

SAINT IGNATIUS’ COLLEGE

Trial Higher School Certificate

2010

EXTENSION 2 MATHEMATICS

Directions to Students

- Reading Time $: 5$ minutes	• Total Marks 120
- Working Time $: 3$ hours	
- Write using blue or black pen. (sketches in pencil).	• Attempt Question $1-8$
- Board approved calculators may	
be used	

This page is left blank

Question 1 (Start a new Booklet)

(a) Find $\int \cos ^{2} x \sin x d x$
(b) (i) Use partial fractions to show

$$
\frac{8}{(x+2)\left(x^{2}+4\right)}=\frac{1}{x+2}+\frac{2-x}{x^{2}+4}
$$

(ii) Hence evaluate

$$
\int_{0}^{2} \frac{8 d x}{(x+2)\left(x^{2}+4\right)}
$$

(c) Use integration by parts to find $\int \cos ^{-1} x d x$
(d) Find $\int \frac{d x}{\sqrt{x^{2}+5}}$
(e) (i) Prove that if $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ then $I_{n}=\frac{n-1}{n} I_{n-2}$
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{7} x d x$
(a) Given $z=3-4 i$, find $z \bar{z}$
(b) (i) Express $z=-1+i \sqrt{3}$ in modulus-argument form.
(ii) Hence or otherwise find z^{5} in the form $a+i b$.
(c) Find all pairs of real numbers x and y that satisfy

$$
(x+i y)^{2}=12-16 i
$$

(d) On an Argand diagram, illustrate the region that satisfies

$$
0 \leq \arg (z+4) \leq \frac{2 \pi}{3} \text { and }|z+4| \leq 4
$$

(e) The diagram below represents a square $O A B C$. The point C represents the complex number $2+3 i$.

Diagram not to scale.
(i) Find the complex number that represents the point A.
(ii) Hence or otherwise, find the coordinates of the point B.
(a) Consider the graph below.

On separate number planes, sketch the following:
(i) $y=\frac{1}{f(x)}$
(ii) $\quad y=f(|x|)$
(iii) $y=[f(x)]^{2}$
(iv) $y^{2}=f(x) \quad 3$
(v) $y=\ln f(x) \quad 3$
(b) Sketch, showing all asymptotes, the graph of 3

$$
y^{2}=\frac{x^{2}}{x^{2}+2}
$$

(a) Consider the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$.
(i) Find its eccentricity.
(ii) State the co-ordinates of the foci. 1
(iii) State the equations of the directrices.
(iv) State the equations of the asymptotes.
(b) $\quad P(a \cos \theta, b \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with its centre at the origin O. A line through O, parallel to the tangent at P, meets the ellipse at Q and R.
(i) Show that the equation of the line $Q R$ is ay $\sin \theta+b x \cos \theta=0$. 3
(ii) Show that the coordinates of Q and R are $(-a \sin \theta, b \cos \theta)$ and $(a \sin \theta,-b \cos \theta)$.
(iii) Find the perpendicular distance from P to the line $Q R$.
(iv) Show that the area of $\triangle P Q R$ is independent of θ.
(a) If $P(x)=2 x^{3}+5 x+1$ has roots α, β, γ then find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$
(b) Factorise $x^{4}+7 x^{2}-8$ into the product of linear factors over the complex field.
(c) Consider the polynomial $P(x)=x^{4}+B x^{3}+C x^{2}-24 x+36$. The equation $P(x)=0$ has a double root at $x=2$.
(i) Find the values of B and C. 3
(ii) Hence find all the solutions of $P(x)=0$.
(d) (i) If $x=\cos \theta+i \sin \theta$, use De Moivre's Theorem to prove that

$$
2 \cos n \theta=x^{n}+\frac{1}{x^{n}}
$$

(ii) Hence or otherwise solve the equation

$$
3 x^{4}-5 x^{3}+8 x^{2}-5 x+3=0
$$

(a) Solve $\frac{x+1}{(x-1)(x+2)} \geq 0$
(b)

P, Q, R and A lie on the circumference of a circle
$P A \perp Q R$ meeting QR at M .
$Q N \perp P R$ meeting $P A$ at H.
Let $\angle M Q A=x$.
(i) Copy the diagram into your writing booklet.
(ii) Prove $Q R$ bisects $H A$.
(c) The area enclosed by the curve $y=(x-2)^{2}$ and the line $y=4$ is rotated about the y-axis. Use the method of cylindrical shells to find the exact volume of the solid formed.
(d) A concrete beam of length $20 m$ has plane sides and cross sections parallel to ends which are rectangular. The beam measures 10 m by 12 m at one end and $5 m$ by $6 m$ at the other end.
(i) Find an expression in terms of h for the area of a cross-section of the beam that is $h m$ from the smaller end.
(ii) Find the volume of the beam.
(a) Find the general solution of the inequality $\cos \theta \geq \frac{\sqrt{3}}{2}$
(b) A light inextensible string $O P$ is fixed at the end O and is attached at the other end P to a particle of mass m which is moving uniformly in a horizontal circle whose centre is vertically below and distant x from O.
(i) Prove that the period of this motion is $2 \pi \sqrt{\frac{x}{g}}$ seconds, where g is the acceleration due to gravity.
(ii) If the number of revolutions per second is increased from 2 to 3, find the change in x. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
Give your answer correct to the nearest millimetre.
(c) A particle of mass, m, falls vertically from rest under gravity in a medium for which the resistance to the motion is proportional to the square of the velocity (i.e. $R=m k v^{2}$).
(i) Write an equation for the acceleration ($\ddot{x})$ of the particle.
(ii) Show that the terminal velocity (V) is given by $V=\sqrt{\frac{g}{k}}$.
(iii) Show that the position, x, of the particle in terms of its velocity, v is given by $x=\frac{1}{2 k} \ln \left(\frac{g}{g-k v^{2}}\right)$
(a) (i) Show that $\cos (A-B)-\cos (A+B)=2 \sin A \sin B$
(ii) Hence evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin 5 x \sin x d x$
(b) A sequence T_{n} is such that $T_{1}=4$ and $T_{2}=8$ and $T_{n+2}=6 T_{n+1}-5 T_{n}$ Prove by mathematical induction that $T_{n}=5^{n-1}+3$ for integers $n \geq 1$.
(c) The diagram represents the curve $y=\frac{1}{t}$ for $t>0$

(i) If $x>1$. show that $\int_{1}^{\sqrt{x}} \frac{1}{t} d t=\frac{1}{2} \ln x$
(ii) Show that for $x>1,0<\frac{1}{2} \ln x<\sqrt{x}$
(iii) Use the inequality in (ii) to show that $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & \left.=\sqrt{x^{2}+a^{2}}\right) \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x &
\end{array}
$$

NOTE: $\quad \ln x=\log _{e} x, \quad x>0$

