ^{2} \theta} \\
& =\frac{1+2 \sin \theta+\sin ^{2} \theta+i \cos \theta+i \cos \theta \sin \theta}{(1+\sin \theta)^{2}+\cos ^{2} \theta} \\
& \frac{+i \cos \theta+i \cos \theta \sin \theta-\cos ^{2} \theta}{(1+\sin \theta)^{2}+\cos ^{2} \theta} \\
& =2 \sin ^{2} \theta+2 \sin \theta+2 i \cos \theta+2 i \cos \theta \sin \theta \\
& 1+2 \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta \\
& =\underline{2\left[\sin ^{2} \theta+\sin \theta+i \cos \theta+i \cos \theta \sin \theta\right]} \\
& 2[1+\sin \theta] \\
& =\frac{\sin \theta(\sin \theta+1)+i \cos \theta(1+\sin \theta)}{(1+\sin \theta)} \\
& =\frac{(1+\sin \theta)(\sin \theta+i \cos \theta)}{(1+\sin \theta)} \\
& =\sin \theta+i \cos \theta \\
& =\text { RHo } \\
& \begin{array}{l}
\text { ii } R T P \\
\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right)
\end{array} \\
& \text { HS }=\left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n} \\
& =(\sin \theta+i \cos \theta)^{n} \\
& =\left(\cos \left(\frac{\pi}{2}-\theta\right)+i \sin \left(\frac{\pi}{2}-\theta\right)\right)^{2} \\
& =\cos \left[n\left(\frac{\pi}{2}-\theta\right)\right]+i \sin \left[n\left(\frac{\pi}{2}-\theta\right)\right] \\
& \text { by } D_{e} \text { Moire's Then } \\
& =\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right) \\
& =\text { RHo } \\
& \therefore \text { proved } \\
& \text { Page of }
\end{aligned}
$$

Solutions for exams and assessment tasks
Calendar Year

Academic Year		Calendar Year	
Course		Name of task/exam	

QI
a $p(x)=16 x^{3}-4 x^{2}-8 x+p=0$
Let roots be α, α, β
sum roots 1 at tine

$$
\begin{aligned}
2 \alpha+\beta & =\frac{4}{16} \\
\beta & =\frac{1}{4}-2 \alpha
\end{aligned}
$$

Also $\quad P(\alpha)=0$
$P^{\prime}(\alpha)=0$ since double root.

$$
\therefore p^{\prime}(x)=48 x^{2}-8 x-8
$$

$$
p^{\prime}(\alpha)=0
$$

$$
48 \alpha^{2}-8 \alpha-8=0
$$

$$
6 \alpha^{2}-\alpha-1=0
$$

$$
(3 \alpha+1)(2 \alpha-1)=0
$$

$$
\left.\left.\begin{array}{l}
\alpha=-\frac{1}{3} \\
\beta=\frac{11}{12}
\end{array}\right\} \begin{array}{c}
\alpha=\frac{1}{2} \\
\beta=-\frac{3}{4}
\end{array}\right\}
$$

\therefore roots $-\frac{1}{3},-\frac{1}{3}, \frac{11}{12}$
and $\frac{1}{2}, \frac{1}{2},-\frac{3}{4}$
b) Prove by m.I. for $n \geq 5$

$$
2^{n}>n^{2}
$$

Step 1 : Prove true for $n=5$

$$
\begin{array}{rlrl}
\text { LH } & =2^{5} & R H S & =5^{2} \\
& =32 & & =25
\end{array}
$$

$$
\text { LH }>\text { RHS }
$$

\therefore true for $n=5$
Step 2 : Assume true for $n=k$

$$
\therefore 2^{k} \geq k^{2}
$$

Ste y 3: Prove true for $n=k_{+1}$ ie. prove

$$
\begin{aligned}
2^{k+1} & >(k+1)^{2} \\
2^{k+1} & =2^{k} \cdot 2 \\
& >k^{2} \cdot 2 \quad \text { by assumption } \\
& >2 k^{2}
\end{aligned}
$$

now $2 k^{2}$ at $k=5$ gives 50.
$(k+1)^{2}$ at $k=5$ gives 36
clearly $2 k^{2}>(k+1)^{2}$
for all values of $k \geqslant 5$

$$
\begin{aligned}
& \therefore 2^{k+1}>2 k^{2}>(k+1)^{2} \\
& \therefore 2^{k+1}>(k+1)^{2}
\end{aligned}
$$

\therefore proved by M.I. for all values of $n \geqslant 5$.

Page of

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

14 b another method:

Step 3: Prove true for $n=k+1$ i.e. prove $2^{k+1}>(k+1)^{2}$

If we can prove $2^{k+1}-(k+1)^{2}>0$ then we have proved $2^{k+1}>(k+1)^{2}$.

$$
\begin{align*}
\text { LHS } & =2^{k+1}-(k+1)^{2} \\
& =2^{k} \times 2-\left(k^{2}+2 k+1\right) \\
& >2 k^{2}-\left(k^{2}+2 k+1\right)
\end{align*}
$$

$=k^{2}-2 k-1$

$$
=(k-1)^{2}-2
$$

$$
>0 \quad \text { if } k>3
$$

Since we have $k \geqslant 5$, this must also be true

$$
\begin{aligned}
& \therefore 2^{k+1}-(k+1)^{2}>0 \\
& \therefore 2^{k+1}>(k+1)^{2}
\end{aligned}
$$

\therefore proved by M.I.
for all values of $n \geqslant 5$
c

$x=25 t \cos \theta$

$$
y=-\frac{1}{2} g t^{2}+25 t \sin \theta
$$

i we know $\tan \theta=\frac{3}{4}$

$$
\begin{aligned}
& x=25 t\left(\frac{4}{5}\right) \\
& x=20 t \\
& x=-\frac{1}{2}(10) t^{2}+25 t\left(\frac{3}{5}\right) \\
& y=-5 t^{2}+15 t
\end{aligned}
$$

ii α when $x=40$

$$
\begin{aligned}
40 & =20 t \\
t & =2 . \\
\therefore y & =-5(2)^{2}+15(2) \\
& =-20+30 \\
& =10
\end{aligned}
$$

$\therefore 10$ metres high.

if $x=20 t$
$\dot{x}=20$
if $\quad y=15 t-5 t^{2}$
$\dot{y}=15-10 t$
$a+t=2$

$$
\dot{y}=15-20
$$

$$
\dot{y}=-5
$$

$$
\therefore V=\sqrt{\dot{x}^{2}+\dot{y}^{2}}
$$

$$
=\sqrt{20^{2}+(-5)^{2}}
$$

$$
V=\sqrt{425} \mathrm{~m} / \mathrm{s}
$$

iii

$$
\begin{aligned}
& \text { L }
\end{aligned}
$$

$$
\begin{aligned}
& \alpha \quad F=m a \\
& m a=m g-0.01 m v^{2} \\
& a=9-0.01 v^{2} \\
& a=10-0.01 v^{2}
\end{aligned}
$$

$\beta \quad v \frac{d v}{d x}=10-0.01 v^{2}$

$$
\frac{d v}{d x}=\frac{10-0.01 v^{2}}{v}
$$

$$
\frac{d x}{d v}=\frac{v}{10-0.01 v^{2}}
$$

$$
\int_{0}^{10} d x=\int_{0}^{V} \frac{v}{10-0.01 x^{2}} d V
$$

$$
[x]_{0}^{10}=\frac{1}{-0.02} \int_{0}^{W} \frac{-0.02 v}{10-0.01 v^{2}}
$$

$$
10=-\frac{1}{0.02}\left[\ln \mid 10-0.01 v^{2}\right]
$$

$$
-0.2=\ln \left|10-0.01 \mathrm{~V}^{2}\right|
$$

$$
-\ln |10-0|
$$

$$
-0.2=\ln \left|\frac{10-0.01 \mathrm{~V}^{2}}{10}\right|
$$

$$
e^{-0.2}=\frac{10-0.01 \mathbb{N}^{2}}{10}
$$

$10 e^{-0.2}$

$$
=10-0.01 \mathbb{V}^{2}
$$

$$
0.01 \mathbb{W}^{2}=10-10 e^{-0.2}
$$

$$
\mathbb{V}=13.46 \mathrm{~m} / \mathrm{s} .
$$

Academic Year		Calendar Year	
Course		Name of task/exam	

15a)
Method 1

Cross-scetron

$$
\begin{aligned}
A & =\frac{1}{2} y \cdot \frac{y}{\sqrt{3}} \\
& =\frac{y^{2}}{2 \sqrt{3}}
\end{aligned}
$$

$V=\int_{-4}^{4} \frac{y^{2}}{2 \sqrt{3}} d x$
(Note thickness
is on x-axis)
$=\frac{1}{2 \sqrt{3}} \int_{-4}^{4} y^{2} d x$

$$
\begin{aligned}
x^{2}+y^{2} & =16 \\
y^{2} & =16-x^{2}
\end{aligned}
$$

$=\frac{1}{2 \sqrt{3}} \int_{-4}^{4}\left(16-x^{2}\right) d x$
$=\frac{2}{2 \sqrt{3}} \int_{0}^{4}\left(16-x^{2}\right) d x$
$=\frac{1}{\sqrt{3}}\left[16 x-\frac{x^{3}}{3}\right]_{0}^{4}$
$=\frac{1}{\sqrt{3}}\left[64-\frac{64}{3}\right]_{0}$
$=\frac{128}{3 \sqrt{3}}$
$=\frac{128 \sqrt{3}}{9} n^{3}$

Method 2

cross-sectroi

$\begin{aligned} V & =\int_{0}^{4} \frac{2}{\sqrt{3}} x y d y \\ & =\frac{2}{\sqrt{3}} \int_{0}^{4} x y d y\end{aligned}$
(Note thickness on
y-axis)
$=\frac{2}{\sqrt{3}} \int_{0}^{4}\left(16-y^{2}\right)^{1 / 2} \cdot y d y$
Note: $\quad \frac{d}{d x}\left(16-y^{2}\right)^{3 / 2}=\frac{3}{2}\left(16-y^{2}\right)^{1 / 2} \cdot-2 y$

$$
=-3\left(16-y^{2}\right)^{1 / 2}
$$

$=\frac{-2}{3 \sqrt{3}}\left[\left(16-y^{2}\right)^{3 / 2}\right]_{0}^{4}$
$=\frac{-2}{3 \sqrt{3}}\left[0-(16)^{3 / 2}\right]$
$=\frac{-2}{3 \sqrt{3}}(-64)$
$=\frac{128}{3 \sqrt{3}}$
$=\frac{128 \sqrt{3}}{9} u^{2}$
Page

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

b

1 Since m is the midpoint of $x y$ and P is the midpoint of $X Z$, then $M P \| Y Q$ since the ratio of intercepts are equal.
Similarly, M is the midpoint of $x y$ and Q is the midpoint of $y z$, then $x y \| P Q$ since the ratio of intercepts are equal.
$\therefore M P Q Y$ is a parallelogram.
iii Since $M P Q N$ is a cyclic quadrilateral, $\angle M N Y=\angle M P Q$ (exterior angle in a cylic quadialateral equals the interior opposite angle.)

$$
\therefore \angle M N Y=\angle M P_{Q}
$$

iii since mPQY is a parallelogram

$$
\begin{array}{ll}
\angle Y N M=\angle N M P & \begin{array}{l}
\text { (alternate } \\
\text { equal mp les }
\end{array} \\
\text { Let } \angle Q Y \text {) }
\end{array}
$$

$$
\therefore<N M P=x
$$

since $\quad \angle M N Y=\angle M P Q$ (proved in ii)

Hen $<m P Q=x$.
Also $<m y N=x$ (opposite angles in parallelogram. are equal).

$$
\langle\times M N=2 x
$$

(exterior angle of triangle equals sum of 2 interior opposite angles).
and since $<P M N=X$
then $<x \mathrm{mp}=x$ also.
$\therefore \triangle \times M N$ is isosceles $\left.\begin{array}{rl}M Y & =M X \\ \text { and } M N & =M N\end{array}\right)$

$$
\begin{aligned}
\therefore \angle M N X & =\frac{180-2 x}{2} \quad(\begin{array}{c}
\text { angle } \\
\text { of }
\end{array} \overbrace{x M N}) \\
& =90-x
\end{aligned}
$$

$$
\therefore<Y N X=\angle Y N M+\angle M N X
$$ (adjacent aug lp)

$$
\begin{aligned}
& =x+90-x \\
& =90
\end{aligned}
$$

$$
\therefore \times N \perp \mathcal{L Y}
$$

Page of

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

$c \quad i \quad x=R \cos \frac{2 \pi t}{T}$

$$
\begin{aligned}
\dot{x} & =-R \sin \frac{2 \pi t}{T} \times \frac{2 \pi}{T} \\
& =-\frac{R 2 \pi}{T} \sin \frac{2 \pi t}{T} \\
\ddot{x} & =-\frac{2 \pi R}{T} \cos \frac{2 \pi t}{T} \cdot \frac{2 \pi}{T} \\
& =-\frac{4 \pi^{2} R}{T^{2}} \cos \frac{2 \pi t}{T} \\
& =-\frac{4 \pi^{2}}{T^{2}}\left(R \cos \frac{2 \pi t}{T}\right)
\end{aligned}
$$

$$
\because \ddot{x}=\frac{-4 \pi^{2}}{T_{2}} x
$$

$$
y=R \sin \frac{2 \pi t}{T}
$$

$$
\dot{y}=R \cos \frac{2 \pi t}{T} * \frac{2 \pi}{T}
$$

$$
=\frac{2 \pi}{T} R \cos \frac{2 \pi t}{T}
$$

$$
\ddot{y}=\frac{2 \pi}{T} R\left(-\sin \frac{2 \pi t}{T}\right)\left(\frac{2 \pi}{T}\right)
$$

$$
=-\frac{4 \pi^{2}}{T^{2}}\left(R \sin \frac{2 \pi t}{T}\right)
$$

$$
\because \ddot{y}=-\frac{4 \pi^{2}}{T^{2}} y
$$

ii accel $=\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}$

$$
\begin{aligned}
& =\sqrt{\left(-\frac{4 \pi^{2}}{T^{2}}\right)^{2} x^{2}+\left(\frac{-4 \pi^{2}}{T^{2}}\right)^{2} y^{2}} \\
& =\sqrt{\frac{16 \pi^{4}}{T^{4}} x^{2}+\frac{16 \pi^{4}}{T^{4}} y^{2}}
\end{aligned}
$$

$$
\text { accel }=\sqrt{\frac{16 \pi^{4}}{T^{4}}\left(x^{2}+y^{2}\right)}
$$

as $x^{2}+y^{2}=R^{2} \quad(P$ is on circle).

$$
\begin{aligned}
\therefore \text { accel } & =\sqrt{\frac{16 \pi^{4}}{T^{4}} R^{2}} \\
& =\frac{4 \pi^{2}}{T^{2}} R \\
& =\frac{4 \pi^{2}}{T^{2}} R
\end{aligned}
$$

as the accel is towards the centre of the circle

$$
\text { accel }=\frac{-4 \pi^{2} R}{T^{2}}
$$

iii) Force exerted by star on planet is the same as the force exerted by the planet on the star.

$$
\therefore \text { Force }=M^{m}\left(\frac{4 \pi^{2} R}{T^{2}}\right)
$$

iv, $F=\frac{G M_{m}}{R^{2}}$

$$
\begin{aligned}
& m\left(\frac{4 \pi^{2} R}{T^{2}}\right)=\frac{G M}{R^{2}} \\
& 4 \pi^{2} R=T^{2} \frac{G M}{R^{2}}
\end{aligned}
$$

Page of

PLC Sydney Maths Department
Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
T^{2}=\frac{4 \pi^{2} R^{3}}{G m}
$$

$$
\therefore T=2 \pi R \sqrt{\frac{R}{G M}}
$$

d
with respect to x :
means are so width needs to be measured $\mathrm{mi} x$ so need to use oymondioal shells.

$$
\begin{aligned}
& A=4 \pi x y \\
& V=4 \pi \int_{b-a}^{b+a} x y d x
\end{aligned}
$$

$$
=(x-b)^{2}+y^{2}=a^{2} .
$$

$$
\begin{aligned}
& y^{2}=a^{2}-(x-b)^{2} \\
& y=\sqrt{a^{2}-(x-b)^{2}}
\end{aligned}
$$

$$
\therefore V=4 \pi \int_{b-a}^{b+a} x \cdot \sqrt{a^{2}-(x-b)^{2}} d x .
$$

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
\begin{aligned}
& 16 a \text { (i) } r / 2 \\
& \int_{0}^{(i)^{2}}\left(4-x^{2}\right)^{\frac{5}{2}} d x \\
& x=2 \cos \theta \\
& d x=-2 \sin \theta d \theta \\
& x=0 \quad x=2 \\
& \theta=\frac{\pi}{2} \quad \theta=0 \\
& =\int_{\pi}^{0}-\left(4-4 \cos ^{2} \theta\right)^{s / 2} \cdot 2 \sin \theta d \theta \\
& \begin{array}{l}
=\int_{0}^{\pi / 2}\left(4 \sin ^{2} \theta\right)^{\frac{5}{2}} \cdot 2 \sin \theta \\
=4.2 \int_{0}^{\pi / 2} \sin ^{5} \theta \cdot \sin \theta d \theta
\end{array} \\
& =2.2 \int_{\pi / 2}^{\pi / 2} \sin ^{6} \theta d \theta \\
& =2^{6} \int_{0}^{\pi / 2} \sin ^{6} \theta d \theta . \\
& \begin{aligned}
\int_{0}^{\pi / 2} \sin ^{6} \theta d \theta & =I_{6} \\
& =\frac{5}{6} I_{4}
\end{aligned} \\
& =\frac{5}{6} \cdot \frac{3}{4} \cdot I_{1} \\
& =\frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} I_{0} \\
& =\frac{5}{16} \cdot \int^{\pi / 2} 1 d \theta \\
& =\frac{5}{16}[\theta]_{0}^{0 / 2} \\
& =\frac{5}{16} \frac{\pi}{2} \\
& \begin{array}{l}
\frac{\pi}{2} \\
=64 \cdot \frac{\text { Page }_{1}}{16} \cdot \frac{\pi}{2} \text { of } \\
=10 \pi
\end{array} \\
& \text { of }
\end{aligned}
$$

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

bi

since $x^{2}+y^{2}=a^{2}$

$$
\begin{aligned}
\text { radius } & =a \\
\therefore O T & =a \\
\cos \theta & =\frac{a}{O M} \\
O M & =\frac{a}{\cos \theta} \\
& =a \sec \theta
\end{aligned}
$$

\therefore coordinates of M are

$$
(a \sec \theta, 0)
$$

ii P has the same x value a) M
$\therefore x$ value is $a \sec \theta$.
The y-value lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\begin{gathered}
\therefore \frac{(a \sec \theta)^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
\frac{a^{2} \sec ^{2} \theta}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \\
\sec ^{2} \theta-1=\frac{y^{2}}{b^{2}} \\
\tan ^{2} \theta=\frac{y^{2}}{b^{2}} \\
y^{2}=b^{2} \tan ^{2} \theta
\end{gathered}
$$

$y=b \tan$ in first quad.

Solutions for exams and assessment tasks

Academic Year		Calendar Year	
Course		Name of task/exam	

$$
\begin{aligned}
y & =\frac{b}{a}(\sin \theta+\cos \theta) x-\frac{b}{a}(\sin \theta+\cos \theta) a \operatorname{sen} \theta+b \tan \theta \\
& =\frac{b}{a}(\cos \theta+\sin \theta) x-\frac{b}{a}(\sin \theta+\cos \theta) \frac{a}{\cos \theta}+\frac{b \sin \theta}{\cos \theta} \\
& =\frac{b}{a}(\cos \theta+\sin \theta) x-\frac{b}{a}\left(\frac{a \sin \theta}{\cos \theta}-\frac{b}{a} \frac{\cos \theta a}{\cos \theta}+\frac{b \sin \theta}{\cos \theta}\right. \\
& =\frac{b}{a}(\cos \theta+\sin \theta) x-\frac{b \sin \theta}{\cos \theta}-\frac{b}{a} a+\frac{b \sin \theta}{\cos \theta} \\
\therefore y & =\frac{b}{a}(\cos \theta+\sin \theta) x-b
\end{aligned}
$$

iv Every chord has an equation $y=m x+b$; and every chord must pass through the y-intercept of b
\therefore He fixed
$y= \pm \frac{b}{a} x$
v_{1} as $\theta \rightarrow \pi / 2$

$$
\begin{aligned}
& y \rightarrow \frac{b}{a}(0+1) x-b \\
& \therefore y=\frac{b}{a} x-b
\end{aligned}
$$

which is parallel to the asymptote $y=\frac{b}{a} x$ since
$m_{1}=m_{2}$ for parallel lies.
$\therefore P Q$ approaches a line parallel to an asymptote.

