
Mrs	Collett
Ms I	Lau

N:	ame	:	•••••	• • • • • • •	•••••	 	•••••
eac	her:						

2011TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt Questions 1–8
- All questions are of equal value

Mark	/120
Rank	/18
Highest Mark	/120

Blank Page

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Ques	tion 1	(15 marks) Use a	SEPARATE writing	booklet	Marks
(a)	If z	$=3+2i$ and $\omega=1+i$,	find in the form $a+ib$	where a and b are real	
	(i)	$2z-i\omega$.			1
	(ii)	$z\overline{w}$.			1
	(iii)	$\frac{3}{\omega}$.			. 1
(b)		e Argand diagram, ske $-3i \ge z+i $.	tch the locus of z des	cribed by the inequality	2
(c)	Let a	$c = -\sqrt{3} + i.$			
	(i)	Express α in modulu	s-argument form.		. 2
	(ii)	Show that α is a root	of the equation $z^6 + 6$	54 = 0.	1
	(iii)	Hence, find a real qu	adratic factor of the po	olynomial $P(z) = z^6 + 64$. 2

Question 1 continues on page 3

Question 1 (continued)

Marks

(d) The diagram shows a complex plane with origin O.

Points P and Q represent non-zero complex numbers z and w respectively.

(i) Write down the length of PQ in terms of z and w.

1

(ii) Copy the diagram into your booklet. Construct point R that represents z+w.

2

What type of quadrilateral is OPQR?

(iii) Prove that if |z+w| = |z-w|, the complex number $\frac{w}{z}$ is imaginary.

2

End of Question 1

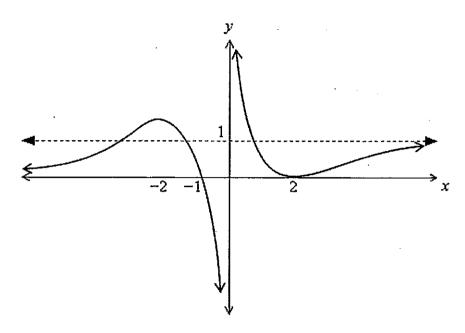
(a) (i) Find the value of a and b such that

$$\frac{1}{(x-1)(2x+3)} = \frac{a}{x-1} + \frac{b}{2x+3}.$$

(ii) Hence find
$$\int \frac{dx}{(x-1)(2x+3)}$$
.

(b) Use the substitution $t = \tan x$ to find $\int \csc 2x \ dx$.

(c) Evaluate
$$\int_{-\frac{1}{2}}^{0} \frac{dx}{2+4x+4x^2}$$
.


(d) Evaluate $\int x(3^x) dx$.

(e) Use the substitution
$$x = u^6$$
 to find $\int \frac{dx}{x^{\frac{1}{2}} - x^{\frac{1}{3}}}$.

3

End of Question 2

(a) The diagram below is a sketch of the function y = f(x). The lines x = 0, y = 0 and y = 1 are asymptotes.

Using the answer sheets provided, sketch each of the graphs below.

In each case, clearly label any maxima or minima, intercepts and the equations of any asymptotes.

(i)
$$y = f(|x|)$$
.

(ii)
$$y = \frac{1}{f(x)}.$$

(iii)
$$y^2 = f(x)$$
.

(iv)
$$y = [f(x)]^2$$
.

(v)
$$y = \sin^{-1}[f(x)].$$
 2

Question 3 continues on page 6

Question 3 (continued)

Marks

- (b) Consider the curve $y = \frac{x^3 + 4}{x^2}$.
 - (i) Find the coordinates of the stationary point and show that this curve is always concave up.

2

(ii) Find the equations of any asymptotes.

1

(iii) Sketch the curve.

2

(iv) Find the values of k for which the equation $x^3 - kx^2 + 4 = 0$ has 3 distinct real roots.

1

End of Question 3

Question 4 (15 marks)

Use a SEPARATE writing booklet

Marks

- (a) Given that (x+1) is a factor of the polynomial $P(x) = x^3 + 2x^2 + 2x + 1$, factorise P(x) over the field of complex numbers.
- (b) The polynomial equation $x^3 3x^2 + 5x 1 = 0$ has roots α, β and γ .
 - (i) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

2

(ii) Hence explain why only one root of the equation is real.

1

3

- (c) ω and ω^2 are the two complex cube roots of unity. If ω and ω^2 are also the roots of the equation $x^3 + px^2 + qx + r = 0$, show that p = q.
- (d) Given $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ and using the substitution $x = \cos \theta$,
 - (i) Solve $8x^3 6x + 1 = 0$.

2

(ii) Hence prove that $\sec \frac{2\pi}{9} + \sec \frac{4\pi}{9} + \sec \frac{8\pi}{9} = 6$.

2

(e) Let the roots of $x^3 - x - 1 = 0$ be α, β and γ .

3

Find the polynomial whose roots are $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$ and $\frac{1+\gamma}{1-\gamma}$.

Question 5 (15 marks)

Use a SEPARATE writing booklet

Marks

- (a) Consider the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$
 - (i) Find the coordinates of the foci and the equations of the directrices of the ellipse.
 - (ii) Sketch the ellipse, showing all key features, including intercepts. 2
- (b) $P\left(2p,\frac{2}{p}\right)$ and $Q\left(2q,\frac{2}{q}\right)$ are points on the rectangular hyperbola xy=4. P and Q move on the hyperbola so that PQ always passes through (6,4).

(i) Show that
$$pq = \frac{p+q-3}{2}$$
.

- (ii) If M is the midpoint of PQ, find the equation of the locus of M.
- (c) The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) at $P(a\cos\theta, b\sin\theta)$ passes through a focus of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with eccentricity e.
 - (i) Show that the tangent to the ellipse at P has equation $bx \cos \theta + ay \sin \theta = ab$.
 - (ii) Show that P lies on the directrix of the hyperbola.
 - (iii) Find the possible values of the gradient of the tangent at P.

3

(a) On the Argand diagram P(z) is a point in the first quadrant of the circle |z|=3. If $arg(z)=\theta$, find in terms of θ , expressions for:

(i) $\arg z^4$

(ii) arg(z-3).

A stone is projected from a point on the ground and it just clears a fence d metres away. The height of the fence is h metres.
 The angle of projection to the horizontal is θ and the speed of projection is ν m/s. The displacement equations, measured from the point of projection are

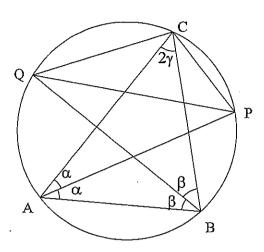
 $x = vt \cos \theta$ and $y = \frac{-1}{2}gt^2 + vt \sin \theta$.

- (i) Show that $v^2 = \frac{gd^2 \sec^2 \theta}{2(d \tan \theta h)}$.
- (ii) Show that the maximum height reached by the stone is 3

 $\frac{d^2 \tan^2 \theta}{4(d \tan \theta - h)}.$

(iii) Show that the stone will just clear the fence at its highest point if

 $\tan\theta = \frac{2h}{d}.$


(c) (i) If $I_n = \int_0^{\frac{1}{2}} \frac{x^n}{1 - x^2} dx$ for $n = 0, 1, 2, 3, \dots$ show that

 $I_{n-2} - I_n = \frac{1}{(n-1)2^{n-1}}$ for $n = 2, 3, 4, \dots$

(ii) Given that $\int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx = \frac{1}{2} \log_e 3$, find the exact value of

 $\int_0^{\frac{1}{2}} \frac{x^2}{1-x^2} \, dx \, .$

(a)

In the diagram above, AB is a **fixed** chord of a circle and C is a **variable** point on the major arc AB.

The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the circle again at P and Q respectively.

Let $\angle CAB = 2\alpha$, $\angle ABC = 2\beta$ and $\angle BCA = 2\gamma$.

(i) Show that
$$\angle PCQ = \alpha + \beta + 2\gamma$$
.

(iii) Use the sine rule to show that
$$\frac{AB}{PQ} = 2 \sin \gamma$$
.

(b) (i) Use DeMoivre's Theorem to show that when
$$n$$
 is a positive integer,
$$(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n\theta} \quad (\cos\theta \neq 0).$$

(ii) Hence show that for the equation
$$(1+z)^4 + (1-z)^4 = 0$$

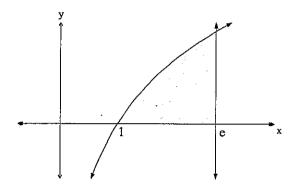
(where $\text{Re}(z) = 0$) the roots are $z = \pm i \tan \frac{\pi}{8}$ and $z = \pm i \tan \frac{3\pi}{8}$.

Question 7 continues on page 11

Question 7 (continued)

Marks

2


- (c) (i) Given that $\sin x \ge \frac{2x}{\pi}$ for $0 < x < \frac{\pi}{2}$, explain why $\int_0^{\frac{\pi}{2}} e^{-\sin x} dx < \int_0^{\frac{\pi}{2}} e^{\frac{-2x}{\pi}} dx.$
 - (ii) Show that $\int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} dx = \int_{0}^{\frac{\pi}{2}} e^{-\sin x} dx$.
 - (iii) Hence, show that $\int_0^{\pi} e^{-\sin x} dx < \frac{\pi}{e} (e-1)$.

End of Question 7

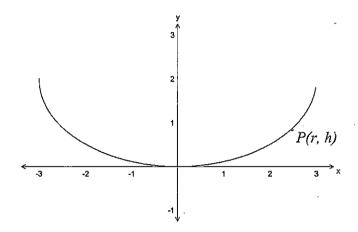
2

1

(a) The diagram below shows the area bounded by the curve $y = \log_e x$, the x-axis and the line x = e.

This area is rotated about the y-axis to form a solid. By considering slices perpendicular to the y-axis, find the volume of the solid of revolution formed.

(b) (i) Show that $\tan^{-1}\left(\frac{x}{x+1}\right) + \tan^{-1}\left(\frac{1}{2x+1}\right)$ is a constant for 2x+1>0.


(ii) Hence, find the exact value of the constant.

(c) (i) Prove that $\frac{\cos\theta - \cos(\theta + 2\alpha)}{2\sin\alpha} = \sin(\theta + \alpha).$ 2

(ii) Hence use mathematical induction to prove that $\sin \theta + \sin 3\theta + \sin 5\theta + \dots + \sin(2n-1)\theta = \frac{1-\cos 2n\theta}{2\sin \theta}.$

Question 8 continues on page 13

(d) The semi-ellipse given by $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$ where $0 \le y \le 2$ is shown below:

The point (r,h) lies on the ellipse where r > 0 and 0 < h < 2. The tangent at P makes an angle α with the positive direction of the x-axis.

(i) Show that
$$\tan \alpha = \frac{4r}{9(2-h)}$$
.

(ii) Hence, show that
$$\tan \alpha = \frac{2\sqrt{4 - (2 - h)^2}}{3(2 - h)}$$
.

(iii) Show that the acute angle between the normal at the point P and the vertical line x = r is equal to the angle between the tangent at P and the positive direction of the x-axis.

END OF PAPER

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

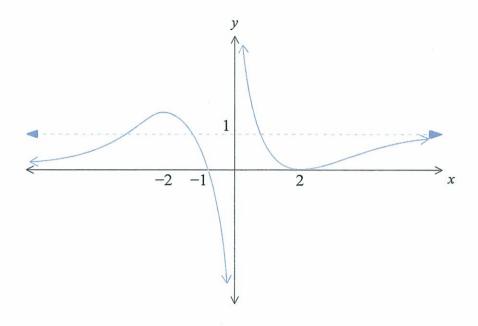
$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

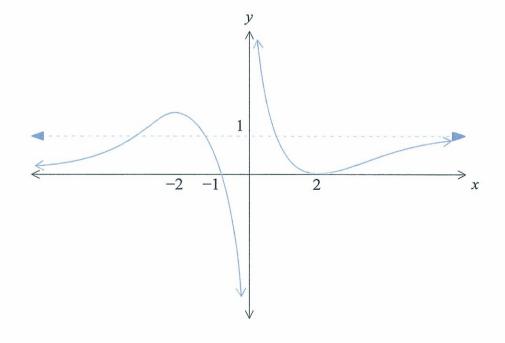
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

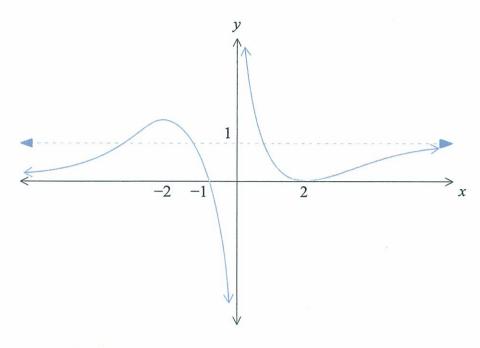

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

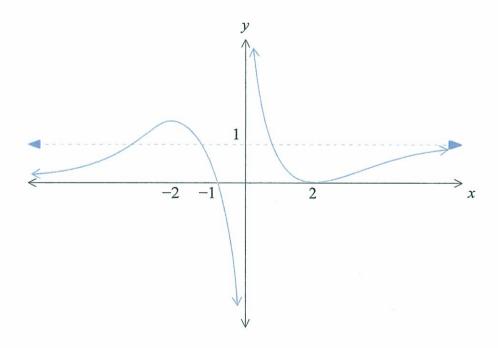
NOTE: $\ln x = \log_e x$, x > 0


(page 1)

Teacher:

(i)
$$y = f(|x|)$$

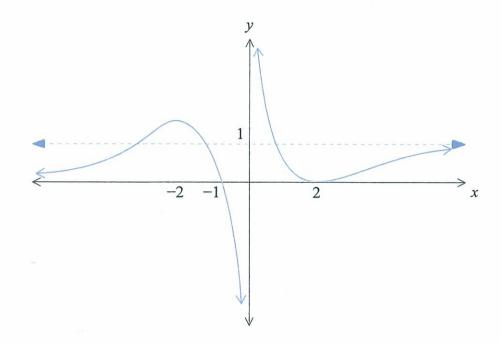

(ii)
$$y = \frac{1}{f(x)}$$


Name:

(page 2) Teacher:

(iii)
$$y^2 = f(x)$$

(iv)
$$y = [f(x)]^2$$

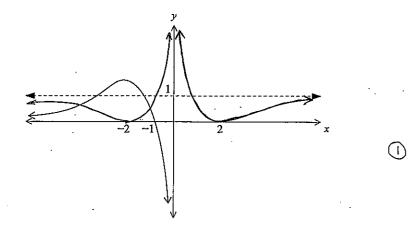

Answer Sheets For Question	3(a	1
-----------------------------------	-----	---

(page 3)

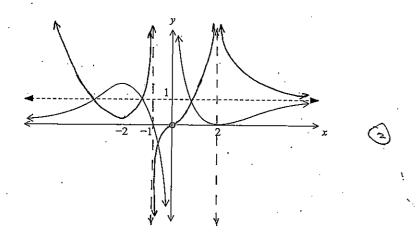
Name:		
-------	--	--

Teacher:

$$(v) y = \sin^{-1}[f(x)]$$

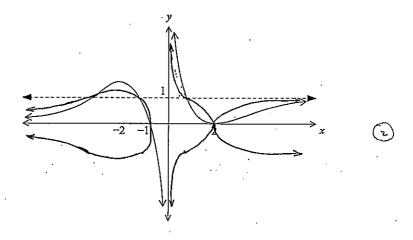

OVESTION 1 (a)(i) 22-iw (i) r= \(3+1 = 2 = 6+41 - (41) 2m-both and a correct = 6+41-1+1 lm - one of rore correct = 7+3; : K= 2 (cos SIF+ ISINSIT) om - both incorrect. (i) Zis = (3+2i)(1-i) = 3-3: +21.+2 Subst d in LHS (iii) 3 = 35 12 12 = 64 (CISST) + 64 (De Moivre) = 64x-1 +64 * 0 ... x is a root of Z6+64=0 Since & a root of 26+64=0 and 26+64 has real coefficients than a also a root. 12-2-301 > 12+21 : (x-x)(x-x) is a factor of 26+64 = (x2 - (K+X)x + xx) Mpg = (1, 1) = (x2-2Re(x) x + |x|2) mpa = 2 = x2 + 213x + 4 is real quadratic factor. .. perp visector (d) (i) fa = 14-21 2m - all correct including y-1= -1 (x-1) X, Z 24-2= -76+1 Im - used even factor (ie not "Heice") 2+24-3=0 2m - au correct incorrect exposion. み (次水)(光-次) Im - confect line, OPOR is parallelogiam. incorrect shading 12+121 = 12-27 diagonals equal) : opar is rectorate of and on population W= KiZ (K=const)

<u> </u>	<u>a) [(x.3x) ax</u>
$\frac{02}{\sin a(2x+3)+b(x-1)=1}$ $\frac{0}{\cos x} = 1, 5a = 1$	7.3 ^x (3 ^x
When X = 1 , 5a = 1	1,3 1,3 2
a ÷ 5	$\frac{1}{\sqrt{2}}$
	113
5 + (-b) = 1	$\frac{3^{n}}{\lambda_{n}3}\left(n\frac{1}{\lambda_{n}3}\right)+C$
b = 5	
$\sqrt{(x-1)(2x+2)}$	$\frac{e}{\sqrt{\chi^{\frac{1}{2}} - \chi^{\frac{1}{3}}}} = \frac{3}{\sqrt{3}} = \frac{6}{\sqrt{5}}$
$=\frac{1}{5}\int \left(\frac{1}{x-1} + \frac{2}{2x+3}\right) dx$	1 X = U
~ / \'\ ~ \	F = F = F = F = F = F = F = F = F = F =
= 古 ¾ ¼ -1 - ¼ 2 ¼ + 3 + C	$= \sqrt{u^3 - u^2} $
$=\frac{1}{5}\left(\frac{x-1}{2x+3}\right)+C$	$=6\int \frac{u^3}{u-1} du$
2 1 2 1 2 1 2	$\frac{\sqrt{u-1}}{\sqrt{1+u-1}}$
b) / (nser 2x dx - + - + x	$= 6 \int (u^{2} + u + 1 + \frac{1}{u - 1}) du$ $= 2 u^{3} + 3 u^{2} + 6 u + 6 0 \cdot 1 u - 1 + 6$
$\int \int dx dx dx$	$= 2u^{3} + 3u^{2} + 6u + 6l_{1}u - 1 + C$ $= 2x^{\frac{1}{2}} + 3x^{\frac{1}{3}} + 6x^{\frac{1}{6}} + 6l_{1}x^{\frac{1}{6}} - 1 + C$
$\int \sin 2x dx = (\tan^2 x + 1) dx$	
$= \int \frac{1+t^2}{dt} \cdot \frac{dt}{dt} = dx$	3
$= \int \frac{1+t^2}{2t} dt \qquad \frac{dt}{t^2+1} = dx$ $= \frac{1}{2} \ln t + C$	<u>y = 3</u>
= = \frac{1}{2} ln tan \chi + C 3	$-\frac{7}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = 1$
= - Z . Xn . 1 . 12n . 1 . T. ($\lambda = \frac{\log y}{\log x}$
co. Co dx	$\frac{dx}{dx}$
= 2+4x +4x2	dy = yln3
$=\int_{0}^{\infty}$	dy = 3x 0.3
1= (2×+1)2+10	d'X - 3 · x\ 3
= = = = (2x+1)]== 1	
= = (tan - 1 - tan - 0)	
= = = = = = = = = = = = = = = = = = = =	
· · ·	· · · · · · · · · · · · · · · · · · ·

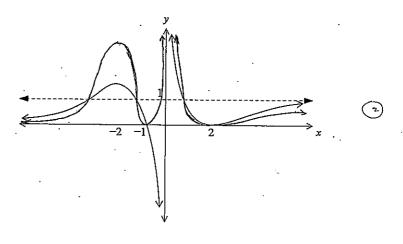

NAME:

ANSWER SHEET FOR QUESTION 2(a)

(ii) Given y = f(x), sketch y = f(|x|).

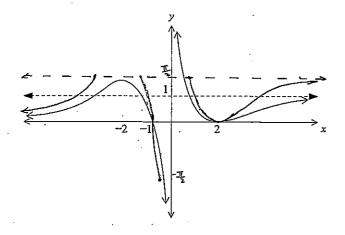


(ii) Given y = f(x), sketch $y = \frac{1}{f(x)}$.

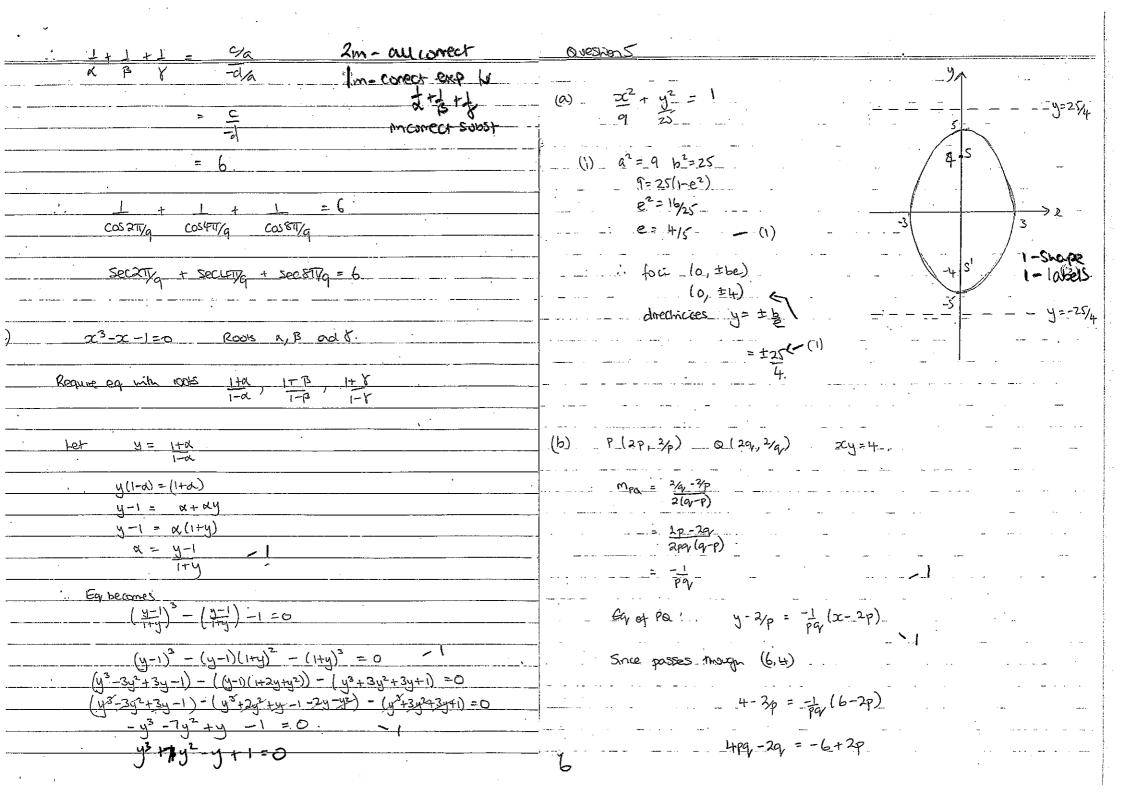


Continued over page ...

(iii) Given y = f(x), sketch $y^2 = f(x)$.



(iv) Given y = f(x), sketch $y = [f(x)]^2$.


NAME:	-	

(v) Given y = f(x), sketch $y = \sin^{-1} [f(x)]$.

b) $y = \frac{x^3 + 4}{}$		•
$= \frac{x + 4x}{}$	<u></u> 2	
is y'= 1-8 X-	\$	
$y' = 1 - \frac{1}{\sqrt{3}}$		· · · · · · · · · · · · · · · · · · ·
χ	= .8	
	= 2	
Station	$=\frac{3}{4}$ = 3	1
Stationary pt =		
Since X-4>	O for all values	of x, x≠0,
)soy" > O hence	curve is always	concave up. 3
ii) Hsymptote >	X = 0 and y +	X
		1 for realt asymptotic
		I for right asymptotic and thinking it I for shape and it
		whereof
3-4	0 2	X
	<u> </u>	
	- 4	, ,
· · · · · · · · · · · · · · · · · · ·	•	•
· · · · · · · · · · · · · · · · ·		
<i>L</i>		
	· ·	`
		•

Question 4.	19(nont) (12-12)(p-qx)=0 -1
	$-\omega^2 - \omega = 0$
$P(x) = x^3 + 2x^2 + 2x + 1$	ω(ω-1)=0 · or p-εγ =0
Some orth is a Lactor.	w=0 (not poss)
$P(x) = (x+1)(x^2 + x + 1) \qquad (by inspection)$	or $W=1$ (not pressing -1: $P=QV$.
	L2 camplox)
NOW 2005 OF 23+2x+1 . x= -1 ±1-4	
2	P=9/.
$3c = -\frac{1 \pm \sqrt{3}i}{3} = -\frac{1}{2} \pm \frac{\sqrt{3}i}{2}$	
: Plx) = (x+1)(x+1-1/2i)(x+1-1/2i) - 1	(d) cos30 = 4cos30 -3cos0
	$-1.(i)$ $1.(8x^3-6x+1=0)$
$x^3-3x^2+5x-1=0$ has roots of 18.8	Sub- x=coso,
	8 cos30 - 6(os0 +1=0
(i) x2+ B2+ x2 = (x+ B+x)2 - 2 (xB+Bx+ Bx)	2 (4003°0 -30050) = -1
$\frac{1}{2}(-\frac{1}{2})^2 - 2(\frac{1}{2})$	$\frac{2 + \cos^3 \theta - 3\cos \theta = -1}{2} = \frac{2 + A}{1 + C}$
	cos 30 = -1/2
$= 3^2 - 2(5)$	
= -1	.: 30 = +8T + 2m 30 = m+T, m+T
(ii) Since sum of squares of mots <0, at least	3
one must be complex	0 = +211 + 2011
Since coefficients roal, complex male excur in conjugate Prius.	9 3
Since paymonial degree 3, only 3 nots + 2 must be complex and therefore only one real roots.	3 unique solutions for coso ; cosatt cos 8tt cos 14tt
J	$\therefore \ \mathcal{X} = \cos 2\pi \cos 8\pi \cos 14\pi$
H 10 100t, W3+ pw2+ qw+[=0 (1)	
H W2 mu Wb + pw4 + gw2 + r = 0 (2)	= cos21, cos 47/9
	(1) Now of costum = costan = (2) = costum
Fom (), 1 + pw2 + qw+r=0	1) Now of costat = cos(at - 4) = cos 47
$\frac{m}{2} \left(\frac{1}{2} + pW + qW^2 + r = 0 \right)$	L'et mois be A, B, 8 to 1+1+1 = XB+BB+AAK
Subtracting $\omega^2(p-q) = \omega(p-q) = 0$	
Subtaching $\omega^2(p-q_1) = \omega(p-q_1) = 0$	5

. cont.	2pq - q = -3+ 2p.	3m- au correct 2m- correct goods live	alvestion 5 (cont)
	2pq = p+q-3	Im - Conectagina.	
		urred O.	(C) (i) $x^2 + y^2 = 1$ at Placose, bosne) $a^2 b^2$
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5c = acoso y = bsno
<u>(i)</u>	$M = \left(2\frac{p+2q}{2}, \frac{2+2}{2}\right)$		$\frac{dx}{d\theta} = \frac{dy}{d\theta} = \frac{dy}{d\theta}$
	= (Pta, ++1)		dy = -bcose
· -	- (Ptay Ptay)	<u></u>	Eq. of largest,
	and the second of the second o	· · · · · · · · · · · · · · · · ·	y-bsine = -bcose (x-accse)
<u>-</u>	:. 2 = p+q 2 y= p+q	<u> </u>	$aysine -absin^2e = -bxcose + abcos^2e$
	<u> </u>		aysine +bccose = ab (sin2e)
	: SUKET (D) IMD (B)	2m- all correct	aysnot bccose = ab. 11.
	· · · · · · · · · · · · · · · · · · ·	Im - if midpont	(ii) Sace logat passes through fous (ae,0) or (-ae,0)
	Subst 0 445	Substation	then ± abe coso = ab ignored
	$y = \frac{2C}{P+q-3}$	Subst-of	$\frac{e\cos\theta = \pm 1}{\cos\theta} = \frac{1}{2} = 0$
	سايد داده داده داده		and the control of th
	y 2 223	and the transfer of the transf	Now at P $T = a \cos \theta$ Sup $D = \pm \alpha \cdot \frac{1}{4}$
			$=\pm a$
			<u>e</u>
			there P hes en direct of hyperbola.
		, 500 mag	r_{1} r_{2} r_{3} r_{4} r_{2} r_{3} r_{4} r_{4} r_{5} r_{5}
	· · · · · · · · · · · · · · · · · · ·		(iii) At P, $b^2 = a^2(e^2 - 1)$ and $e\cos a = \pm 1$
_			
			- ad dy = -b cose $- a sine$
			grander of the commence of the commence of the control of the cont

 (e^2-1) $\cos^2\Theta$

न्यूक नळाडून

1- COS20

-cs2c

(from (3)) ie (erose = ±1)

- COS 20

सिह

there toget to europe at P has goodzent II

Comectul_NSnol S S S

sub estro of (2) + (3) into apad expession +

Andra alga

A BOAR OF

while south

Jueshion 7	Question_1_(cont)
(1) LPCQ = LPCB + LBCA + LACQ (adjacent angles). NOO LPCB = LPAB (angles at the cocomposise subleted by = same arc (PB) are equal)	(a) (iii) cont Consider Dapp, sink+B) = sin a (2) Pa BP.
= x (gre-)	-Tron D crd B $Sin (4+B) = Sin 2Y$
Similarly, $\angle ACO = \angle ABO$ (origles at the circumfeace sidedal) by same airc (AO) are equal) = B (given) And $\angle BCA = 2Y$ (given) (Correct	Im- for expressions Gr AB and PQ AB Sin 28 PQ Sin (d+B) Sine NO
$\therefore \angle PCQ = x + B + 2X.$	- Im - combing = 2sm 8 cos 8 (from ii) + subst dys = 90-8.
(ii) AB is fixed : organ subserted by AB B fixed : $2Y = constant$. $Y = constant$ In DABC, $2X + 2B + 2Y = 180^{\circ}$ (organ sum of $\Delta = 180^{\circ}$)	$= \frac{2smY\cos Y}{\cos Y}$ $= 2smY.$
Im- Showing $\therefore x+B+x=90$	(b) (i) LMS = $(1+ itane)^n + (1- itane)^n$
MtB const = Constat since 1 constat Im - correct conclusion. Since XtB and 28 are constals XtBt 28 = Constat	$= \frac{\left(1 + i \sin \theta\right)^{n} + \left(1 - i \sin \theta\right)^{n}}{\cos \theta}$ $= \frac{\left(\frac{1}{\cos \theta} \left(\cos \theta + i \sin \theta\right)\right)^{n} + \left(\frac{1}{\cos \theta} \left(\cos \theta - i \sin \theta\right)\right)^{n}}{\cos \theta}$
orgle at the circumfred LPCQ= x+B+2Y.	= 1 [cosne+ismne + come - ismne] (De
) Consider ΔAPB, LAPB = 27 (angles at circumference suberlied by Same arc are equal) and sin 28 = smd (i) (sine rule) AB BP	$Cos^{\circ}e$ $= \underline{L} 2 Cosne$ $Cos^{\circ}e$
	Conecruy

stor 7 (cont)

ii) Let z= itone

From (i) $(1+z)^n + (1-z)^n = 2\cos n\theta = 0$

 $\frac{2\cos n\theta}{\cos^n\theta} = 0$

4 - (1+Z) + + (1-Z) + =0

 $7\cos_{\theta} = 0$

cas40 = 0

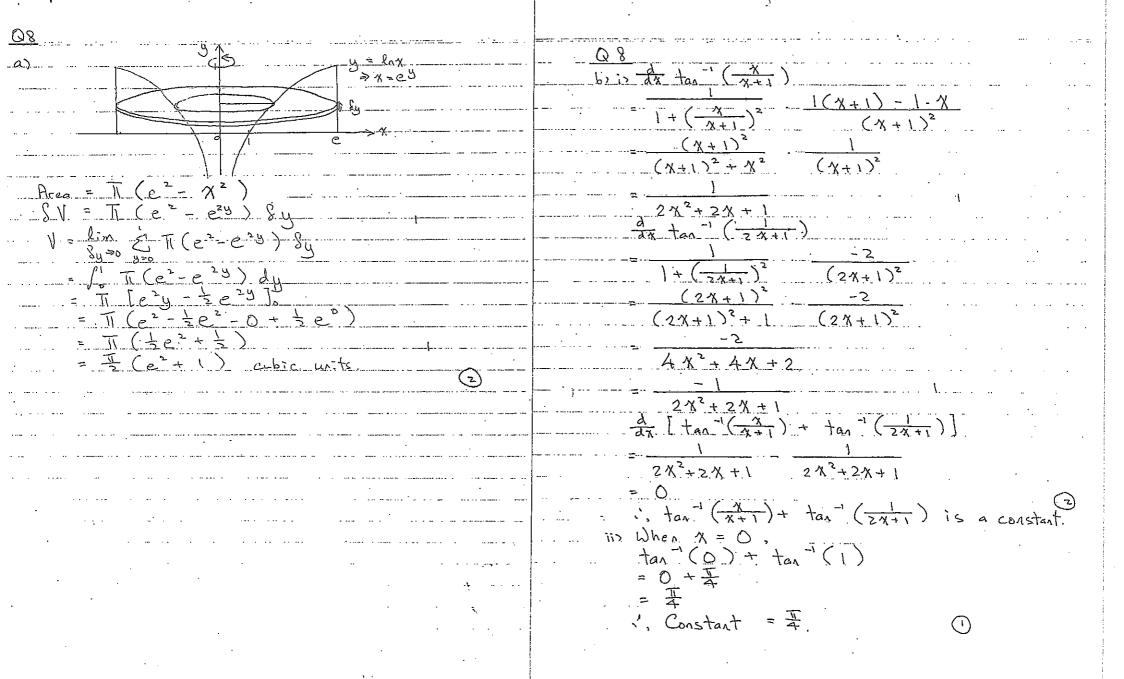
40= ±1/2, ±3/1/2, 50/0

日=近18, =3118 注5至....

4 unique solonos Z=titanto, titalità

7(1) i) Since $e^{-\frac{x}{\lambda}}$ is a decreasing function and as $\sin x \ge \frac{2x}{\pi}$ for $0 \le x \le \frac{\pi}{2}$, $e^{-\sin x} \le e^{-\frac{x}{\pi}}$ for $0 \le x \le \frac{\pi}{2}$, $\int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} dx \le \int_{\frac{\pi}{2}}^{\pi} e^{-\frac{x}{2}} dx$ ii) $\int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} dx = \frac{\pi}{2} = \frac{\pi}{2}$ $\int_{\frac{\pi}{2}}^{0} e^{-\sin x} dx = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$ $\int_{\frac{\pi}{2}}^{0} e^{-\sin x} dx = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$ $\int_{\frac{\pi}{2}}^{0} e^{-\sin x} dx = \frac{\pi}{2} = \frac{\pi}{2} = \frac{\pi}{2}$

- Sinx dx


 $\int_{0}^{\pi} e^{-\sin x} dx + \int_{0}^{\pi} e^{-\sin x} dx$ $= 2 \int_{0}^{\pi} e^{-\sin x} dx - \int_{0}^{\pi} e^{-\sin x} dx$

= 2 / = e - 2 / = dx

= -T(e = -e =) = -T(e = - l)

 $= \pi \left(\frac{e-1}{e}\right)$

= T (e -1)

= <u>COSO</u> - COS (0+2x) 2 5m x Step 2: Assume statement is true for not; - COS 0 - COS O COS 2X + SM 8 STA 2X i.e. 3h 0 + sh 30 + sh 50 + - + sh (2k-1)0 .. . 2.5% X 1-coz 2k0 = COS 0 - COS O (1-25x2x) + 2 ShO shoken a 2 sin 8 Step 3: Prove statement is true for n=k+1; 25ma = COSO - COSO + 2 5m2x COSO + 25m0 5 n d cos d ie prove San O+Sin 30 + Sm 50+ - + Sin (2k+1)6 25mx 1-cos (2K+2)0 Sin & cos O + Sin O COS X. Sin (0,+x). LHS = SM 0 + SM 30 + SM 50+ - + Sin (2K-1) 0+SM (2kti (3) ket the statement be ZSIND. 1-cos 200 . Sm 0 + sm 30 + sm 50 + ··· + sm (2n-1)0) =-Step 1: Test the statement is true for n=1. `LHS = SW[Z(1)-1]0 1- cos 2k0 - cos 2k0 - cos (2k0+20 2 ssa 0 - 1- cos 2k0 + cos 2k0 - cos (2k + 2)0 - \.-. (\ - 25gn 20) 2 sh 0 Zsin O 1-cos (2k+2)0 = 5m 0 = LHS Step 4 : Since the statement is true for n=1. assumed true for n=k and proved true for n=k+1, by northenatical induction it is true for n=1+1=2. n=2+1=3. , and so an. Hence The statement is true for all positive witegers of n. 1 for Steps: 2 and 4

$$-\frac{x^2}{q} + (y-2)^2 = 1$$

Differentiating
$$2x + 2(y-2) dy = 0$$
.

$$\frac{7}{9} + \frac{2(y-2)}{4} dy = 0$$

$$\frac{3x}{4} + \frac{2(y-2)}{4} dy = 0$$

$$\frac{3x}{4} + \frac{2(y-2)}{4} dy = 0$$

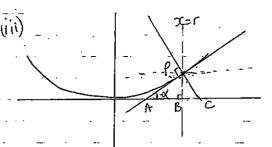
$$\frac{3x}{4} + \frac{2(y-2)}{4} dy = 0$$

At P,
$$m_p = \frac{4c}{9(2-h)}$$

$$m_p = \tan \alpha$$

i)
$$(r, L)$$
 lies on ellipse, $\frac{r^2}{9} \neq \frac{(h-2)^2}{4} = 1$

$$\frac{r^2}{9} = 1 - (h-2)^2$$


$$r^{2} = 9\left(4 - (2-h)^{2}\right) (h-2)^{2} = (2-h)^{2}$$

$$r = 3\sqrt{4 - (2 - h)^2} \quad c > 0$$

$$\frac{1}{9(2-h)} = \frac{4 \times 3\sqrt{4-(2-h)^2}}{2}$$

=
$$2\sqrt{4-12-h)^2}$$

3(2-h). as required.

$$\angle APB = 90- \alpha$$
 (argle sum of SAPB = 1800)
 $\angle APC = 90^{\circ}$ (argle betwee tenget and normal)
 $\angle CPB = \angle APC - \angle APB$
 $= 90^{\circ} - (90- \alpha)$

: a cole agre between right and x=r, LCPB = x . as required