SAINT IGNATIUS' COLLEGE

Trial Higher School Certificate

2007

MATHEMATICS EXTENSION 2

12:30pm - 3:35pm

Tuesday 28th August 2007
Directions to Students

- Reading Time : 5 minutes	- Total Marks 120
- Working Time : 3 hours	
- Write using blue or black pen. (sketches in pencil).	- Attempt Question 1 -8
- Board approved calculators may be used	- All questions are of equal value
- A table of standard integrals is provided at the back of this paper.	
- All necessary working should be shown in every question.	
- Answer each question in the booklets provided and clearly label your name and teacher's name.	

Question 1 (15 marks) Use a SEPARATE writing booklet
(a) (i) Show that $\sin (A+B)+\sin (A-B)=2 \sin A \cos B$

1
(ii) Hence find the indefinite integral $\int \sin 5 x \cos 3 x d x$
(b) Evaluate $\int_{0}^{5} \frac{t d t}{\sqrt{t+4}}$
(c) Evaluate $\int_{-1}^{1} 3^{x} d x$ correct to three significant figures.
(d) Evaluate $\int_{0}^{\frac{1}{3}} \frac{d x}{\sqrt{1-9 x^{2}}}$
(e) Find $\int \frac{1}{1+\sin x} d x$, using the substitution $t=\tan \frac{x}{2}$
(f) Use integration by parts to find $\int \frac{\cos ^{-1} x}{\sqrt{1+x}} d x$
(a) Prove that $f(x)=\frac{x^{3}}{\sin x}$ is an even function.
(b) A sketch of $f(x)=-4(x+1)(x-2)$ is shown below.

With the aid of the above diagram, and without the use of calculus, draw a separate half page sketch for each of the following.
(i) $\quad y=|f(x)|$
(ii) $y=f(2 x)$
(iii) $y=f(-x)$
(iv) $y=\frac{1}{f(x)}$
(v) $y=\sqrt{f(x)}$
(vi) $y=\log _{e} f(x)$
(c) Using calculus, show that $e^{-x}+x-1 \geq 0$ for real x.
(a) Express the following in the form $(x+i y)$, where x and y are real:

$$
\frac{i^{2}-1}{i}+\frac{1}{1+i}
$$

(b)

The Argand diagram above, shows a regular hexagon with vertex A at the point $(0,3 i) . O$ is the centre of the hexagon.
(i) Copy the diagram into your writing booklet.
(ii) On your diagram show the region within the hexagon in which both the inequalities $|z| \leq 2$ and $-\frac{\pi}{6} \leq \arg z \leq \frac{\pi}{6}$ are satisfied.
(iii) Find in the form $\left|z-z_{1}\right|=R$, the equation of the circle through the points O, B and F.
(iv) Find the complex numbers, in modulus argument form, represented by the points B and C.
(v) The hexagon is rotated anticlockwise about the origin through an angle of $\frac{\pi}{4}$. Express in the form $r(\cos \theta+i \sin \theta)$, where θ is the principal argument, the complex numbers represented by the new positions of B and C.

Question 3 continues on page 5

Question 3 (continued)

(c) If $1-2 i$ is a root of the equation $z^{2}-(3+i) z+k=0$,
(i) explain why the conjugate $1+2 i$ cannot be a root to the equation 1
(ii) show that the other root is $2+3 \mathrm{i} \quad 1$
(iii) find the value of $k \quad 1$
(iv) hence, or otherwise, find the two square roots of $-24+10 i$.
(a) A polynomial $p(x)=x^{n}+a x^{2}-2$ has a factor of $(x-1)$ and leaves a remainder of -6 on division by $(x+2)$. Find:
(i) the value of a
(ii) the value of n
(iii) the zeros of $p(x)$.
(b) Find the values of a and b so that $p(x)=2 x^{3}-(2 a+1) x^{2}+(2+b) x-1$ has a double root at $x=1$.
(c) If l, m, n are the roots of the equation $x^{3}-2 x+5=0$,
(i) find the cubic equation whose roots are $2 l, 2 m, 2 n$.
(ii) find the value of $l^{3}+m^{3}+n^{3}$.
(d) Find all the values of k for which the polynomial equation 3 $3 x^{4}-4 x^{3}+k=0$ has no real roots.
(a)

An ellipse has the equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 . O$ is the centre of the ellipse and S and S^{\prime} are the foci.
(i)

Find (α) the eccentricity 1
(β) the co-ordinates of the foci 1
(γ) the equations of the directrices. 1
(ii) Make a third of a page sketch of the ellipse showing the 2 features found in part (i)
(iii) If $P\left(x_{0}, y_{0}\right)$ is a point on the ellipse show that $\left(P S+P S^{\prime}\right)$ is constant. You may mark point P in quadrant one of the above mentioned diagram.
(iv) Show that the equation of the tangent at $P\left(x_{0}, y_{0}\right)$ is
$\frac{x x_{0}}{25}+\frac{y y_{0}}{16}=1$.
(v) The tangent at P meets the nearer focus at R. If S is the nearer focus to P,
(α) write down the co-ordinates of R. 1
(β) find expressions for the gradients of $P R$ and $S R$ in terms of $x_{0} \quad 2$ and y_{0}.
(γ) show that the angle $P S R$ is a right angle.
(b) A hyperbola has its centre at the origin and asymptotes $y= \pm \frac{2}{3} x$. Find its equation.
(a) The region bounded by the curve $y=x(2-x)$ and the x-axis is rotated about the y-axis. Find the volume of the solid of revolution by taking slices perpendicular to the y-axis.
(b) The region bounded by the curve $y=\ln x$, the line $y=1$ and the co-ordinate axes is rotated about the x-axis.
(i) By dividing the resulting solid into cylindrical shells, show that each 2
(i) By dividing the resulting solid into approximate volume : $\delta v=2 \pi y e^{y} \delta y$ where δy is the thickness of the shell.
(ii) Hence calculate the volume of the solid.
(c) The base of a particular solid is the circle $x^{2}+y^{2}=8$. Find the 4 volume of the solid if every cross section to the x-axis is an isosceles - right angled triangle with the hypotenuse in the base of the solid.
(d) Show that the straight line $l x+m y+n=0$ is a tangent to the
hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $a^{2} l^{2}-b^{2} m^{2}=n^{2}$.
(a) Mr Kirkpatrick's mathematics class brought him a ride in a Gondola at Queenstown in New Zealand, during a recent trip. When Mr Kirkpatrick's hands were H metres above the Earth's surface, he dropped overboard his packet of beer nuts of mass $m \mathrm{~kg}$. The packet of beer nuts encounters air resistance proportional to its velocity v (which is in metres per second), that is the resistive force is equal to $m k v$.
Taking Mr Kirkpatrick's hands as the origin and downwards displacement as positive:
(i) Write down an equation of motion representing the passage of the packet of beer nuts.
(ii) Find the terminal velocity, w, of the packet of beer nuts.
(iii) Show that the equation of motion in part (i) can be written as $\ddot{x}=k(w-v)$.
(iv) Show that the displacement, x metres, of the packet of beer nuts from 4 Mr Kirkpatrick's hands is given by: $x=-\frac{v}{k}-\frac{w}{k} \ln \left(\frac{w-v}{w}\right)$.
(v) If the packet reaches the Earth's surface with a velocity of u metres 1 per second, show that $\ln \left(1-\frac{u}{w}\right)+\frac{u}{w}+\frac{k H}{w}=0$.
(vi) Consider the moment when the packet of beer nuts has reached 75% of its terminal velocity. Find:
(α) the time, t seconds, for this moment to be reached.
(β) the distance fallen at this moment.
(a) Draw a neat half page sketch of the graph for $y^{2}=x^{2}\left(4-x^{2}\right)$.
(b)

In the above diagram $A B$ and $B C$ are chords of a circle, and F is on the $\operatorname{arc} A B C$ such that $\operatorname{arc} A F$ is equal to arc $F C$. E is the foot of the perpendicular from F to the chord $B C . C B$ is extended to P so that $P E=E C$. (Note that B is inside the triangle $A P F$)
(i) Show that the triangle $A P F$ is isosceles.
(ii) Show that $A B+B E=E C$.

Question 8 continues on page 11

Question 8 (continued)

(c)

A triangle ABC has sides of varying length a, b and c with a fixed interior angle of $B A C=$ as shown in the above diagram.
Use the cosine rule to show that:
(i) $a^{2} \geq b c$, and hence,
(ii) the area of triangle $A B C \leq \frac{a^{2} \sqrt{3}}{4} A B C \leq \frac{a^{2} \sqrt{3}}{4}$

End of examination

Vlathematics
Solutions

SAINT IGNATIUS' COLLEGE
Trial Higher School Certificate
2007

MATHEMATICS EXTENSION 2

- This as a study resource for sc preparation
- This document es designed to help students understand The questions
- The solutions should be treated as aids only
- There may be better solutions to some questions.

Extersion 2 Solutions 2007
Question 1

$$
\begin{aligned}
& \text { (a) (i) } \angle A S= \sin (A+B)+\sin (A-B) \\
&=\sin A \cos B+\cos A \sin B+\sin A \cos B-\cos A \sin B \\
&= 2 \sin A \cos B=R H S \\
& \text { (II) } \begin{aligned}
\int \sin 5 x \cos 3 x d x & =\frac{1}{2} \int(\sin 8 x+\sin 2 x) d x \\
& =\frac{1}{2}\left(-\frac{1}{8} \cos 8 x-\frac{1}{2} \cos 2 x\right)+C \\
& =-\frac{1}{16}\left(\cos 8 x-\frac{1}{4} \cos 2 x+C\right.
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \\
& I=\int_{0}^{5} \frac{t d t}{\sqrt{t+4}} \\
& \text { Let } u=t+4 \\
& d u=d t \\
& \text { when } t=5, u=9 \\
& t=c, u=4 \\
& I=\int_{4}^{9} \frac{u-4}{u^{1 / 2}} d u \\
& I=\int_{4}^{9}\left(u^{\frac{1}{2}}-4 u^{-\frac{1}{2}}\right) d u \\
& I=\left[\frac{2}{3} u^{\frac{3}{2}}-2 x 4 u^{\frac{1}{2}}\right]_{4}^{9} \\
& I=\left[\frac{2}{3} u^{\frac{3}{2}}-8 u^{\frac{1}{2}}\right]_{4}^{9} \\
& I=\left[\left(\frac{2}{3} \times 29-24\right)-\left(\frac{2}{3} \times 8-8 \times 2\right)\right] \\
& I=18-24-\frac{16}{3}+16 \\
& I=34-29 \frac{1}{3} \\
& I=4 \frac{2}{3}
\end{aligned}
$$

Mathematics
Extersion 2 Solutions 2007
(c)

$$
\begin{aligned}
\int_{-1}^{1} 3^{x} d x & =\frac{1}{\ln 3}\left[3^{x}\right]_{-1}^{1} \\
& =\frac{1}{\ln 3}\left(3-\frac{1}{3}\right) \\
& =\frac{8}{3 \ln 3} \\
& =2.43 \text { c.3.5.f Calculaterface } 2.427304604
\end{aligned}
$$

(d) $\int_{0}^{\frac{1}{3}} \frac{d x}{\sqrt{1-9 x^{2}}}$

Note $1-9 x^{2}=9\left(\frac{1}{9}-x^{2}\right)$

$$
\begin{aligned}
& =\frac{1}{3} \int_{0}^{\frac{1}{3}} \frac{1}{\sqrt{\left(\frac{1}{3}\right)^{2}-x^{2}}} d x \\
& =\frac{1}{3}\left[\sin \frac{x}{\frac{1}{3}}\right]_{0}^{\frac{1}{3}} \\
& =\frac{1}{3}[\sin 3 x]_{0}^{\frac{1}{3}} \\
& =\frac{1}{3}[\sin 1-\sin 0] \\
& =\frac{1}{3} \times \frac{\pi}{2} \\
& =\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{gathered}
\text { (e) } \int \frac{1}{1+\sin x} d x \\
\text { when } t=\tan \frac{x}{2} \\
\frac{d t}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} \\
2 d t=\left(1+\tan ^{2} \frac{x}{2}\right) d x \\
\frac{2 d t}{1+t^{2}}=d x \\
I=\int \frac{1}{1+\frac{2 t}{1+t^{2}}} \frac{2 d t}{1+t^{2}} \\
I=2 \int \frac{1+t^{2}}{\left(1+t^{2}+2 t\right)\left(1+t^{2}\right)} d t \\
I=2 \int \frac{1}{(1+t)^{2}} d t \\
I=2 \int(1+t)^{-2} d t \\
I=2(1+t)^{-1}+c \\
I x-1 \\
I=-\frac{2}{1+t}+c \\
I=-\frac{2}{1+t a n}+\frac{x}{2}+c
\end{gathered}
$$

giatnematics

$$
\begin{aligned}
& \text { (f) } \int \frac{\cos ^{-1} x}{\sqrt{1+x}} d x \\
& \text { Let } u=\cos ^{-1} x \Rightarrow u^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \\
& \quad V^{\prime}=(1+x)^{\frac{1}{2}} \Rightarrow V=\frac{(x+1)^{\frac{1}{2}}}{\frac{1}{2} \times 1}=2 \sqrt{x+1} \\
& I=2 \sqrt{x+1} \cos ^{-1} x-\int-\frac{1}{\sqrt{1-x^{2}}} \times 2 \sqrt{x+1} d x \\
& I=2 \sqrt{x+1} \cos ^{-1} x+2 \int \frac{\sqrt{x+1}}{\sqrt{1-x^{2}}} d x \\
& I=2 \sqrt{x+1} \cos ^{-1} x+2 \int \frac{1}{\sqrt{1-x}} d x \\
& I=2 \sqrt{x+1} \cos ^{-1} x+2 \int(1-x)^{-\frac{1}{2}} d x \\
& I=2 \sqrt{x+1} \cos ^{-1} x+2 \times \frac{(1-x)^{\frac{1}{2}} \times-1}{\frac{1}{2}}+c \\
& I=2 \sqrt{x+1} \cos ^{-1} x-4 \sqrt{1-x}+c
\end{aligned}
$$

Question 2
(a) $f(x)=\frac{x^{3}}{\sin x}$

$$
\begin{aligned}
f(-x) & =\frac{(-x)^{3}}{\sin (-x)} \\
& =\frac{-x^{3}}{-\sin x} \\
& =\frac{x^{3}}{\sin x} \\
& =f(x)
\end{aligned}
$$

$\therefore f(x)$ as an even function
(b) $\quad f(x)=-4(x+1)(x-2)$
(1)

(II)

(HI)

Mathematics
(v)
(iv)

(vi)

Extersion'z'Solutions 2007
(c) $e^{-x}+x-1 \geqslant 0$

Let $y=e^{-x}+x-1$
Now $\frac{d y}{d x}=-e^{-x}+1$
$\frac{d^{2} y}{d x^{2}}=e^{-x}=\frac{1}{e^{x}}>0$ for all x in the domain of the reals.
Note: The meaning of a negative index

$$
a^{-m}=\frac{1}{a^{m 2}}
$$

Now since $\frac{d^{2} y}{d x^{2}}>0$ we can say Phat the curve.
$y=e^{-x}+x-1$ y always concave up.
When $\frac{d y}{d x}=0$

$$
\begin{gathered}
-e^{-x}+1=0 \\
e^{x}=1 \\
e^{x}=e^{0} \\
\therefore x=0
\end{gathered}
$$

and when $x=0, y=e^{0}+0-1$

$$
y=0
$$

\therefore minimum turning point at $(0,0)$
Here $y \geqslant 0$ for all x hence

$$
e^{-x}+x-1 \geqslant 0 \text { for real } x
$$

Mathematics
Extersion 2 Solutions 2007
Question 3
(a)

$$
\begin{aligned}
& \frac{l^{2}-1}{l}+\frac{1}{1+l} \\
= & \frac{-1-1}{l}+\frac{1}{1+l}=-\frac{2}{i}+\frac{1}{i+l}=\frac{-2(1+l)+l}{l(1+l)} \\
=\frac{-2}{l} \times \frac{l}{l}+\frac{1(1-l)}{(1+l)(1-l)} & =\frac{-2-2 l+i}{l+l^{2}} \\
= & 2 l+\frac{1-l}{1+1}=\frac{-2-l}{1-1} \times l+1 \\
= & \frac{1}{2}+2 l-\frac{1}{2} i \\
= & \frac{1}{2}+\frac{3}{2} i
\end{aligned}
$$

(b) (II and (II)
(III)

Circle has centre $A(0,31)$ and radices 3 .

$$
\text { Equation: }|z-3 w|=3
$$

(iv) Bes given by: $3\left(\cos \frac{5 \pi}{6}+2 \sin \frac{5 \pi}{6}\right)$

Cis given by: $3\left(\cos -\frac{5 \pi}{6}+l \sin -\frac{5 \pi}{6}\right)$
(v) New position of. $B: 3\left(\cos \left(\frac{5 \pi}{6}+\frac{\pi}{4}\right)+i \sin \left(\frac{5 \pi}{6}+\frac{\pi}{4}\right)\right)$

$$
=3\left(\cos -1 \frac{1 \pi}{12}+i \sin -\frac{1 \pi}{12}\right)
$$

New position of $c: 3\left(\cos \left(-\frac{5 \pi}{6}+\frac{\pi}{4}\right)+l \sin \left(-\frac{5 \pi}{6}+\frac{\pi}{4}\right)\right)$

$$
=3\left(\cos -\frac{2 \pi}{12}+1 \sin -\frac{7 \pi}{12}\right)
$$

Exintersmon 2 Solutions 2007
(c) $(1-2 i)$ a root of $z^{2}-(3+i) z+t=0$
(1) Theorem: If polyiuomal equation coefficients are real Them complex roots exist un congregate pairs. Hence ($1+2 e$) un not a root.
(ii) Sum ot roots: $\alpha+\beta=\frac{-[-(3+\alpha)]}{1}$

$$
\alpha+\beta=3+i
$$

$$
\text { If } \alpha=1-2 i
$$

Then $\quad 1-2 i+\beta=3+i$

$$
\therefore \beta=2+3 i
$$

(III)

$$
\begin{array}{r}
\text { Product of roots: } \alpha \beta^{3}=\frac{k}{1} \\
\alpha \beta 3=k \\
\text { substitution: }(1-2 l)(2+3 u)=k \\
k=2+3 l-4 e-6 l^{2} \\
k=2+6-e \\
k=8-i
\end{array}
$$

(iv) Now Considering $z^{2}-(3+\varphi) z+(8-\lambda)=0$

$$
\begin{aligned}
& z=\frac{(3+1) \pm \sqrt{(3+1)^{2}-4(1)(8-1)}}{2(1)} \\
& Z=\frac{(3+1) \pm \sqrt{9+61+1^{2}-32+4 \lambda}}{2} \\
& Z=\frac{(3+1) \pm \sqrt[2]{-24+10 i}}{2} \\
& \text { Note here that } \\
& \text { There is an } \\
& \text { alternative } \\
& \text { mend for } \\
& \begin{array}{l}
\text { finding op Mare. } \\
\text { roots }
\end{array}
\end{aligned}
$$

Let one of the oypuare roots ba $(a+b i)$

$$
\begin{aligned}
\therefore 1-2 l & =\frac{(3+l)+a+b l}{2} \\
2-4 l & =3+1+a+b l \\
-1-5 l & =a+b i
\end{aligned}
$$

Equating real andimaginary parts.
$a=-1, b=-5$
Similarly it can $\vec{t} \vec{l}{ }_{20}$ be shown That $a=1, b=5$
\therefore The truro square roots are $\pm(1+5 i)$

Mathematics

Question 4
(a) $\quad p(x)=x^{n}+a x^{2}-2$
(1) When $x=1, p(x)=0$.

$$
\begin{aligned}
\therefore \quad 0 & =(1)^{n}+a(1)^{2}-2 . \\
& \therefore a=1
\end{aligned}
$$

(ii) When $P(x)=-6, x=-2$.

$$
\begin{aligned}
-6 & =(-2)^{n}+1+(-2)^{2}-2 \\
-6 & =(-2)^{n}+4-2 \\
-6 & =(-2)^{n}+2 \\
(-2)^{n} & =-8 \\
(-2)^{n} & =(-2)^{3} \\
n & =3
\end{aligned}
$$

(III) $\therefore P(x)=x^{3}+x^{2}-2$.

Now $P(x) \div(x-1)$

$$
\begin{array}{r}
x-1 \sqrt{\frac{x^{2}+2 x+2}{x^{3}+0 x-2}} \\
\frac{x^{3}-x^{2}}{2 x^{2}+0 x} \\
\therefore p(x)=(x-1)\left(x^{2}+2 x+2\right)
\end{array}
$$

When $x^{2}+2 x+2=0$

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{4-8}}{2} \\
& x=\frac{-2 \pm \sqrt{4 i^{2}}}{2} \\
& x=\frac{-2 \pm 2 i}{2}=-1 \pm i
\end{aligned}
$$

Hence Solutions for $p(x)=0$ are $x=\operatorname{lor} x=-1 \pm 1$
svininemajics
Extersion 2 Solutions 2007
(b)

$$
\begin{aligned}
& p(x)=2 x^{3}-(2 a+1) x^{2}+(2+b) x-1 \\
& p^{\prime}(x)=6 x^{2}-2(2 a+1) x+(2+b)
\end{aligned}
$$

Now There is a double root at $x=1$

$$
\therefore p(i)=p^{\prime}(1)=0
$$

So $2-(2 a+1) \times 1+(2+b)+1-1=0$.

$$
\begin{gather*}
2-2 a-1+2+b-1=0 \\
-2 a+b+2=0 \\
2 a-b=2 \tag{1}
\end{gather*}
$$

And

$$
\begin{gather*}
6-2(2 a+1)+1+2+b=0 \\
6-4 a-2+2+b=0 \\
-4 a+b+6 \\
4 a-b=6
\end{gather*}
$$

Solving: (1) $-5-2 a=-4$

$$
a=2
$$

Subin (1) $\cdot 4-b=2$

$$
b=2
$$

Answer $a=2, b=2$
(b) l, m, n roots of $x^{3}-2 x+5=0$
(1) Let $y=2 x \Rightarrow x=\frac{4}{2}$

Substitute:

$$
\begin{aligned}
& \left(\frac{y}{2}\right)^{3}-2\left(\frac{y}{2}\right)+5=0 \\
& \frac{y^{3}}{8}-y+5=0 \\
& y^{3}-8 y+40=0
\end{aligned}
$$

reverting to The variable x :
The required equationect $x^{3}-8 x+40=0$

Mathematics
Extension 2 Solutions 2007
C (II) If l, m, n are the roots of The equation $x^{3}=2 x-5$ Than:

$$
\begin{align*}
& l^{3}=2 l-5 \\
& m^{3}=2 m-5 \\
& n^{3}=2 n-5
\end{align*}
$$

Add The te equations:

$$
l^{3}+m^{3}+n^{3}=2(l+m+n)-(5 \times 3)
$$

Now the sum of the rooks af the given equation es zero. $1 e(l+m+n)=0$

$$
\therefore l^{3}+m^{3}+n^{3}=-15
$$

(d) considering $3 x^{4}-4 x^{3}+1 a=0$.

Let $p(x)=3 x^{4}-4 x^{3}+k$.

$$
\begin{aligned}
& \dot{p}^{\prime}(x)=12 x^{3}-12 x^{2}=12 x^{2}(x-1) \\
& p^{\prime \prime}(x)=36 x^{2}-24 x=12 x(3 x-2)
\end{aligned}
$$

For stationary points $p^{\prime}(y)=0 \therefore x=0$ or 1
when $x=0 \quad p(x)=k$

$$
\text { and } p^{\prime \prime}(x)=0
$$

It appears What ($0, k$) is a horizontal point of inflection
when $x=1 \quad p(x)=k-1$
and $p^{\prime \prime}(x)=12>0$
$\therefore(1, k-1)$ is a minimum turning point.

If $k>1$, The point $(1, k-1)$ is above the x axis and chance $\left(3 x^{4}-4 x^{3}+k\right)=0$ has no real roots. 12
(a) $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$
$a=5, b=4$
(1) $b^{2}=a^{2}\left(e^{2}-1\right)$

$$
\begin{aligned}
& 16=25\left(e^{2}-1\right) \\
& \frac{16}{25}=e^{2}-1 \\
& e^{2}=\frac{25}{25}+\frac{16}{25} \\
& e^{2}=\frac{41}{25} \\
& e=\frac{\sqrt{41}}{5}, e>0
\end{aligned}
$$

(II) S is $(a e, 0) ; S!\approx(-a e, 0)$

$$
\begin{gathered}
a_{e}=\frac{5 \times \sqrt{41}}{5}=\sqrt{41} \\
\therefore S=(\sqrt{41}, 0) \text { and } S^{\prime}=(-\sqrt{41}, 0)
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& y= \pm \frac{b}{a} x \\
& y= \pm \frac{4}{5} x
\end{aligned}
$$

(IV)

$$
\begin{aligned}
& x= \pm \frac{a}{t} \\
& x= \pm \frac{25}{\sqrt{141}}
\end{aligned}
$$

(b)

Mathematics
(c)

$$
\begin{aligned}
& \frac{P S}{P M}=e \text { and } \frac{P S^{\prime}}{P M^{\prime}}=e \quad \begin{aligned}
\text { This es } f \\
\text { Hyperbe }
\end{aligned} \\
&=e P-P S^{\prime} \\
&=e P M-e P M^{\prime} \\
&=e\left(P M-P M^{\prime}\right) \\
&=\left|\frac{\sqrt{41}}{5}\left(x_{0}-\frac{25}{\sqrt{4 H}}-x_{0}-\frac{25}{\sqrt{4.1}}\right)\right| \\
&=\left\lvert\, \frac{\sqrt{44}}{5}\left[\left.x_{0}-\frac{25}{\sqrt{41}}-\left(x_{0}+\frac{25}{\sqrt{41}]}\right] \right\rvert\,\right.\right. \\
& \left.\left(-\frac{50}{\sqrt{411}}\right) \right\rvert\,
\end{aligned}
$$

This is from the I acis definition of a Hyperbola.
$=10$ ie a constant (Thus es The lengThen The
(d) Equation of tangent: major axis).

$$
\begin{aligned}
& \frac{2 x}{25}-\frac{y}{8} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{16 x}{25 y}
\end{aligned}
$$

Gradient of tangent: $m=\frac{16 x_{0}}{25 y_{0}}$

$$
\begin{align*}
& \operatorname{tangent}= y-y_{1}=m\left(x-x_{1}\right) \\
& y-y_{0}=\frac{16 x_{0}}{25 y_{0}}\left(x-x_{0}\right) \\
& 25 y_{0} y-25 y_{0}^{2}=16 x_{0} x-16 x_{0}^{2} \\
& 16 x_{0} x-25 y_{0} y=16 x_{0}^{2}-25 y_{0}^{2} \\
& \frac{x_{0} x}{25}-\frac{y_{0} y}{16}=\frac{x_{0}^{2}}{25}-\frac{y_{0}^{2}}{16} \tag{1}
\end{align*}
$$

le $\quad \frac{x_{0} x}{2.5}-\frac{40 y}{16}=1$
Note. $\left(x_{0}, y_{0}\right)$ satisfies the equation of the hyperbola Hence $\frac{x_{0}^{2}}{25}-\frac{Y_{a}^{2}}{16}=1$

Irainemalits
(e) (i) Solving (i) winh $x_{R}=\frac{25}{\sqrt{41}}$
(2) for the co-ordinates of R.

Sub (2) en (1)

$$
\begin{aligned}
& \frac{x_{0}}{25} \times \frac{25}{\sqrt{41}}-\frac{y_{0 y}}{16}=1 \\
& \frac{x_{0}}{\sqrt{41}}-1=\frac{y_{0} y}{16} \\
& y_{R}=\frac{16}{y_{0}}\left(\frac{x_{0}}{\sqrt{41}}-1\right)
\end{aligned}
$$

The co-andinate, of R aree grainby $\left(x_{R}, y_{R}\right)$
(II) Gradiento : $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& m_{P S}=\frac{y_{0}-0}{x_{0}-\sqrt{41}}=\frac{y_{0}}{x_{0}-\sqrt{41}} \\
& m_{S R}=\frac{\frac{16}{y_{0}}\left(\frac{x_{0}}{\sqrt{41}}-1\right)-0}{\frac{25}{\sqrt{41}}-\sqrt{41}}=\frac{\frac{16}{y_{20} \sqrt{41}}\left(x_{0}-\sqrt{41}\right)}{-\frac{16}{\sqrt{41}}}
\end{aligned}
$$

(III) For perpendicular lines $m_{1} m_{2}=-1$

$$
\begin{aligned}
m_{P S} \times m_{S R} & =\frac{y_{0}}{x_{0}-\sqrt{41}} \times \frac{\sqrt{41}}{-16} \times \frac{16}{y_{0} \sqrt{41}}\left(x_{0}-\sqrt{41}\right) \\
& =-1
\end{aligned}
$$

Therefore $P S \perp S R$
Hence $\widehat{P S R}=90^{\circ}$ ie a right angle.

Mathematics

Question 6
(a)

$$
\begin{aligned}
& A(y)=\pi x_{2}^{2}-\pi x_{1}^{2} \\
& \Delta V \doteq \pi\left(x_{2}^{2}-x_{1}^{2}\right) \Delta y
\end{aligned}
$$

$V=\operatorname{Limit}_{\Delta y \rightarrow 0} \sum_{y=0}^{y=1} A+x \sqrt{1-y} A y$

$$
V=4 \pi \int_{0}^{1}(1-y)^{\frac{1}{2}} d y
$$

$$
V=4 \pi\left[\frac{(1-y)^{\frac{3}{2}}}{\frac{3}{2} x-1}\right]_{0}^{1}
$$

$$
V=4 \pi x-\frac{2}{3}[0-1]
$$

$V=\frac{5 \pi}{3}$ units 3

Note To find x_{1} and x_{2}
Solve The quadratic equation in x where' y i is a fixedratie

$$
\begin{gathered}
x^{2}-2 x+y=0 \\
x=\frac{2 \pm \sqrt{4-4 y}}{2} \\
x=1 \pm \sqrt{1-y} \\
x_{2}=1+\sqrt{1-y} \\
x_{1}=1-\sqrt{1-y} .
\end{gathered}
$$

And $x_{2}^{2}-x_{1}^{2}=\left(x_{2}+x_{1}\right)\left(x_{2}-x_{1}\right)$

$$
\begin{aligned}
& =2(2 \sqrt{1-y}) \\
& =4 \sqrt{1-y}
\end{aligned}
$$

Extersion' 2 Solutions 2007
(b)

$$
\begin{gathered}
A(y)=2 \pi y \times x=2 \pi x y \\
V \div 2 \pi x y \Delta y . \\
\delta V \equiv 2 \pi x e^{y} \times y \delta y \\
1 e \delta v \frac{2 \pi y e^{y} \delta y}{\bar{亏}} \delta \operatorname{Limit}_{\delta x \rightarrow 0} \sum_{y=0}^{y=1} 2 \pi y e^{y} \delta y \\
V=2 \pi \int_{0}^{1} y e^{y} d y
\end{gathered}
$$

Now untegration by ports will $u=y \Rightarrow u^{\prime}=1$

$$
v^{\prime}=e^{y} \Rightarrow v=e^{y}
$$

$$
\begin{aligned}
& V=2 \pi\left\{\left[y e^{y}\right]_{0}^{1}-\int_{0}^{1} e^{y} d y\right. \\
& V=2 \pi\left\{(e-0)-[e y]_{0}^{1}\right\} \\
& V=3 \pi(e-e+1) \\
& V=2 \pi \quad \text { units } 3
\end{aligned}
$$

Mathematics
(c)

$$
\begin{aligned}
& \quad \text { Now } \frac{h}{2 y}=\cos 4.5^{\circ}=\frac{1}{\sqrt{2}} \Rightarrow h=\frac{2 y}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=y \sqrt{2} \\
& A(x)=\frac{b \times h}{2}=\frac{y \sqrt{2}+y \sqrt{2}}{2}=y^{2} \\
& \Delta V=y^{2} \Delta x \\
& \Delta V=\left(8-x^{2}\right) \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& V=\operatorname{limit}_{\Delta x \rightarrow 0} \sum_{x=-2 \sqrt{2}}^{x=2 \sqrt{2}}\left(8-x^{2}\right) \Delta x \\
& V=2 \int_{0}^{2 \sqrt{2}}\left(8-x^{2}\right) d x \\
& V=2\left[8 x-\frac{x^{3}}{3}\right]_{0}^{2 \sqrt{2}} \\
& V=2\left[16 \sqrt{2}-\frac{16 \sqrt{2}}{3}-0\right] \\
& V=\frac{64 \sqrt{2}}{3} \text { units }^{3}
\end{aligned}
$$

$$
V=2 \int_{0}^{2 \sqrt{2}}\left(8-x^{2}\right) d x \quad \text { note even function i property. }
$$

Extersion'z Solutions 2007
(d) $l x+m y+n=0$

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

from (1) $y=-\frac{l x+n}{m}$
Sub in (2)

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{(l x+n)^{2}}{b^{2} m^{2}}=1 \\
& b^{2} m^{2} x^{2}+a^{2}\left(l^{2} x^{2}+2 \ln x+n^{2}\right)=a^{2} b^{2} m^{2} \\
& b^{2} m^{2} x^{2}+a^{2} l^{2} x^{2}+2 a^{2} \ln x+a^{2} n^{2}-a^{2} b^{2} m^{2}=0 \\
& \left(b^{2} m^{2}+a^{2} l^{2}\right) x^{2}+2-a^{2} \ln x+a^{2}\left(n^{2}-b^{2} m^{2}\right)=0
\end{aligned}
$$

In This quadiatic equation $\Delta=0$ for tangency

$$
\begin{gathered}
\left(2 a^{2} l n\right)^{2}-4\left(b^{2} m^{2}+a^{2} l^{2}\right) \times a^{2}\left(n^{2}-b^{2} m^{2}\right)=0 \\
\div 4 a^{2}: a^{2} l^{2} n^{2}-\left(b^{2} m^{2}+a^{2} l^{2}\right)\left(n^{2}-b^{2} m^{2}\right)=0 . \\
a^{2} l^{2} n^{2}-\left(b^{2} m^{2} n^{2}-b^{4} m^{4}+a^{2} l^{2} n^{2}-a^{2} l^{2} b^{2} m\right)^{2}=0 \\
a^{2} l^{2} n^{2}-b^{2} m^{2} n^{2}+b^{4} m^{4}-a^{2} l^{2} n^{2}+a^{2} l^{2} b^{2} m^{2}=0 \\
-b^{2} m^{2} n^{2}+b^{4} m^{4}+a^{2} l^{2} b^{2} m^{2}=0 \\
-m^{2} n^{2}+b^{2} m^{4}+a^{2} l^{2} m=0 . \\
-n^{2}+b^{2} m^{2}+a^{2} l^{2}=0 \\
l e n^{2}=a^{2} l^{2}+b^{2} m^{2}
\end{gathered}
$$

Mathematics

Question 7
(a)

+ive. \downarrow

$$
t=0 \quad v=0, x=0
$$

$$
\begin{aligned}
& F=m a \\
& m \ddot{x}=m g-m k v \\
& \ddot{x}=g-k v .
\end{aligned}
$$

(b) For terminal nelocity $w \operatorname{Let} \ddot{x}=0$

$$
\begin{aligned}
\therefore & g-k w=0 \\
& w=\frac{g}{k}
\end{aligned}
$$

(c) Now from (1)

$$
\begin{align*}
& \ddot{x}=k\left(\frac{g}{k}-v\right) \\
& \ddot{x}=k(w-v) \tag{2}
\end{align*}
$$

(d) Inv (2) Let $\ddot{x}=r \frac{d v}{d x}$

$$
\begin{aligned}
& r \frac{d v}{d x}=k(w-v) \\
& \frac{d r}{d x}=k\left(\frac{w-v}{v}\right) \\
& \frac{d x}{d v}=\frac{1}{k} \times\left(\frac{v}{w-v}\right) \\
& \frac{d x}{d v}=\frac{1}{k}\left[-1-\frac{w}{v-w}\right]
\end{aligned}
$$

Note

$$
\begin{aligned}
\frac{v}{w-v} & =-\left(\frac{v}{v-w}\right) \\
& =-\left(\frac{v-w+w}{v-w}\right) \\
& =-\left(1+\frac{w}{v-w}\right) \\
& =-1-\frac{w}{v-w}
\end{aligned}
$$

(f) Now replacing $\ddot{x}=\frac{d x}{d t}$ un (2).
(1)

$$
\begin{aligned}
& \frac{d v}{d t}=k(w-v) \\
& \frac{d t}{d v}=\frac{1}{k} \times\left(\frac{1}{w-v}\right) \quad \text { Note } \\
& t=\frac{1}{k} x-\ln |w-v|+c \\
& t=-\frac{1}{k} \ln |w-v|+c
\end{aligned}
$$

Note Several students unreal. substitution here: Leaf $u=w-m$

Now when $t=0, v=0$

$$
\begin{align*}
0 & =-\frac{1}{k} \ln |w|+c \\
c & =\frac{1}{k} \ln |w| \\
\therefore t & =\frac{1}{k} \ln |w|-\frac{1}{k} \ln |w-v| \\
t & =\frac{1}{k} \ln \left|\frac{w}{k-w}\right|
\end{align*}
$$

Now 75% of terminal velocity means $v=0.75 \mathrm{w}$.

$$
\begin{aligned}
& t=\frac{1}{k} \ln \left|\frac{w}{w-0.75 w}\right| \\
& t=\frac{1}{k} \ln \frac{1}{0.25} \\
& t=\frac{1}{k} \ln \frac{1}{\frac{1}{4}} \\
& A=\frac{1}{k} \ln 4 \text { seconds. }
\end{aligned}
$$

Note

$$
0 \cdot 2.5=\frac{1}{4}
$$

ie the time to reach 75% of terminal velocity

Mathematics

$$
x=\frac{1}{k}[-v-w \ln |v-w|]+c=-\frac{v}{k}-\frac{w}{k} \ln |v-w|+c
$$

Now $x=0$ when $w=0$

$$
\begin{align*}
0 & =-\frac{w}{k} \ln |-w|+c \\
c & =\frac{w}{k} \ln |-w| \\
\therefore x & =-\frac{v}{k}-\frac{w}{k} \ln |v-w|+\frac{w}{k} \ln |-w| \\
x & =-\frac{v}{k}-\frac{w}{k}[\ln |v-w|-\ln |-w|] \\
x & =-\frac{v}{k}-\frac{w}{k} \ln \left|\frac{v-w}{-w}\right| \\
x & =-\frac{v}{k}-\frac{w}{k} \ln \left|\frac{w-v}{w}\right| \tag{3}
\end{align*}
$$

(e) Now when $x=H, v=w$ sub un

$$
\begin{aligned}
& H=-\frac{u}{k}-\frac{w}{k} \ln \left|\frac{w-u}{w}\right| \\
& k H=-w-w \ln \left|1-\frac{w}{w}\right| \\
& w \ln \left|1-\frac{u}{w}\right|+u+k H=0 \\
& \ln \left|1-\frac{u}{w}\right|+\frac{u}{w}+\frac{b H}{w}=0
\end{aligned}
$$

IVIathematics
(II) Back to equation (4)

$$
\begin{gathered}
t=\frac{1}{k} \ln \left|\frac{w}{w-v}\right| \\
k t=-\ln \left|\frac{w-v}{w}\right| \\
\ln \left|\frac{w-w}{w}\right|=-k t \\
\frac{w-w}{w}=e^{-k t} \\
w-w=w e^{-k t} \\
w=w-w e^{-k t} \\
\frac{d x}{d t}=w-w e^{-k t} \\
x=w t+\frac{w}{k} e^{-k t}+c
\end{gathered}
$$

Nov When $x=0, t=0$

$$
\begin{aligned}
& 0= 0+\frac{w}{k} e^{0}+c \\
& c=-\frac{w}{k} \\
& x= w t+\frac{w}{k}\left(e^{-k t}-1\right) .
\end{aligned}
$$

when $t=\frac{1}{k} \ln 4$

$$
\begin{aligned}
& x=\frac{w}{k} \ln 4+\frac{w}{k}\left(e^{-k \times \frac{1}{k} \ln 4}-1\right) \\
& x=\frac{w}{k}\left[\ln 4+e^{-\ln 4}-1\right] \\
& x=\frac{w}{k}\left(\ln 4+e^{\ln 4^{-1}}-1\right) \\
& x=\frac{w}{k}\left(\ln 4+4^{-1}-1\right) \\
& x=\frac{w}{k}\left(\ln 4-\frac{3}{4}\right) \operatorname{metres}
\end{aligned}
$$

Thus is the distame fallen at 75% of The terminal Velocity

Question 8
(a) $y^{2}=x^{2}\left(x^{2}-4\right)$

Dotted Graph; $g(x)=x^{2}\left(x^{2}-4\right)$

(b)

(1) $\operatorname{arc} A F=\operatorname{arc} F C\{$ given $\} \quad \therefore \quad A F=F C$

But on $\triangle P F C, E F$ perpendicularly bisects base $P C$.

$$
\therefore \triangle P F C \text { as wosceles }\left\{\begin{array}{l}
\text { converse of the The orem for an isoseeles } \\
\text { a which states that The altitude is } \\
\text { The perpendicul or bisector at the base }
\end{array}\right\}
$$

$$
\therefore P F=F C
$$

from (1) and (2)
$\therefore P F \quad \therefore \triangle A P F$ As dosceles.
(ii) Now $\alpha_{1}=\alpha_{2}\left\{\begin{array}{c}\text { Angles in he pare segment Theorem- } B F \text { subtends } \\ \text { equal angles at } A \text { and } C\end{array}\right\}$

And $\alpha_{2}=\alpha_{3}\{$ base angles of isosceles $\triangle P F C\}$
Now since. $\triangle A P F$ us us osceles

$$
\begin{aligned}
& \angle F P A=\angle E A P=\beta, 2 a y \\
& \therefore \angle B P A=\angle B A P=\beta=\alpha
\end{aligned}
$$

$\therefore \triangle P B A$ us usceles and $\therefore A B=B P$
(c)

(I)
using. The cosine, rule :

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos \frac{\pi}{3} \\
\therefore a^{2} & =b^{2}+c^{2}-2 b c\left(\frac{1}{2}\right) \\
\therefore a^{2} & =b^{2}+c^{2}-b c
\end{aligned}
$$

Now $a^{2}-b c=b^{2}+c^{2}-2 b c \quad$ (subtracting $b c$ from bo 2 sides)

$$
\therefore a^{2}-b c=(b-c)^{2}
$$

$\operatorname{Now}(b-c)^{2}$ is a perfect square

$$
\begin{array}{cl}
\therefore a^{2}-b c \geqslant 0 & \text { (roterequality if } b=c) \\
\therefore a^{2} \geqslant b c & -\cdots
\end{array}
$$

(ii) The area of $\triangle A B C=\frac{1}{2} b c \sin \frac{\pi}{3}$

$$
\text { Area }=\frac{1}{2} b c \times \frac{\sqrt{3}}{2}
$$

$$
\text { Area }=\frac{\sqrt{3}}{4} b c
$$

Area $\leqslant \frac{\sqrt{3}}{4} a^{2} \quad$ (using part (i) (1))

