

SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2007

MATHEMATICS EXTENSION 2

12:30pm – 3:35pm Tuesday 28th August 2007 Directions to Students

• Reading Time : 5 minutes	• Total Marks 120
• Working Time : 3 hours	
• Write using blue or black pen. (sketches in pencil).	• Attempt Question 1 – 8
• Board approved calculators may be used	• All questions are of equal value
• A table of standard integrals is provided at the back of this paper.	
• All necessary working should be shown in every question.	
Answer each question in the booklets provided and clearly label your name and teacher's name.	

This paper has been prepared independently of the Board of Studies NSW to provide additional exam preparation for students. Although references have been reproduced with permission of the Board of Studies NSW, the publication is in no way connected with or endorsed by the Board of Studies NSW.

Question 1 (15 marks)Use a SEPARATE writing bookletMarks

(a) (i) Show that
$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$
 1

(ii) Hence find the indefinite integral
$$\int \sin 5x \cos 3x \, dx$$
 2

(b) Evaluate
$$\int_{0}^{5} \frac{t \, dt}{\sqrt{t+4}}$$
 2

(c) Evaluate
$$\int_{-1}^{1} 3^{x} dx$$
 correct to three significant figures. 2

(d) Evaluate
$$\int_{0}^{\frac{1}{3}} \frac{dx}{\sqrt{1-9x^2}}$$
 2

(e) Find
$$\int \frac{1}{1+\sin x} dx$$
, using the substitution $t = \tan \frac{x}{2}$ 3

(f) Use integration by parts to find
$$\int \frac{\cos^{-1} x}{\sqrt{1+x}} dx$$
 3

(a) Prove that
$$f(x) = \frac{x^3}{\sin x}$$
 is an even function.

(b) A sketch of
$$f(x) = -4(x+1)(x-2)$$
 is shown below.

With the aid of the above diagram, and without the use of calculus, draw a separate half page sketch for each of the following.

(i)	$y = \left f(x) \right $	1
(ii)	y = f(2x)	1
(iii)	y = f(-x)	1
(iv)	$y = \frac{1}{f(x)}$	2
(v)	$y = \sqrt{f(x)}$	2
(vi)	$y = \log_e f(x)$	2

(c)	Using calculus, show that $e^{-x} + x - 1 \ge 0$ for real x.	4
-----	--	---

3

(a) Express the following in the form
$$(x+iy)$$
, where x and y are real: 2
$$\frac{i^2 - 1}{i} + \frac{1}{1+i}$$

(b)

The Argand diagram above, shows a regular hexagon with vertex A at the point (0,3i). O is the centre of the hexagon.

- (i) Copy the diagram into your writing booklet.
- (ii) On your diagram show the region within the hexagon in which both 2 the inequalities $|z| \le 2$ and $-\frac{\pi}{6} \le \arg z \le \frac{\pi}{6}$ are satisfied.
- (iii) Find in the form $|z-z_1|=R$, the equation of the circle through the points *O*, *B* and *F*.
- (iv) Find the complex numbers, in modulus argument form, represented 2 by the points *B* and *C*.
- (v) The hexagon is rotated anticlockwise about the origin through an 3 angle of $\frac{\pi}{4}$. Express in the form $r(\cos\theta + i\sin\theta)$, where θ is the principal argument, the complex numbers represented by the new positions of *B* and *C*.

Question 3 continues on page 5

Question 3 (continued)

(c)		If 1-2 <i>i</i> is a root of the equation $z^2 - (3+i)z + k = 0$,	
	(i)	explain why the conjugate $1 + 2i$ cannot be a root to the equation	1
	(ii)	show that the other root is $2 + 3i$	1
	(iii)	find the value of k	1
	(iv)	hence, or otherwise, find the two square roots of $-24 + 10i$.	2

(a)		A polynomial $p(x)=x^n+ax^2-2$ has a factor of $(x-1)$ and leaves	
		a remainder of -6 on division by $(x+2)$.	
		Find:	
	(i)	the value of a	1
	(ii)	the value of n	1
	(iii)	the zeros of $p(x)$.	2

(b) Find the values of a and b so that
$$p(x)=2x^3-(2a+1)x^2+(2+b)x-1$$
 has a double root at $x=1$.

(c)	(i)	If <i>l</i> , <i>m</i> , <i>n</i> are the roots of the equation $x^3 - 2x + 5 = 0$, find the cubic equation whose roots are 2 <i>l</i> , 2 <i>m</i> , 2 <i>n</i> .	2
	(ii)	find the value of $l^3 + m^3 + n^3$.	2
(d)		Find all the values of k for which the polynomial equation $3x^4 - 4x^3 + k = 0$ has no real roots.	3

(a)	<i>(</i>)		An ellipse has the equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$. <i>O</i> is the centre of the ellipse and <i>S</i> and <i>S</i> ' are the foci.	
	(1) Find	(α)	the eccentricity	1
		(β)	the co-ordinates of the foci	1
		(γ)	the equations of the directrices.	1
	(ii)		Make a third of a page sketch of the ellipse showing the features found in part (i)	2
	(iii)		If $P(x_0, y_0)$ is a point on the ellipse show that $(PS + PS')$ is	2
			constant. You may mark point P in quadrant one of the above mentioned diagram.	
	(iv)		Show that the equation of the tangent at $P(x_0, y_0)$ is	2
			$\frac{xx_0}{25} + \frac{yy_0}{16} = 1.$	
	(v)		The tangent at P meets the nearer focus at R . If S is the nearer focus to P	
		(α)	write down the co-ordinates of R .	1
		(eta)	find expressions for the gradients of <i>PR</i> and <i>SR</i> in terms of x_0 and y_0 .	2
		(γ)	show that the angle <i>PSR</i> is a right angle.	1
(b)			A hyperbola has its centre at the origin and asymptotes $y=\pm \frac{2}{3}x$. Find its equation.	2

Question 6 (15 marks) Use a SEPARATE writing booklet

- (a) The region bounded by the curve y = x(2-x) and the x-axis is 4 rotated about the y-axis. Find the volume of the solid of revolution by taking slices perpendicular to the y-axis.
- (b) The region bounded by the curve $y = \ln x$, the line y = 1 and the co-ordinate axes is rotated about the *x*-axis.
 - By dividing the resulting solid into cylindrical shells, show that each 2 (i) shell has an approximate volume : $\delta v = 2\pi y e^y \delta y$ where δy is the thickness of the shell.
 - Hence calculate the volume of the solid. (ii)
- The base of a particular solid is the circle $x^2 + y^2 = 8$. Find the (c) 4 volume of the solid if every cross section to the x-axis is an isosceles – right angled triangle with the hypotenuse in the base of the solid.
- Show that the straight line lx+my+n=0 is a tangent to the (d) hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ if $a^2 l^2 - b^2 m^2 = n^2$.

Marks

3

- (a) Mr Kirkpatrick's mathematics class brought him a ride in a Gondola at Queenstown in New Zealand, during a recent trip. When Mr Kirkpatrick's hands were *H* metres above the Earth's surface, he dropped overboard his packet of beer nuts of mass *m* kg. The packet of beer nuts encounters air resistance proportional to its velocity *v* (which is in metres per second), that is the resistive force is equal to *mkv*. Taking Mr Kirkpatrick's hands as the origin and downwards displacement as positive:
 - (i) Write down an equation of motion representing the passage of the 2 packet of beer nuts.
 - (ii) Find the terminal velocity, *w*, of the packet of beer nuts. 1
 - (iii) Show that the equation of motion in part (i) can be written as 1 $\ddot{x} = k(w-v)$.
 - (iv) Show that the displacement, x metres, of the packet of beer nuts from 4 Mr Kirkpatrick's hands is given by: $x = -\frac{v}{k} - \frac{w}{k} \ln\left(\frac{w-v}{w}\right)$.
 - (v) If the packet reaches the Earth's surface with a velocity of *u* metres 1 per second, show that $\ln\left(1-\frac{u}{w}\right) + \frac{u}{w} + \frac{kH}{w} = 0$.
 - (vi) Consider the moment when the packet of beer nuts has reached 75% of its terminal velocity.Find:
 - (α) the time, *t* seconds, for this moment to be reached. 3
 - (β) the distance fallen at this moment. 3

(a) Draw a neat half page sketch of the graph for
$$y^2 = x^2 (4-x^2)$$
. 3

(b)

In the above diagram *AB* and *BC* are chords of a circle, and *F* is on the arc *ABC* such that arc *AF* is equal to arc *FC*. *E* is the foot of the perpendicular from *F* to the chord *BC*. *CB* is extended to *P* so that PE = EC. (Note that *B* is inside the triangle *APF*)

- (i) Show that the triangle *APF* is isosceles.
- (ii) Show that AB + BE = EC.

Question 8 continues on page 11

(c)

b c a

A triangle ABC has sides of varying length a, b and c with a fixed interior angle of BAC = as shown in the above diagram. Use the cosine rule to show that:

в

(i)
$$a^2 \ge bc$$
, and hence,
(ii) the area of triangle $ABC \le \frac{a^2\sqrt{3}}{4} ABC \le \frac{a^2\sqrt{3}}{4}$

(ii)

End of examination

$$Extension 2 Solutions 2007 S.T.C B.L.C
Question 4
(a)WIHS=Sin(A+B) + Sin(A-B)
= SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB - COASING
= 2 SINACOB + COASING + SINACOB + SINACOB
= 2 SINACOB + COASING + SINACOB + SINACOB
= 2 SINACOB + COASING + SINACOB
= 2 SINACOB + COASING + SINACOB + SINACOB
= 2 SINACOB + COASING + SINACOB
= 2 SINACOB + COASING
= 2 SINACOB + COASING + SINACOB
= 2 SINACOB + COASING
= 2 SINACOB
= 2 SINACOB + COASING
= 2 SINACOB
= 2 SINACO$$

Z

Extension Z Solution 2007 S.I.C B.L.C
(e)
$$\int \frac{1}{1+\sin x} dx$$
Where $J = \tan \frac{x}{2}$

$$\frac{dt}{dx} = \frac{1}{2} \sec^2 \frac{x}{2}$$

$$2 dt = (1+\tan^2 \frac{x}{2}) dx$$

$$\frac{2 dt}{1+t^2} = dx$$

$$I = 2 \int \frac{1}{1+\frac{2x}{1+t^2}} \frac{2 dt}{1+t^2} dt$$

$$I = 2 \int \frac{1}{(1+t)^2} dt$$

Extension & Solutions 2007 S.I.C	B.L.C
$(f) \int \frac{\cos^{-i} x}{\sqrt{1+x}} dx$	
$\int det \ u = \cos^{-1}x \Rightarrow u' = -\frac{1}{\sqrt{1-z^2}}$	
$V' = (1+x)^{\frac{1}{2}} \implies V = \frac{(2(+1))^{\frac{1}{2}}}{\frac{1}{2} \times 1} = 2\sqrt{x+1}$	
$I = 2\sqrt{x+1} \ \cos^{-1} x - \int -\frac{1}{\sqrt{1-x^{2}}} x \ 2\sqrt{x+1} \ dx$	
$I = 2\sqrt{2t+1} \cos^{-1}x + 2\int \frac{\sqrt{2t+1}}{\sqrt{1-2^2}} dx$	
$I = 2 \int x + 1 (oj x + 2) \int \frac{1}{\sqrt{1-x}} dx$	
$I = 2\sqrt{x+1} \cos x + 2 \int (1-x)^{-\frac{1}{2}} dx$	
$I = 2\sqrt{x+1} (\sigma_{1}^{2}x + 2x (1-x)x-1 + c)$ $\frac{1}{2}$	
$I = 2\sqrt{\chi} + 1 \left(\frac{1}{2} - 4 \sqrt{1 - \chi} + C \right)$	

Extension & Solutions 2007 B.L.C S.I.C $e^{-x}+x-1 \ge 0$ (८) $\int det y = e^{-x} + x - 1$ Now $\frac{dy}{dx} = -e^{-x} + 1$ $\frac{dy}{dy} = e^{-x} = \frac{1}{e^{x}} > 0$ for all x in the domain of the reak. Note: The meaning of a negative index $a^{-m} = \frac{1}{\pi^{-m}}$ Now since dy >0 we can say that the curve. y = e x + x - 1 is always concave up. When $\frac{dy}{dx} = 0$ -e-x+1= 0 $e^{\gamma} = 1$ $e^{\chi} = e^{\circ}$ 10 20 = 0 and when x = 0, $y = e^{\circ} + 0 - 1$ Minimum turning point at (0,0) Henro y ≥ o for all >c hence e"+x-1≥0 for real X.

Mathematics Extension 2 Solutions 2007 5TC	RIC
Question 3	D.E.U
(a) $\frac{l^2 - l}{l} + \frac{l}{l}$	
$-\frac{1-1}{1+1} = -\frac{2}{1+1} = -\frac{2(1+1)+1}{1+1}$	
$ \begin{array}{c} - \mathcal{L} \\ - \mathcal{L} \\ - \mathcal{L} \\ + $	
$= \frac{-2 - 2 \cdot 1}{1 + 1} = \frac{-2 - 2 \cdot 1}{1 + 1^2}$	
$= 2i + \frac{1-i}{1+i} = -\frac{2-i}{1+i} \times \frac{i+i}{1+i}$	
$= \frac{1}{2} + 2l - \frac{1}{2}i \qquad = \frac{-2l - 2 - l^2 - i}{2}i$	
$= \frac{1}{2} + \frac{3}{2} \frac{1}{2} = -\frac{1}{-3} \frac{1}{2}$	
-2	
(b) (1) and (11)	
AI-	
B (3.0)	
F.JE	
~ 2 R	
C	· · ·
(III) (Inde has centra Alan)	
En la (0,32) and radius 3	
$ Z-3\nu =3$	
(IV) Bus given by : 3 (COJET + L SIN STT)	
CM given by : 3 ((07-STT + LSIA-STT)	
(V) New position of B: 3 (cos/ET+T), sen (ST -1)	
$= 3 \left(\frac{1}{100} - \frac{1}{100} + \frac{1}{100} \right)$	
New position of C = 3 (Cost-EF+I)+ 2 sint-EF+I)	
$= 3 \left((\alpha - 2\sigma + 4s) - 7\pi \right)$	
$\sqrt{12}$ $\overline{12}$	7

Extension 2 Solutions 2007 . S.T.C B.L.C
(1) Theorem: IP polynomial equation co-efficients are included roots exist in conjugate pairs, thus (1+2i) is not a root.
(1) Theorem:
$$IP$$
 polynomial equation co-efficients are included roots exist in conjugate pairs, thus (1+2i) is not a root.
(1) Sunnod roots : $d + p = -\frac{\int -(3+i)}{I}$
 $d + \beta = 3+i$
 $If d = 1-2i$
Then $1-2i + \beta = 3+i$
 $\therefore \beta = 2+3i$
(11) Product at roots : $d\beta = \frac{1}{2}$
 $d\beta = h$.
Substitution : $(1-2i)(2+3i) = k$.
 $k = 2+3i - 4i - 6i^{2}$
 $k = 2+6-i$
 $k = 8-i$
(11) Now considering $2^{2}(-(3+i)Z + (8-i)) = 0$
 $Z = \frac{(3+i) \pm \sqrt{84i}^{2} - 4i(x8-i)}{2(i)}$
 $Z = \frac{(3+i) \pm \sqrt{84i}^{2} - 4i(x8-i)}{2(i)}$
 $def one of the square roots be (a+bi)$
 $i \cdot 1-2i = (3+i) \pm a+bi$.
 $2 - hii = 3+i + a+bi$.
 $2 - hii = 3+i + a+bi$.
 $5 imiliantly it can also be shown that $a = i, b = 5$
 $i \cdot The turo square roots are $\pm (1+5i)$ 9$$

Mathematics
Extension 2 Solutions 2007 S.E.C B.L.C
Question 4
(a)
$$p(x) = x^n + ax^2 - 2$$

(b) When $x = i$, $p(x) = 0$
 $\therefore 0 = (i)^n + a(i)^2 - 2$
 $\therefore a = i$
(c) When $p(x) = -6$, $x = -2$
 $\therefore -6 = (-2)^n + ix (-2)^2 - 2$
 $-6 = (-2)^n + 4 - 2$
 $-6 = (-2)^n + 2$
 $(-2)^n = -8$
 $(-2)^n = -8$
 $(-2)^n = (-2)^3$
 $w = 3$.
(ii) $\therefore p(x) = x^3 + x^2 - 2$.
Maxe $p(x) \neq (x-i)$
 $x^3 + x^3 + ax^2 - 2$.
Maxe $p(x) \neq (x-i)$
 $x^3 - x^2$
 $2x^2 - 2x$
 $x = -2 \pm \frac{1}{2} + 2x + 2$
When $x^2 + ix + 2 = 0$
 $x = -2 \pm \frac{1}{2} + 2x + 2$
Maxe bolistions for $p(x) = 0$ are $x = 1$ or $x = -i \pm i$.

Extension L Solutions 2007
(b)
$$f(x) = 2x^3 - (2a+1)x^3 + (2+b)x - 1$$

 $p'(x) = 6x^7 - 2(2a+1)x + (2+b)$
Now There is a double root at $x = 1$
 $\therefore p(t) = p'(t) = 0$
do $x - (2a+1)x + (2+b)x - 1 = 0$.
 $2-2a-1+2+b-1=0$.
 $-2a+b+2=0$
 $2a-b=2$ $---0$
And $6-x(2a+1)x + 2+b=0$.
 $6-4a-b=6$ $---0$
And $6-x(2a+1)x + 2+b=0$.
 $6-4a-b=6$ $---0$
Solving: $0-0 - 2a = -4$
 $a = 2$
Subm 0 $4-b = 2$
 $b = 2$
Answer $a = 2, b = 2$
(b) l, m, m roots of $x^3 - 2x + 5 = 0$
(i) $det y = 2x \implies x = \frac{4}{2}$
Substitute:
 $\left(\frac{24}{2}\right)^3 - 2\left(\frac{4}{2}\right) + 5 = 0$
 $\frac{4^3}{5} - 9 + 5 = 0$
 $y^3 - 8y + 4 = 0$
reverting to The vanable x .
The required equation as $x^3 - 8x + 4 = 0$

Mathematics
Extension 2 Solutions 2007 . S.I.C B.L.C
C (II) IF l, m, m are the roots of the
equation
$$x^3 = 22-5$$
 Then:
 $l^3 = 2l-5$ --- C
 $m^3 = 2m-5$ --- C
 $n^3 = 2(l+m+n) - (5x3)$
 $n^3 = 2m-5$ --- C
 $n^3 = 2(l+m+n) - (5x3)$
 $n^3 =$

\$

$$Extension Z Solutions 2007 . S.T.C B.L.C
Extension Z Solutions 2007 . S.T.C B.L.C
(e) $\frac{\chi^{1}}{25} - \frac{\chi^{1}}{16} = 1$
 $a = 5, b = 4$
(f) $b^{2} = \alpha^{2}(e^{3}-1)$
 $b^{6} = 25(e^{3}-1)$
 $b^{7} = 25($$$

Mathematics
Extension 2 Solutions 2007 . S.T.C B.L.C
(C)
$$\frac{PS}{PM} = a \text{ ond } \frac{PS'}{PM'} = e$$
 This is from The livens definition of a
Hyperbola.
 $PS - PS' = ePM - ePM'$
 $= e(PM - PM')$
 $|PS - PS'| = \left|\frac{U_{W}}{S}\left[X_{0} - \frac{2S}{UH} - (X_{0} + \frac{2S}{UH})\right]$
 $= \left|\left(\frac{U_{W}}{S}\left[X_{0} - \frac{2S}{UH} - X_{0} - \frac{2S}{UH}\right)\right]$
 $= \left|\frac{U_{W}}{S}\left[X_{0} - \frac{2S}{UH} - X_{0} - \frac{2S}{UH}\right]\right|$
 $= 10$ is a constant (Thus is The length of The
major azis).
(d) Equation of tangent:
 $\frac{2X}{2S} - \frac{4}{9}\frac{dx}{dx} = 0$
 $\frac{dy}{dx} = \frac{USY}{2Sy}$
(tradient of tangent: $\frac{16X}{2Sy}$
(tradient of tangent: $\frac{16X}{2Sy}$
 $\frac{dy}{dx} = \frac{USY}{2Sy}$
(tradient of tangent: $\frac{16X}{2Sy}$
 $\frac{1}{6} X_{0}X - 2S y_{0}Y = \frac{16X_{0}^{2}}{2Sy_{0}}$
 $\frac{1}{6} X_{0}X - 2S y_{0}Y = \frac{16X_{0}^{2}}{2S} - \frac{4}{16} \frac{4}{2}$
 $\frac{2S}{16} - \frac{4}{16} \frac{4}{25} = \frac{2S^{2}}{16} - \frac{4}{16}$
 $1e \frac{X_{0}X}{2S} - \frac{4}{16} = \frac{X_{0}^{2}}{16} = 1 - - - 0$
 $\frac{4}{2} \frac{Nole}{(X_{0}, y_{0})}$ satisfies the equation of The hyperbola
 $Herce \frac{X_{0}^{2}}{2S} - \frac{4}{16} = 1$
 $\frac{14}{16}$

Extension 2 So	lutions 2007	- S.I.C	B.L.C
(e) (1) Solving (1) wi (o-ordinates o	$f_{R} = \frac{25}{\sqrt{41}} - \frac{1}{\sqrt{41}}$	(2) for The	
Sub @ in	$\sim \bigcirc \frac{\chi_{o} \times \frac{25}{25}}{\frac{25}{\sqrt{41}}} =$	$\frac{404}{16} = 1$	
	$\frac{\chi_{0}}{V_{44}} - 1 =$	<u>404</u> 16	
	$y_{R} = \frac{16}{y_{0}} \left(\frac{1}{y_{0}} \right)$	$\left(\frac{\chi_{e}}{\sqrt{\mu}}-1\right)$	
(1) Gradiento :	$m = \frac{y_2 - y_1}{x_2 - x_1}$	grovenby (28, yR)	

= -1

$$M_{PS} \times M_{SR} = \frac{y_o}{\chi_o - \sqrt{41}} \times \frac{\sqrt{41}}{-16} \times \frac{16}{y_o \sqrt{41}} (\chi_o - \sqrt{41})$$

Mathematics
Extension 2 Solutions 2007
S.T.C B.L.C
Curvetion 6.
(d)

$$y = 2x - x^{\nu} = x(2-x)$$

$$x = 2(2-x)$$

$$x = 2(2-$$

Extension & Solutions 2007 B.L.C · S.T.C (d) lx + my + n = 0- -- - - () $\frac{\chi}{h^2} + \frac{4^2}{h^2} = 1$ - 🕗 from () $y = -\frac{lx+n}{m}$ Sub in (2) $\frac{\chi^2}{4\chi} + \frac{(l\chi+n)^2}{(l\chi+n)^2} = 1$ $b^{2}m^{2}x^{2} + a^{2}(l^{2}x^{2} + 2lnx + n^{2}) = a^{2}b^{2}m^{2}$ $b^{2}m^{2}x^{2} + a^{2}d^{2}x^{2} + 2a^{2}lnx + a^{2}n^{2} - a^{2}b^{2}m^{2} = 0$ $(b^{2}m^{2}+a^{2}l^{2})\chi^{2}+2a^{2}ln\chi+a^{2}(n^{2}-b^{2}m^{2})=0$ In This quadratic equation $\Delta = 0$ for tangency $(2a^{2}ln)^{2} - 4(b^{2}m^{2}a^{2}l^{2}) \times a^{2}(n^{2} - b^{2}m^{2}) = 0$ $\frac{1}{2}4a^{2}:a^{2}l^{2}n^{2}-(b^{2}m^{2}+a^{2}l^{2})(n^{2}-b^{2}m^{2})=0$ $a^{2}l^{n} - (b^{2}m^{2}n^{2} - b^{4}m^{4} + a^{2}l^{n} - a^{2}l^{2}b^{2}m^{2} = 0.$ $a^{2}l^{2}n^{2} - b^{2}m^{2}n^{2} + b^{4}m^{4} - a^{2}l^{2}n^{2} + a^{2}l^{2}b^{2}m^{2} = 0$ - b2m2h2+b4m4+a2l2b2m2= 0 $-m^{2}n^{2}+b^{2}m^{4}+a^{2}l^{2}m^{2}=0$ $-n^{\gamma}+b^{\gamma}m^{\gamma}+a^{\gamma}l^{2}=0$ $le n^2 = a^2 l^2 + b^2 m^2$

Mathematics
Extension 2 Solutions 2007 S.I.C BLC
Question I
(a)
$$\frac{1}{1 = 0} = v_{=0, x = 0}$$

the $\frac{1}{\sqrt{mg}} \int mkv$
 $F = ma$.
 $m\ddot{z} = mg - mkv$
 $\ddot{x} = g - hv$
 $\ddot{x} = g - hv$
 $\ddot{x} = g - hv$
 $\ddot{x} = hv$
 $\ddot{x} = g - hv$
 $\ddot{x} = hv$
 $\dot{y} = hv$
 $\dot{$

Mathematics Extension & Solutions 2007 . S.I.C. B.L.C
(f) Now replacing $\tilde{x} = \frac{du}{dt}$ in (2)
(1) $\frac{dv}{dt} = k(w-v)$
$\frac{dt}{dv} = \frac{1}{k} \times \left(\frac{1}{w-v}\right) \qquad \frac{Note}{pubstitution here = 2 df u = w-v}$
$t = \frac{1}{k} x - \ln w - v + c$
$t = -\frac{1}{k} \ln w - v + c$
Now when $t = 0$, $v = 0$
$0 = -\frac{1}{k} \ln w + c$
$c = \frac{1}{k} \ln W $
$f = \frac{1}{k} \ln w - \frac{1}{k} \ln w - v $
$f = \frac{1}{k} lm \frac{w}{w-v-1} \Theta$
Now 75% of terminal velocity means v = 0.75w.
$t = \frac{1}{k} lm \left \frac{w}{w - 0.75 w} \right $
$f = \frac{1}{k} lw \frac{1}{0.25}$ Note 0.2.5 = $\frac{1}{4}$
$t = \frac{1}{k} l_{w} \frac{1}{\frac{1}{4}}$
$t = \frac{1}{k} \ln \mu$ records.
ie the time to reach 75% of terminal velocity

Mathematrics
Extension b Solutions 2007 S.T.C BLC

$$x = \frac{1}{k} \left[-v - w \ln |v - w| \right] + c = -\frac{v}{k} - \frac{w}{k} \ln |v - w| + c$$
Now $x = o$ when $v = o$

$$0 = -\frac{w}{k} \ln |-w|$$

$$\therefore z = -\frac{v}{k} - \frac{w}{k} \ln |v - w| + \frac{w}{k} \ln |-w|$$

$$x = -\frac{v}{k} - \frac{w}{k} \ln |v - w| - \ln |-w|$$

$$z = -\frac{v}{k} - \frac{w}{k} \ln |\frac{v - w}{-w}|$$

$$x = -\frac{v}{k} - \frac{w}{k} \ln |\frac{w - w}{-w}|$$

$$x = -\frac{v}{k} - \frac{w}{k} \ln |\frac{w - w}{-w}|$$
(e) New when $x = H$, $v = w$ Sub an

$$H = -\frac{w}{k} - \frac{w}{k} \ln |w - \frac{w}{w}|$$

$$W \ln |1 - \frac{w}{w}| + \frac{w}{w} + \frac{w}{w} = 0$$

Principles of the solutions 2007
Extension
$$\mathcal{B}$$
 solutions 2007
 \mathcal{B} is the equation \mathcal{B} of the reduce in opproach is
 $dubstrike = 0.75 \text{ W}$
 $k = \frac{1}{k} \ln \left| \frac{W-v}{W-v} \right|$
 $\frac{W-v}{W} = kt$
 $\frac{W-v}{W} = e^{-kt}$
 $\frac{W-v}{W} = e^{-kt}$
 $\frac{W-v}{W} = w - we^{-kt}$
 $\frac{W-v}{W} = w - we^{-kt}$
 $\frac{W-v}{W} = w - we^{-kt}$
 $\frac{W}{W} = \frac{1}{k} \ln \frac{1}{k}$
 $\frac{W-v}{W} = \frac{1}{k} \ln \frac{1}{k}$
 $\frac{W}{W} = \frac{1}{k} \ln \frac{1}{k} + \frac{1}{k}$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} - 1 \right]$
 $\frac{1}{k} = \frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} + 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} + 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} + 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + e^{-kt} + 1 \right]$
 $\frac{1}{k} \left[\ln \frac{1}{k} + 1 \right]$
 $\frac{1}{k} \left[$

Extension & Solutions 2007 B.L.C 5. I. C (c)(I) using The cosine rule : $a^2 = b^2 + c^2 - 2bc \cos \frac{\pi}{3}$ $a^2 = b^2 + c^2 - 2bc(\frac{1}{2})$ $a^{2} = b^{2} + c^{2} - bc$ Now $a^2 - bc = b^2 + c^2 - 2bc$ (subtracting befrom bolksides) :. $a^{2}-bc = (b-c)^{2}$ Now (b-c) 2 s a perfect square · a2-bc≥0 (note: equality if b=c) $a^2 \ge bc = --0$ (\parallel) The area of A ABC = 1 be sing Area = $\frac{1}{2}$ bc × $\frac{3}{2}$ Area = Jbc Area $\leq \frac{\sqrt{3}}{4}a^2$ (using part (1) (1)