Ms Lau Mrs Kerr

Name:		•••••	 	•••••
Teacher	•		 	

HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION 2016

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen. Black pen is preferred.
- Board approved calculators may be used.
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Start each question in a new booklet.

Total Marks – 100

Section I Pages 1-6

10 marks

- Attempt all Questions 1-10
- Allow about 15 mins for this section

Section II Pages 7-15

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Mark	/100
Highest Mark	/100
Rank	

Blank Page

Section I

10 marks Attempt Questions 1-10

Use the multiple choice answer sheet for Questions 1-10.

The function g(x) could be which of the following?

- (A) *x*
- (B) −*x*
- (C) x^2
- (D) $-x^2$

2

What type of conic section is represented by the equation $y^2 - 4y - x + 3 = 0$?

- (A) Hyperbola
- (B) Circle
- (C) Parabola
- (D) Ellipse

- 3 What are the values of real numbers p and q such that 1-i is a root of the equation $z^3 + pz + q = 0$?
 - (A) p = 2 and q = 4.
 - (B) p = 2 and q = -4.
 - (C) p = -2 and q = 4.
 - (D) p = -2 and q = -4.
- 4 Consider the Argand diagram below.

Which inequality could define the shaded area?

- (A) $|z-1| \le 2$ and $\text{Re}(z) \ge 2$.
- (B) $|z-1| \le 2$ and $\operatorname{Im}(z) \ge 2$.
- (C) $|z+1| \le 2$ and $\operatorname{Re}(z) \ge 2$.
- (D) $|z+1| \le 2$ and $\operatorname{Im}(z) \ge 2$.

5 The graph of the function y = f(x) is shown below.

6 What is
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx$$
 equivalent to?

(A)
$$2\int_{0}^{\frac{\pi}{2}} x \cos x \, dx$$

- (B) 0
- (C) $\pi 2$ (D) $\frac{\pi}{2} - 1$

7 Which expression is equal to
$$\frac{1}{(x+1)(x^2+4)}$$
?

(A)
$$\frac{1}{3(x+1)} - \frac{x+1}{3(x^2+4)}$$

(B)
$$\frac{1}{5(x+1)} - \frac{x-1}{5(x^2+4)}$$

(C)
$$\frac{1}{5(x+1)} + \frac{x-1}{5(x^2+4)}$$

(D)
$$\frac{1}{x+1} - \frac{x+4}{x^2+4}$$

8 Which expression is equal to $\int \cos^3 x \, dx$?

(A)
$$\frac{\cos^4 x}{4} + C$$

$$(B) \quad 3\cos^2 x + \sin x + C$$

(C)
$$\sin x - \frac{\sin^3 x}{3} + C$$

(D) $x - \frac{\sin^3 x}{3} + C$

9 The region bounded by the curve $y = e^x$, the x-axis, and the lines x = 1 and x = 2, is rotated around the y-axis to form a solid with volume V.

Which of the following is correct?

(A)
$$V = \pi \int_{e}^{e^{2}} \left[4 - (\ln y)^{2} \right] dy.$$

(B) $V = 3\pi e + \pi \int_{e}^{e^{2}} \left[4 - (\ln y)^{2} \right] dy.$
(C) $V = 3\pi e + \pi \int_{e}^{e^{2}} (4 - 2\ln y) dx.$
(D) $V = \pi \int_{1}^{2} e^{2x} dx.$

$$J = \int_{0}^{1} \sqrt{1 - x^{4}} \, dx$$
$$K = \int_{0}^{1} \sqrt{1 + x^{4}} \, dx$$
$$L = \int_{0}^{1} \sqrt{1 - x^{8}} \, dx$$

Which of the following is true for the definite integrals shown above?

- (A) J < L < 1 < K
- $(B) \quad J < L < K < 1$
- (C) L < J < 1 < K
- (D) L < J < K < 1

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks). Use a Separate Booklet.

Marks

(a) Write the complex number
$$\left(\frac{4i^7 - i}{1+2i}\right)^2$$
 in the form $a + bi$ where a and b 2 are real numbers.

(b) Using integration by parts, find
$$\int_0^1 x e^{2x} dx$$
. 2

(c) Find the value of
$$\frac{dy}{dx}$$
 at the point (1, 4) on the curve $4x^3 + xy^2 = 5xy$. 3

(d) If
$$z = 4 + 2i$$
 and $w = -1 + 3i$, find $\arg(zw)$.

Question 11 continues on page 8.

Question 11 (continued).

(e)	On an Argand diagram shade the region that is satisfied by both the conditions.	2
	$0 \le Arg(z+i) \le \frac{\pi}{4}$ and $ z-1 \le \sqrt{2}$.	

(f) If α , β and γ are roots of the equation $x^3 + 6x + 1 = 0$, find the polynomial equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$.

(g) Find
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x \cos^3 x \, dx$$
.

2

2

(a) Given the sketch of the function f(x), draw a one-third page sketch of each of the following on separate diagrams.

(iii)
$$y = f\left(x^2\right)$$
.

(b) If $2x^4 + 9x^3 + 6x^2 - 20x - 24 = 0$ has a root of multiplicity of 3, factorise $2x^4 + 9x^3 + 6x^2 - 20x - 24$ fully.

Question 12 continues on page 10.

2

1

- (c) The roots of the equation $z^3 + 2z^2 + 3z 4 = 0$ are α , β and γ .
 - (i) (1) Write down the value of $\alpha + \beta + \gamma$ and the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.
 - (2) Hence show that $\alpha^2 + \beta^2 + \gamma^2 = -2$.
 - (ii) Find the value of $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$. 2
 - (iii) Find a cubic equation whose roots are $\alpha + \beta$, $\beta + \gamma$ and $\gamma + \alpha$. 2

(d) Using the substitution
$$n = 1 - x$$
, evaluate $\int_{-1}^{0} \frac{x}{(1-x)^4} dx$. 3

(a) The area enclosed by the curve $y = (x-3)^2$ and the line y=9 is rotated about the y-axis. Use the method of cylindrical shells to find the exact volume of the solid formed.

The point $P(x_1, y_1)$ lies on the hyperbola $\frac{x^2}{25} - \frac{y^2}{9} = 1$.

The two foci of the hyperbola are S_1 and S_2 and the two directrices are d_1 and d_2 , as shown.

- (i) Show that the length $S_1 P = \frac{\sqrt{34}}{5} x_1 5.$ 2
- (ii) Show that the equation of the tangent at *P* is $\frac{x_1 x}{25} \frac{y_1 y}{9} = 1$.
- (iii) The tangent at *P* intersects the transverse axis at point *G*. Find the coordinates of point G.

(iv) Given $\angle S_1 PG = \theta_1$, $\angle GPS_2 = \theta_2$ and $\angle S_1 GP = \alpha$,

- (1) By using the sine rule, show that $\sin \alpha = \frac{x_1 \sin \theta_1}{5}$.
- (2) Hence, show that $\sin \theta_1 = \sin \theta_2$. 2
- (3) Hence, deduce that GP bisects $\angle S_1 P S_2$.

End of Question 13

4

2

1

2

(a) Find all real x such that
$$3\sqrt{x(1-x)} < |x-2|$$
. 3

(b) (i) Show that
$$x^4 + y^4 \ge 2x^2y^2$$
. 1

(ii) If P(x, y) is any point on the curve $x^4 + y^4 = 1$, prove that $OP \le 2^{\frac{1}{4}}$ where *O* is the origin. 3

(c) (i) (1) Use De Moivre's Theorem to show that if
$$z = \cos \theta + i \sin \theta$$
, then 1
 $z^n - \frac{1}{z^n} = 2i \sin n\theta$.

(2) Write down a similar expression for
$$z^n + \frac{1}{z^n}$$
. 1

(ii) (1) Expand
$$\left(z - \frac{1}{z}\right)^2 \left(z + \frac{1}{z}\right)^2$$
 in terms of z. 1

(2) Hence, show that $8\sin^2\theta\cos^2\theta = A + B\cos 4\theta$, where A and B are integers. 2

(iii) Hence, by means of the substitution
$$x = 2\sin\theta$$
, find the exact value of $\int_{1}^{2} x^{2}\sqrt{4-x^{2}} dx$.

(a) Draw a half page sketch of
$$y = \log_e |\tan x|$$
 for the domain $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. 2

(b) (i) Use the factor theorem to show that
$$2x-1$$
 is a factor of $8x^3 - 4x+1$.

- (ii) Show that $4\cos 2\theta \cos \theta + 1$ can be written as $8x^3 4x + 1$ where $x = \cos \theta$. 1
- (iii) Given that $\theta = 72^{\circ}$ is a solution of $4\cos 2\theta \cos \theta + 1 = 0$, use the results from **3** parts (i) and (ii) to show that the exact value of $\cos 72^{\circ}$ is $\frac{(\sqrt{5}-1)}{p}$ where *p* is a constant.
- (c) (i) Express $(k+1)^2 + 5(k+1) + 8$ in the form $k^2 + ak + b$, where a and b are constants.
 - (ii) Prove by induction that, for all integers $n \ge 1$, $\sum_{r=1}^{n} r(r+1) \left(\frac{1}{2}\right)^{r-1} = 16 - \left(n^2 + 5n + 8\right) \left(\frac{1}{2}\right)^{n-1}.$ 3

(d) Given that
$$I_n = \int_{-\frac{\pi}{6}}^{\frac{\pi}{4}} \cot^n x \, dx$$
, for $n = 1, 2,$
(i) Show that $I_1 = \frac{1}{2} \ln 2$.

(ii) Show that
$$I_{n-2} + I_n = \frac{1}{n-1} \left(3^{\frac{n-1}{2}} - 1\right)$$
 for $n = 3, 4, 5...$ 3

1

- (a) The equation $z^4 + 4iz^3 4iz^2 + (8 + 8i)z 32(1+i) = 0$ has roots α , β , -2α , γ which represent the vertices *A*, *B*, *C* and *D* of a parallelogram in the Argand plane.
 - (i) Using the properties of a parallelogram, show that $\alpha + \beta + \gamma = 0$. 2
 - (ii) Hence, or otherwise, show that $\alpha = 2i$.
 - (iii) Given $\sqrt{3+4i} = \pm (2+i)$, find the vertices of the parallelogram *ABCD*. **3**

(b) (i) Show that
$$1 + \cos 2\theta + i \sin 2\theta = 2\cos \theta (\cos \theta + i \sin \theta)$$
. 1

(ii) Hence, prove that
$$\left(1 + \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)^n = -2^n \cos^n\frac{\pi}{n}$$
 where *n* is any integer. **1**

(iii) Hence, simplify
$$\left(1 + \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)^n - \left(1 + \cos\frac{2\pi}{n} - i\sin\frac{2\pi}{n}\right)^n$$
. 2

Question 16 continues on page 15

Question 16 (continued).

(c) (i) Ptolemy's Theorem states that in a cyclic quadrilateral the product of the diagonals is equal to the sum of the products of the pairs of opposite sides, i.e. $AC \times BD = AB \times CD + BC \times AD$. *M* is the point on *BD* such that $\angle ACB = \angle DCM$. Prove Ptolemy's theorem.

(ii) Hence, if AB = AD, $\angle BCD$ is a right angle and the area of the quadrilateral *ABCD* is 18 cm², find the length of *AC*.

End of Paper

3

Extension 2 2016 Trial solutions D Questino II $\int a_1 \left(\frac{4i^{7}-i}{1+2i}\right)^2$ 2. <u>C</u> <u>Y</u> <u>B</u> 3.-C Q. (-52) For getting to a paint . 9 B reatisation Can . $2\left(\frac{-5i(1-2i)}{1+4}\right)^{2}$ - 22 \ 1 = <u>3+4i</u> (1) Answel XPZX $e^{2\chi}]_{0}^{i} - \frac{1}{2} \sqrt{e^{2\chi}} d\chi$ () correct int by -0) - $\frac{1}{2} [\frac{1}{2} e^{2\chi}]_{0}^{i}$ parts - $\frac{1}{4} e^{2} + \frac{1}{4} e^{0}$ = ((T) Answel $\chi_{11}^2 = 5\chi_{11}$ 5 + $\frac{12x^{2}+y^{2}-5y}{5x^{2}-2xy}$ ----'(+-) When X = 1, y = 4; $\frac{dy}{dx} = \frac{12 + 4^2 - 5(4)}{5 - 2(1)(4)}$

d> 3 = 4 + 2i $\omega = -1 + 3i$ Question 12 $z_{\omega} = (4 + 2i)(-1 + 3i)$ (4+ cc) -4-6-2i+12i -() For product -1 <u>31</u> 4 - O For argument arg zw. es () for correctly placed $6 X^3 + 6X + 1 = 0$ Circle XBY = -1 . DArc with open circle Equation with roots $\frac{x}{x}$, $\frac{5}{x}$ and $\frac{x}{x}$ function = $\frac{x}{x}$, $\frac{5}{x}$ and $\frac{x}{x}$ funced = $\frac{-1}{x}$, $\frac{-1}{x}$ and $\frac{-1}{x}$ ($\frac{-1}{x}$)³ + 6($\frac{-1}{x}$) + 1 = 0 ш). for symmetry 1 for rate cepts - 6 + + = 0 (D - Appropriate method $-1 - 6\chi^2 + \chi^3 = 0$ x3 - 6x2 -1 = 0 O collect eq " g) JI Sin X Cos X dX b Let P(x) = 2x⁴ + 9x³ + 6x² - 20x - 24. - () correct integral $P'(\chi) = 8\chi^3 + 27\chi^2 + 12\chi - 20$ $= \frac{-1}{4} \cos^4 \chi \int_{\pi}^{\pi}$ $P''(x) = 24x^2 + 54x + 12 = 0$ = -0+ + (++)+ $4\chi^{2} + 9\chi + 2 = 0$ · - (1) correct an over $(4\chi + 1)(\chi + 2) = 0$ X=-2 OR X= 4 $P(\frac{1}{4}) \neq 0 \quad P(-2) = 0$ $P(\chi) = 2\chi^4 + 9\chi^3 + 6\chi^2 - 20\chi - 24$ $\left(\boldsymbol{\lambda} \right)$

 $x^{2} + 2y^{2} + 3y - 4 = 0$ x+/s+ Y = -2 $\alpha' + \beta' + \alpha' = 3$ $\alpha' + \beta' + \gamma'$ $= (\chi + (\chi + \chi)^{2} - 2(\chi + \chi)^{2} + \chi)^{2}$ $=(-2)^2 - 2(3)$ $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ $= 2\alpha/3\beta + \beta^{2}\beta + \alpha \beta^{2} + \beta^{2}\beta^{2} + \alpha^{2}\beta + \beta^{2}\alpha + \alpha^{2}\beta$ = $2\alpha\beta\delta + \alpha\beta(\alpha + \beta) + \alpha\delta(\alpha + \delta) + \beta\delta(\beta + \delta)$ = 2xp5 + xp(-2 - r) + xr(-2-p) + Ar(-2-x) = 2xp8 - 2(xp + b8 + x8) - 3xp8 = -2(3) - 1(4)ii) Equation with roots a+ B, A+ Y and a+ & = a+p+r-r, a+p+r-d and X+S+Y-S = - 2 - x , -2 - A and -2 - X $(-2-2)^{3} + 2(-2-2)^{2} + 3(-2-2) - 4 = 0$ 1 $-(3^{3}+62^{2}+123+8)+2(2^{2}+42+4)$ -6 - 3z - 4 = 0 $2\gamma^{3} + 4\gamma^{2} + 1\gamma + 10 = 0$ $dy \int_{-1}^{\infty} \frac{x}{(1-x)^4} dx$ $n = 1 - \chi \Rightarrow \chi = 1 - n$ dn = -dx $= \int_{-\frac{n-1}{n^4}}^{-\frac{n-1}{n^4}} dn$ $\lambda = D$, n = 1 - 0 = 1X = -1, n = 1 - (-1) = 2 $= \int_{2}^{1} \left(n^{-3} - n^{-4} \right) dn$ = $\frac{-1}{2} n^{-2} + \frac{1}{3} n^{-3} \int_{2}^{1}$ $=\left(\frac{-1}{2}+\frac{1}{3}\right)+\frac{1}{2}\times\frac{1}{4}-\frac{1}{3}\times\frac{1}{8}$

Q13 a) $S V = \pi (x + S x)^2 (9 - y)$ <u>911.12 _ 264.4</u> 911,2 254,2 -TT x2 (9-4) 9 x 25 9×25 9×25 = $T(9-y)[(x+8x)^2-x^2]$ <u> 7, 7</u> 25 = ______ = T(9-4)(2X+8X)8X $V \simeq \underbrace{\underbrace{\begin{array}{c} x \\ x = 0 \end{array}}}_{x = 0} \overline{T} \left[9 - (x - 3)^2 \right] 2x \underbrace{8x}_3$ <u>X. X</u> - yiy = 1 - since P(n, yi) lies on. Ignore SX2 the hyperbola $\frac{x_{1}}{25} - \frac{y_{1}^{2}}{25} = 1$ 25 $V = 2\pi \sqrt{x^2(6-x)} dx$ 21 $\int_{0}^{\infty} (6\chi^{2} - \chi^{3}) d\chi$ 1) - correct limits iii) When y = 0, 2x3 - 4x4 and set up <u>X, X</u> _____ $2\pi [2*6^3 - \frac{1}{4}*6^4 - 0]$ 3.3 = 25216 The cubic units dV= 2TT 2 (9-4) d>c $A = \frac{1}{\sqrt{n}}$ $G = \left(\frac{25}{\sqrt{n}}, 0\right)$ $25 \frac{1}{r}$ $= 2\pi \times (9 - (x - 3)^2) dx$ $= 2\pi z \left(9 - (x^2 - 6x + 9)\right) di$ iv) (1) G.S. = 25 $= 2\pi \times (6 \times - x^{2}) dx$ = $2\pi (6 \times - x^{3}) dx$ In AGS, P, 7 + De = <u>PS1</u> GS. SIN ZSIGP 51125, PG 134 -25 134 -25 $5 \times \frac{5}{\sqrt{34}}, \psi_1 = (\frac{25}{\sqrt{34}}, \psi_1)$ V34- 1, -5 Correct substitut Sin X SinOr PH () correctly finding V34 11-5) sin 01 PS, = e × PM, 17 to Sme role (M) - 52 of M or the equat J34-X1-25 Sin On- $= \frac{\sqrt{34}}{5} \chi_{1}$ $= \frac{2u}{9} \chi_{du} = 0$ $\frac{dy}{2} \chi_{du} = 0$ $\frac{dy}{25} \chi_{du} = 2$ @ correct demonstration - XI Sin OI (Carrect manipulation to achieve the chain (2) $H_2 = \left(\frac{-22}{\sqrt{34}}, y_1\right)$ <u>PS2</u> = e $m_P = \frac{9 \pi}{25 4 r}$ PM Equation of tangent at . P. $PS_2 = \frac{\sqrt{34}}{5} \left(\gamma_1 + \frac{25}{134} \right)$ $GS_{2} = \frac{\sqrt{34}}{\frac{25}{34}} + \sqrt{34}$ $\Rightarrow \frac{-9\chi_1}{25y_1} = \frac{y-y_1}{\chi-\chi_1}$ O obtaining eq using a correct. $\sqrt{34}$ 9x,x - 9x, = 25y,y - 25y, method

(2) correct argument In A S2PG Q14 PS2 (1) Heading toward Sin LS2GP Collect argument $3\sqrt{\chi(1-\chi)}$ <|X - 2|Sin LGPS2 $3\sqrt{\chi(1-\chi)} < \sqrt{(\chi-2)^2}$ $\frac{25}{\chi_1} + \sqrt{34} = \frac{\sqrt{37}}{\chi_1} + 5$ $rac{1}{rac{1-x}} = x^2 - 4x + 4$ $\frac{\sin 0.2}{\sqrt{34} \sqrt{1 + 25}} = \frac{\frac{1}{\sqrt{34} \sqrt{1 + 25}}}{\frac{1}{25 + \sqrt{34} \sqrt{1 + 25}}}$ $9X - 9X^2 = X^2 - 4X + 4$ * Sin 02 $10\chi^{2} - 13\chi + 4 = 0$ (2x - 1)(5x - 4) = 0 $\sin \alpha = \frac{\pi_1}{5} \sin \theta_2 - \frac{\pi_1}{4}$ then X= = OB $\chi = \overline{\chi}$ AL SIN OI = AL SIN O2 ; equating (1) and + SinOi = Sin Oz(3) From (2), Sin 0, = Sin 02 then 01 = 02 OR 01 = 180° - 02 $Tf \Theta_{1} = 180^{\circ} - \Theta_{2}$ then / GPS, + / S. PG = / S. PS_2 0< x< 5 or € < x < 1 $= \Theta_2 + \Theta_1$ $= 0_2 + 180^{\circ} - 0_2$ b) i) (x2-=_180° 4 20 15, PS2 = 180° iff P lies on the Xaxis ii) OP = But if Plies on the Xaxis GP cannot bisect 6 SIPS, since they all lie on the Maxis OP^4 $S_p \quad \Theta_1 \neq 180^\circ - \Theta_2$ $\Theta_1 = \Theta_2 \Rightarrow \angle S, PG = \angle GPS$ $+ u^{4} + \chi^{4} + y^{4}$ S. G.P. bisects LS.P.S. OP⁴ < (2) correct argument 09 () Parially correct city (1) = Cos O + Esin O = COS nO + LSTA nO = $\cos(-n\theta) + i \sin(-n\theta)$ = cosno - isinno

D factorising and finding we other two roots (ヨ キー) キ (y)2 52 22 $(5^{-1})(7^{+})(1-1) = 0$ 0 = 1 + x - x + 1 = 0. OZ 507 101 $\Theta_{200} = X + 1 + X + \varepsilon_{200} =$ 2- 业已的5年一条 kintur 148 ans ha 1 + 0202 4 - 05202 8 = 到日本:5年一日 小のぐ voires Brows (1) 1 + (1- 0: 2002) 0:00 + = N=5 = 5=X BP(B750-1) + B LOD BS 20 A (1) 1 86 8-20 8-0:2 JI 7-8 (=) So (24-1) is a factor of P(A). get a QrizS=1=K -OB Oras S-Oras S .. Os A. of the jo worth through - (1) 98 = 2002 = NB J = JEING 8P0302. 02 1:57 - 41 02 15 424 = - 5 + 1 D. Bereview at T $+(\frac{1}{2})4-\frac{1}{2}(\frac{1}{2})8=(\frac{1}{2})4(1)$ 6 Let P(x) = 8x² - 2xx + 1 & axis. $\overline{\mathbb{O}}$ 7 -- and up oach to + 020/24V12 (1 2, 04200 -1 + 0 + 500 -= (2 - 04 200 5) = = 02 200 02 Nic 8 5 - 8 + 202 5 = 85202 8512 31-K pro 5 -16 Sin 2 B Car = 0 - 200 B 2 nig 2) -8-200 B51331-8-20 4 · 0- 4:2 4- = $\frac{1}{2}\left(\frac{2}{2},\frac{2}{2}\right)^{2}\left(\frac{2}{2},\frac{2$ Onzas C = ns DUNZJO BARRES + BARRES - BARRES + BARRES = 1 X vot 1 per = H (Qrussi- Brzes) - (Brnssi + Brzes)= ko 910 ×_____

Since 0 = 72° is a solution of 4 cos 20 cos 0+1=0. $= \left(\frac{1}{2}\right)^{k} \left[16 \times 2^{k} - \left(k^{2} + 7k + 14 \right) \right]$ X = COST2° is a solution of P(X) = 8X3 - 4X+1 = $(\frac{1}{2})^{k} [16 \times 2^{k} - ((t+1)^{2} + 5(t+1) + 8)] = from (i)$ However $\cos 72^\circ \neq \frac{1}{2}$ and $\cos 72^\circ > 0$ so $\cos 72^\circ = \frac{1}{4}(-1+\sqrt{5})$ $2^{-k} \times 16 \times 2^{k} - (\frac{1}{2})^{k} [(k+1)^{2} + 5(k+1) + 8]$ $= 16 - [(k+1)^{2} + 5(k+1) + 8](\pm)^{k}$ • RHS $(k+1)^2 + 5(k+1) + 8$ $= K^{2} + 2K + 1 + 5K + 5 + 8$ 1-1-2 $= k^{2} + 7k + 14$ d) $I_0 = \sqrt{\frac{1}{2}} \cot^2 x dx$ i) $I_1 = \sqrt{\frac{1}{2}} \cot x dx$ is bet the statement be strate (r + 1) =16-(n2+5n+8)(2)"-1 J= COSX dx Step 1: Show that the statement is true for n=1. LHS = 1(1+1)(+)la (sin x) - Correct ectup = 2×+ ln (sin Z) - ln° (sin E) $= l_n\left(\frac{1}{12}\right) - l_n\left(\frac{1}{2}\right)$ - Body corect RHS = 16 - (12+5x1+8)(5) $= l_0 2^{\frac{-1}{2}} - l_0 2^{-1}$ = 16 - 14 -with conclusion $\frac{1}{2} \ln 2 + \ln 2$ Irlw ち ち ら 2 = 145 $\frac{11}{10} \frac{1}{20-2} + \frac{1}{20}$ $= \sqrt{\frac{2}{5}} \frac{\cot^{n-2} \chi d\chi}{\cos^{n-2} \chi d\chi} + \sqrt{\frac{2}{5}} \cot^{n} \chi d\chi$ Step 2: Assume statement is true for n= k; ie assume tr(r+1)(=)=16-(k=+5k+1)(=) (cot n-2 x + cot n x) dx <u>Step 3: Prove statement is true for n = k + 1;</u> i.e. prove $\sum_{r=1}^{\infty} r(r+1)(\frac{1}{2})^{k-1} \frac{16-1(k+1)^2+5(k+1)}{r+2}(\frac{1}{2})^k$ $\int_{\Xi}^{\Xi} \cot^{3} \chi \left(1 + \cot^{-2} \chi\right) d\chi$ Lat x (1+ta x) dx ton 7 X - Sez - X - dx $1HS = 2 r(r+1)(\frac{1}{2})^{k-1}$ tan 1-1 X JI $= 1(2)(\frac{1}{2})^{\circ} + 2(3)(\frac{1}{2})^{\circ} + \cdots + 1$ (1)1-n [tan 1-1] Jan 1-1 1 1 1 $k(k+1)(\frac{1}{2})_{k-1} + (k+1)(k+2)(\frac{1}{2})_{k}$ $= 16 - (k^{2} + 5k + 8)(\frac{1}{2})^{k-1} + (k+1)(k+2)(\frac{1}{2})^{n}$ $\frac{1}{1-n} \left[1 - \left(\frac{1}{\sqrt{3}}\right)^{1-n} \right]$ $= \left(\frac{1}{2}\right)^{k} \left[\left(\frac{1}{2} \right)^{k} - \left(\frac{1}{2} + \frac{1}{2} \frac{1}{2} + 8 \right) \left(\frac{1}{2} \right)^{k} + \left(\frac{1}{2} + 1 \right) \left(\frac{1}{2} + 2 \right) \right]$ $\frac{1}{1-n}$ $\left[1 - \sqrt{2} \right]^{n-1}$ 1) follow through $= (\frac{1}{2})^{k} \left[\frac{16x^{2k}}{2} - 2(\frac{1}{2} + 5\frac{1}{2} + \frac{3}{2}) + \frac{1}{2} + \frac{3}{2} + \frac{3}{2} \right]$ $\frac{-1}{1-n}$ ($\sqrt{3}$ ^{m-1} - 1 $= \left(\frac{1}{2}\right)^{k} \left[\frac{16x^{2^{k}}}{2k^{2}} - \frac{10k}{10k} - \frac{16k^{2}}{4k^{2}} + \frac{3k}{2k} + \frac{3k}{2k} \right]$ $\frac{1}{1-1}$ (3 $\frac{n-1}{3}$ - 1 = (=)* (16×2* - K2-7k-14

016 bin RHS = 2 cos O (cos O + isin O) 4 + 4iz - 4iz + (8i+8)z - (32+32i)=0 $= 2 \cos^2 \Theta + 2 \sin \Theta \cos \Theta \dot{L} \qquad \textcircled{0}$ is Diagonals of a parallelogram bisect each other, = 1+ cos 20 + i sin 20 ice midpoint of AC = midpoint of BD = 145 $\left(1+\cos\frac{2\pi}{n}+i\sin^{2\pi}\right)^{n}$ in LHS = $\frac{1}{2}(\varkappa - 2\varkappa)$ · = 5 (B+X) = (2 cos II) (cos II + isin II)" - from (i)7 - X Ξ B+X $= 2^{\circ} \cos^{\circ} \frac{\pi}{4} \left[\cos \left(\frac{\pi}{4} \right) (n) + i \sin \left(\frac{\pi}{4} \right) (n) \right]$ X+B+ Y Ξ $= 2^{n} \cos \frac{\pi}{n} (\cos \pi + i \sin \pi)$ ii) Sum of roots = x + B - 2x + Y = - $= 2^{\circ} \cos^{\circ}(\frac{\pi}{2}) \cdot (-1 + i0)$ $-\alpha + \beta + \gamma = -4i$ \odot =-2" cos" 玉 $-\alpha + (-\alpha) = -4i$ from * = RHS = - 40 -2x III) From (i), similarly 2 cas O (cos O - isin O) 22: = $= 1 + \cos 2\theta - i \sin 2\theta$ $\frac{1}{100} \alpha = 2\dot{c} = -4\dot{c}$ $\frac{1+\cos\frac{2\pi}{n}-i\sin\frac{2\pi}{n}}{1+\cos\frac{2\pi}{n}}$ ⇒ (2-2i) is a factor => (2+4i) is a factor $= (2\cos \pi)^{\circ} (\cos \pi - i\sin \pi)$ 50 (2-2i)(2+4i) = 2.2+2i2+8 is a factor $= -2^n \cos^n \frac{\pi}{n}$ $3^{4} + 4i3^{3} - 4i3^{2} + (8i + 8)3 - (32 + 32i) = 0$ $\frac{\left(1+\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\right)^{n}-\left(1+\cos\frac{2\pi}{n}-i\sin\frac{2\pi}{n}\right)^{n}}{\left(1+\cos\frac{2\pi}{n}-i\sin\frac{2\pi}{n}\right)^{n}}$ $\frac{(z^{2} + 2iz + Q)(z^{2} + 2iz - (4 + 4i)) = 0}{Consider z^{2} + 2iz - (4 + 4i) = 0}$ $= -2^{n} \cos^{n} \frac{\pi}{n} - \left(-2^{n} \cos^{n} \frac{\pi}{n}\right)$ Consider $= -2^{n} c_{\theta} s^{n} + 2^{n} c_{\theta} s^{n} + \frac{1}{2}$ ~ () -2i + 2 13+42 $= -i \pm (2 + i)$ = 2 pR - 2 - 2i i, Vertices are 2i, -4i, 2 and -2-2i. (3)

Oi) In SABC and SDHC: $AC = \sqrt{2} (CD + BC)$ LACB = LDCH (given) $AC^2 = \frac{1}{2} (CD + BC)^2$ (BAC = (MDC (the concenter $\frac{1}{2}(CD^2+BC^2+2(BC\times CD))$ Standing on the same A (2AB² + 2(BC×CD) ; from * = $= AB^2 + BC \times CD$ arc BC) AABC III D HC Cequiangulary Area of ABCD = Area of JABD + Area of JBCD <u>AB</u> (corresponding HD (Sides of Similar triangles) AC $\frac{18}{18} = \frac{1}{2} (AB \times AD) + \frac{1}{2} (BC \times CD)$ CD 11 = = = AB2 + = = (BC×CD) M 36 = $AB \times CD = AC \times MD$ $AB^2 + (BC \times CD) - (2)$ $(D \supseteq AC^2 = AB^2 + BC \times CD$ In JACD and ABCM , LACD = LACH + LDCH Cadjace $AB^2 + 36 - AB^2 = from(2)$) 5 = LACM + LACB (LACB= LDEM , given) 36 ZDAC = ZMBC (auter on The circumformice)
ZDAC = ZMBC (auter on The circumformice)
A DAC = MBC (standing on The same arc CD) AC = 6cmSACD III A BCM (equiangular) * In A BCD; $BD^2 = BC^2 + CD^2$ (by Pythagoras) <u>AD</u> = <u>AC</u> (corresponding cides of) RM BC Similar Hangles BC $2AB^2 = BC^2 + CD^2$ (from * where BD= J2 AB BM AD × BC = AC × BM So ABXCD + BC × AD = AC × MD + AC × BM (₃ = AC(MD + BM)= AC×BD ii) ∠BAD = ∠BCD (2BCD = 90° given and opposite angles of ay clic gradin ateral are supplementary) = AC × BD In (ABD ; BD² = AB² + AD² (by Pythagoras') = AB2 + AB2 (AD=AB given) = 2AB BD = 15 AB ACXBD = ABXCD + BC × AD ACX VZAB= ABXCD + BC × AB · AB(CD+BC)