Pynde ladies 2005 Ext. 2 trial Question 1 (15 marks) Use a separate writing booklet

MARKS

(a) Find
$$\int \tan 2x \sec 2x \ dx$$
.

(b) Find
$$\int \frac{1}{x} \sec^2 (\ln x) dx$$
.

(c) Find
$$\int \frac{4x-x^2}{(x+1)(x^2+4)} dx.$$

(d) Find
$$\int \cos 5x \sin 2x \ dx$$
.

(e) Evaluate
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{1-\sin x} dx$$
 using the substitution $t = \tan x$.

(f) Find
$$\int_{0}^{\frac{\pi}{2}} x \sin x \cos x \, dx.$$

(g) Using the result
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
, show that

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx = \frac{\pi}{4}.$$

Question 2 (14 marks) Use a separate writing booklet

MARKS

(a) Use the graph of $y = \ln x$ to sketch the graphs of:

(i)
$$y = ln(-x)$$

(ii)
$$y = -ln x$$

(iii)
$$y = |ln x|$$

(b) Use the graphs of
$$y = x$$
 and $y = e^{-x}$ to sketch the graph of $y = xe^{-x}$.

(c) Use the graph of
$$y = x^2 - 1$$
 to sketch the graph of $y = (x^2 - 1)^2$.

(d) For the function
$$f(x) = 3x - \frac{x^3}{4}$$
, use the graph of $y = f(x)$ to sketch the graph of $y^2 = f(x)$.

(e) Use the graphs of $y = 2^u$ and $u = \cos x$ $(0 \le x \le 2\pi)$ to sketch the graph of $y = 2^{\cos x}$ $(0 \le x \le 2\pi)$.

(f) Sketch the graph of $y = \sin 2x$ for $0 \le x \le 2\pi$. Use this graph to solve the inequality $|\sin 2x| \ge \frac{1}{2}$, for $0 \le x \le 2\pi$.

Question 3 (15 marks) Use a separate writing booklet

MARKS (a) Solve for z where $z \in \mathbb{C}$ 2 $z^2 + 2iz + 2 = 0$. (b) Form a quadratic equation whose roots are 4i and 3+i. 2 If w = 1 + 2i and z = 2 - 3i, express in the form a + ib. (c) (i) 1 w+z2 (ii) $w\overline{z}$ 2 (iii) Express $\sqrt{3} - i$ in the form $r(\cos \theta + i \sin \theta)$ and plot on the (d) 3

Argand diagram showing θ , r and the Cartesian coordinates.

(e) By expanding $(\cos \theta + i \sin \theta)^4$, find expressions for $\cos 4\theta$ and $\sin 4\theta$ in terms of powers of $\cos \theta$ and $\sin \theta$. Hence deduce an expression for $\tan 4\theta$ in terms of powers of $\tan \theta$.

Question 4 (15 marks) Use a separate writing booklet

MARKS

- (a) For the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ find:
 - (i) the eccentricity; 1
 - (ii) the coordinates of the foci;
 - (iii) the equations of the directrices.
 - (iv) Sketch the ellipse showing essential features. 1
- (b) Find the equation of the tangent to the hyperbola $\frac{x^2}{12} \frac{y^2}{27} = 1$ at the point (4, 3).
- (c) A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.

The line through P perpendicular to the x-axis meets an asymptote at Q and the normal at P meets the x-axis at N. Show that QN is perpendicular to the asymptote.

(d) The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$.

The normal at P meets the hyperbola again at Q. M is the midpoint of PQ. Find the equation of the locus of M.

Question 5 (15 marks) Use a separate writing booklet

(a) Find P(x), given that P(x) is monic, of degree 3, with 5 as a single zero and -2 as a zero of multiplicity 2.

MARKS

(b) Find the remainder when $P(x) = x^3 + 2x^2 + 1$ is divided by x + i.

(c) If $P(x) = x^4 - 2x^3 - x^2 + 6x - 6$ has a zero 1 - i, find the zeros of P(x) over \mathbb{C} , and factorise P(x) fully over \mathbb{R} .

(d) Solve the equation $18x^3 + 27x^2 + x - 4 = 0$, given the roots are in arithmetic progression.

(e) The equation $x^3 + x^2 - 2x - 3 = 0$ has roots α , β and γ . Find the equations with roots:

(i)
$$\frac{\alpha}{2}$$
, $\frac{\beta}{2}$, $\frac{\gamma}{2}$;

(ii)
$$\alpha + 2$$
, $\beta + 2$ and $\gamma + 2$.

(f) The equation $x^3 + x^2 + 2 = 0$ has roots α , β and γ . Evaluate:

(i)
$$\alpha^3 + \beta^3 + \gamma^3$$

(ii)
$$\alpha^4 + \beta^4 + \gamma^4$$

Question 6 (15 marks) Use a separate writing booklet

MARKS

(a) If
$$I_n = \int_0^{\frac{\pi}{2}} x^n \cos x \, dx$$
 for $n \ge 0$, show that $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$ for $n \ge 2$. Hence evaluate I_6 .

(b) By taking slices perpendicular to the axis of rotation, use the method of slicing to find the volume of the solid obtained by rotating the region, determined by $0 \le x \le 2$ and $0 \le y \le x^3$, about the line y = 8.

- (c) (i) Let R be the region in the plane for which $0 \le x \le \frac{\pi}{2}$ and $0 \le y \le \sin x$. Sketch R.
 - (ii) A solid is formed by rotating the region R about the y-axis.

 Use the method of cylindrical shells to find the volume of the solid.

Question 7 (15 marks) Use a separate writing booklet

MARKS

7

(a) The rise and fall of the tide at Bedrock Harbour may be taken as simple harmonic, the interval between successive high tides being 12½ hours. The harbour entrance has a depth of 15m at high tide and 7m at low tide.

If low tide occurs at 11am on a certain day, find the earliest time thereafter that a ship requiring a minimum depth of 13m of water can pass through the entrance.

(b) Use Mathematical Induction to prove DeMoivre's Theorem ie. $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \text{ for all positive integer values of } n.$

(c) Let
$$f(x) = \begin{pmatrix} \frac{\sin x}{x} & \text{for } 0 < x < \frac{\pi}{2} \\ 1 & \text{for } x = 0 \end{pmatrix}$$

- (i) Find the derivative of f(x) for $0 < x < \frac{\pi}{2}$ and prove that f'(x) is negative in this interval.
- (ii) Sketch the graph of y = f(x) for $0 < x < \frac{\pi}{2}$ and deduce that $\sin x > \frac{2x}{\pi}$ in this interval.

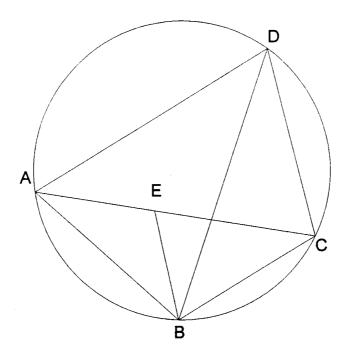
Question 8 (15 marks)

Use a separate writing booklet

MARKS

2

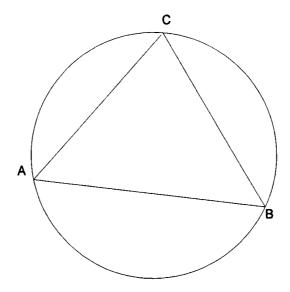
(a)



In the diagram ABCD is a cyclic quadrilateral. E is a point on AC such that $\angle ABE = \angle DBC$.

- (i) Show that $\triangle ABE \parallel | \triangle DBC$ and $\triangle ABD \parallel | \triangle EBC$.
- (ii) Hence show that AB.DC + AD.BC = AC.DB 2

(iii)



In the diagram ABC is an equilateral triangle inscribed in a circle. P is a point on the minor arc AB of the circle. Use the result in part (ii) to show that PC = PA + PB.

Question 8 (continued)

MARKS

- (b) (i) Prove that $a^2 + b^2 \ge 2ab$ where a, b are any two real numbers.
 - (ii) If a, b and c are three real, positive numbers all less than 1, such that a + b + c > abc, prove that $a^2 + b^2 + c^2 > abc$.
- (c) When a particle is projected vertically upwards from the moon's surface, its distance x from the centre of the moon is given by

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -f\frac{R^2}{x^2}$$

where ν is the upward speed, R is the radius of the moon and f is the acceleration due to gravity at the moon's surface and any possible atmospheric resistance is neglected. If ν_0 is the speed of projection, show that:

(i)
$$v^2 = \frac{2f R^2}{x} + v_0^2 - 2f R$$
;

- (ii) the maximum height H, above the moon's surface, to which the particle will ascend is given by $H = \frac{R v_0^2}{2f R v_0^2}.$
- (iii) Taking $R \approx 1800 \text{ km}$, $f \approx 1.6 \text{ ms}^{-2}$, estimate the escape velocity of the particle from the moon in kms^{-1} .