SCEGGS Darlinghurst

2009

HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics Extension 2

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

BLANK PAGE

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
Marks
Question 1 (15 marks)
(a) Find $\int_{0}^{\frac{\pi}{3}} \sec ^{3} x \tan x d x$
(b) Find $\int \sqrt{\frac{5-x}{5+x}} d x$.

2

$$
\frac{10}{(3+x)\left(1+x^{2}\right)} \equiv \frac{A}{3+x}+\frac{B x+C}{1+x^{2}}
$$

(ii) Use the substitution $t=\tan \theta$ to find $\int \frac{10}{3+\tan \theta} d \theta$.
(d) For $n \geq 1$, let $I_{n}=\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{n}}$.
(i) By writing $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{n}}$ as $\int_{0}^{1} 1 \times \frac{d x}{\left(x^{2}+1\right)^{n}}$, and using integration by parts, 3 show that

$$
2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}
$$

(ii) Hence evaluate $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}$.

End of Question 1

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) The complex number w is given by $w=-1+\sqrt{3} i$.
(i) Show that $w^{2}=2 \bar{w}$.
(ii) Evaluate $|w|$ and $\arg w$.
(iii) Show that w is a root of $z^{3}-8=0$.
(b) On separate diagrams, draw a neat sketch of the locus defined by
(i) $|z-1-3 i| \leq 2$ and $\frac{\pi}{4} \leq \arg z \leq \frac{\pi}{2}$.
(ii) $\quad \arg \left(\frac{z-i}{z-1}\right)=\frac{\pi}{2}$.
(c) By considering the binomial expansion of $(1+i)^{n}$ show that

$$
1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots=2^{\frac{n}{2}} \cos \frac{n \pi}{4} .
$$

(d) The points O, I, Z and P on the Argand Plane represent the complex numbers $0,1, z$ and $z+1$ respectively, where $z=\cos \theta+i \sin \theta$ is any complex number of modulus 1 , with $0<\theta<\pi$.
(i) Explain why OIPZ is a rhombus.
(ii) Show that $\frac{z-1}{z+1}$ is purely imaginary.

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) The locus defined by $|z-2|-|z+2|=2$ corresponds to part of a hyperbola in the Argand Plane.

Sketch the locus labeling the foci, directrices, asymptotes and any intercepts with the axes.
(b)

The diagram shows the graph of $y=f(x)$. The lines $y=x$ and $y=\frac{1}{2}$ are both asymptotes.

On the answer page provided, draw separate sketches of the following graphs.
Clearly indicate any important features.
(i) $y=(f(x))^{2}$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=f(x)-x$

Question 3 (continued)
(c)

(i) Given the sketch of $y=\frac{1}{9} x(x-3)^{2}$ above, sketch the curve $y^{2}=\frac{1}{9} x(x-3)^{2}$.
(ii) Use implicit differentiation to find $\frac{d y}{d x}$ in terms of x and y for $y^{2}=\frac{1}{9} x(x-3)^{2}$.
(iii) Given that the length of a curve between $x=a$ and $x=b$ is given by

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

find the entire length of the curve $y^{2}=\frac{1}{9} x(x-3)^{2}$ for $0 \leq x \leq 3$.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$.
(i) If $P(x)$ has zeroes $a+b i$ and $a+2 b i$, where a and b are real and $b>0$, find the values of a and b.
(ii) Hence express $P(x)$ as the product of two quadratic factors with real coefficients.
(b) The region bounded by the curve $y=\cos x$ and the coordinate axes is rotated about the y-axis.

Use the method of cylindrical shells to find the volume of the solid formed.
(c)

A cylindrical hole of radius $a \mathrm{~cm}$ is bored through the centre of a sphere of radius $2 a \mathrm{~cm}$.

Show that the volume of the remaining solid is $4 \sqrt{3} a^{3} \pi \mathrm{~cm}^{3}$.
(d) The cubic equation $x^{3}+k x+1=0$, where k is a constant, has roots α, β and γ. For each positive integer $n, S_{n}=\alpha^{n}+\beta^{n}+\gamma^{n}$.
(i) State the value of S_{1} and express S_{2} in terms of k.
(ii) Show that for all $n, S_{n+3}+k S_{n+1}+S_{n}=0$.
(iii) Hence, or otherwise, express $\alpha^{4}+\beta^{4}+\gamma^{4}$ in terms of k. 1

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a)

The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, where $a>b>0$, cuts the positive x-axis at the point K. The normal to the hyperbola at the point $P(a \sec \theta, b \tan \theta)$ cuts the x-axis at A and the y-axis at B, as shown in the diagram.
(i) Show that the equation of the normal to the hyperbola at the point P is

$$
\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}
$$

(ii) Find the midpoint M of $A B$.
(iii) Find the point G such that G divides the interval $O M$ in the ratio 2:1.
(iv) Show that the locus of G is a hyperbola and find the point L at which

3 this locus cuts the positive x-axis.
(v) If $\frac{O L}{O K}<1$, show that $1<e<\sqrt{3}$.

Question 5 continues on page 9
(b) The base of a solid is the region in the $x y$ plane enclosed by the curve $y=\sec x$ and $y=-1$ for $0 \leq x \leq \frac{\pi}{4}$. Each cross-section perpendicular to the x-axis is an equilateral triangle.

(i) Show that the area of the triangular cross-section at a distance x from the

1 $y-\operatorname{axis}$ is $\frac{\sqrt{3}}{4}(\sec x+1)^{2}$.
(ii) Hence find the volume of the solid.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) Let $I_{1}=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{~d} x$ and let $I_{2}=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} \mathrm{~d} x$
(i) Using a suitable substitution show that $I_{1}=I_{2}$.
(ii) Find the value of $I_{1}+I_{2}$ and hence evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} \mathrm{~d} x$.

1

3
(b) Let $z=\cos \theta+i \sin \theta$ be any complex number of modulus 1 .
(i) Show that $\frac{z^{2}-1}{z}=2 i \sin \theta$.
(ii) Using the formula for the sum of a Geometric Progression and the result in part (i), prove that

$$
z+z^{3}+z^{5}+z^{7}+z^{9}=\frac{\sin 10 \theta+i(1-\cos 10 \theta)}{2 \sin \theta}
$$

(iii) Hence write down a simplified expression for

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta
$$

and find the general solution to

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta=\frac{1}{2}
$$

Question 6 (continued)
(c) Seven players are entered in a round robin tennis competition. Each round consists of three singles matches with the 7th player obtaining a bye.

In how many ways can the first round of the competition be arranged if
(i) there are no restrictions?
(ii) Amy is not playing Ben? 2

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) Suppose $x>0, \quad y>0, \quad z>0$.
(i) Prove that $x^{2}+y^{2} \geq 2 x y$.
(ii) Hence, or otherwise, prove that $\frac{x}{y}+\frac{y}{z} \geq 2$.
(iii) Prove that $x^{3}+y^{3} \geq x y z\left(\frac{x}{z}+\frac{y}{z}\right)$.
(iv) Hence show that $x^{3}+y^{3}+z^{3} \geq 3 x y z$.
(v) Deduce that $(a+b+c)(a+b+d)(a+c+d)(b+c+d) \geq 81 a b c d$ where $a>0, \quad b>0, \quad c>0, \quad d>0$.
(b) (i)

The diagram shows a straight line segment $A C$ divided by B in the ratio $x: 1$. If A divides $C B$ externally in the same ratio that B divides $A C$ internally, show that

$$
x^{2}=x+1
$$

(ii) A sequence $\left\{F_{n}\right\}$, the Fibonacci numbers, is defined by $F_{1}=1, \quad F_{2}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 2$.

The golden ratio φ, and its conjugate root θ, are the positive and negative solutions to the equation in part (i).

Prove by induction, that the closed form expression for the Fibonacci numbers is given by

$$
F_{n}=\frac{\varphi^{n}-\theta^{n}}{\sqrt{5}} .
$$

(c) A projectile is fired vertically upwards with initial speed u. It experiences air resistance proportional to its speed as well as gravitational acceleration g, so that in its upwards flight, the equation of motion is $\ddot{x}=-g-k v$, for some constant $k>0$ and where v is the velocity of the projectile.
(i) Show that the time T taken to reach its maximum height is given by

$$
T=\frac{1}{k} \log _{e}\left(1+\frac{k u}{g}\right)
$$

(ii) By first writing \ddot{x} as $v \frac{d v}{d x}$, show that the maximum height of the particle $H \quad 3$ is given by

$$
H=\frac{u-g T}{k} .
$$

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) $\quad \alpha$ is a double root of the equation $x^{n}-b x^{2}+c=0$.
(i) Show that $\alpha^{2}=\frac{n c}{n b-2 b}$.

2

2
(b)

In $\triangle A B C, \angle A=90^{\circ}, M$ is the midpoint of $B C$ and H is the foot of the altitude from A to $B C$. A circle ℓ is drawn through points A, M and C. The line passing through M perpendicular to $A C$ meets $A C$ at D and the circle ℓ again at P. $B P$ intersects $A H$ at K.
(i) Show that $P M$ is the diameter of the circle ℓ.
(ii) Show that $\triangle M C D||\mid \triangle M P C$.
(iii) Hence show that $\triangle D M B\|\| \Delta B M$.
(iv) Deduce that $\angle D B M=\angle A B K$.
(v) By making further use of similar triangles, or otherwise, show that $A K=K H$.

End of Paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: 1n $x=\log _{e} x, \quad x>0$

BLANK PAGE

2009 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension 2

Centre Number				

Questions 3 (b)

Student Number
(i)

(ii)

Question 3b (continued)

(iii)

ScEaas 2009 EXT II TRIAL PAPER SOLUTIONS

Question 1 (15 marks)

$$
\text { (a) } \begin{aligned}
& \int_{0}^{\pi / 3} \sec ^{3} x \tan x d x \\
= & \int_{0}^{\pi / 3} \sec ^{2} x \cdot \sec x \tan x d x \\
= & {\left[\frac{1}{3} \sec ^{3} x\right]_{0}^{\pi / 3}=7 / 3 }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \sqrt{\frac{5-x}{5+x}} d x \\
= & \int \frac{5-x}{\sqrt{25-x^{2}}} d x \text { rationalise } \\
= & \int \frac{5}{\sqrt{25-x^{2}}}+\frac{1}{2} \int \frac{-2 x}{\sqrt{25-x^{2}}} d x \\
= & 5 \sin ^{-1}\left(\frac{x}{5}\right)^{2}+\sqrt{25-x^{2}}+C
\end{aligned}
$$

$$
\begin{gathered}
\text { (c) (i) } \frac{10}{(3+x)\left(1+x^{2}\right)}=\frac{\square}{3+x}+\frac{-1 x+3}{1+x^{2}} \\
A=1, B=-1, C=3
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& t=\tan \theta \\
& \frac{d t}{d \theta}=\sec ^{2} \theta=1+\tan ^{2} \theta \\
& d \theta=\frac{d t}{1+t^{2}} \\
& \therefore \int \frac{10}{3+\tan \theta} d \theta \\
& =\int \frac{10}{(3+t)\left(1+t^{2}\right)} d t / \begin{array}{l}
\text { Working for } \\
\text { substitution } \\
\text { must be shown. }
\end{array}
\end{aligned}
$$

This question did not require the use of t-formulae!

$$
\begin{aligned}
& =\int \frac{1}{3+t}+\frac{-t+3}{1+t^{2}} d t \\
& =\int \frac{1}{3+t}-\frac{1}{2} \int \frac{2 t}{1+t^{2}}+\int \frac{3}{1+t^{2}} d t \\
& =\ln (3+t)-\frac{1}{2} \ln \left(1+t^{2}\right)+3 \tan ^{-1}(t)+C \\
& =\ln \left(\frac{3+\tan \theta}{\sqrt{1+\tan ^{2} \theta}}\right)+3 \theta+C \\
& =\ln (3 \cos \theta+\sin \theta)+3 \theta+C
\end{aligned}
$$

In this particular question, no marks were deducted for not changing back to θ, but don't forget it because they usually are (deducted)!

$$
\begin{aligned}
& \text { (d) (i) } I_{n}=\int_{0}^{1} 1 x \frac{d x}{\left(x^{2}+1\right)^{n}} \\
& =\left[x \cdot \frac{1}{\left(x^{2}+1\right)^{n}}\right]_{0}^{1}-\int_{0}^{u} x \cdot \frac{-n \cdot 2 x}{\left(x^{2}+1\right)^{n+1}} \\
& =\frac{1}{2^{n}}+2 n \int_{0}^{1} \frac{x^{2}+1}{\left(x^{2}+1\right)^{n+1}}-\frac{1}{\left(x^{2}+1\right)^{n+1}} d x \\
& =2^{-n}+2 n\left(I_{n}-I_{n+1}\right) \\
& 2 n I_{n+1}=2^{-n}+(2 n-1) I_{n}
\end{aligned}
$$

$+1-1$ to not change the question is a technique worth putting in your toolbox.
(ii) $I_{1}=\int_{0}^{1} \frac{d x}{x^{2}+1}=\left[\tan ^{-1} x\right]_{0}^{1}=\pi / 4$

This part can certainly be completed whether

$$
2 I_{2}=\frac{1}{2}+I_{1}=\frac{1}{2}+\frac{\pi}{4}
$$ or not you could

$$
I_{2}=\frac{1}{4}+\frac{\pi}{8}
$$ complete (i).

$$
4 I_{3}=\frac{1}{4}+3 I_{2}=\frac{1}{4}+\frac{3}{4}+\frac{3 \pi}{8}
$$

$$
I_{3}=\frac{1}{4}+\frac{3 \pi}{32}
$$

(a) $w=-1+\sqrt{3} i$
(i)

$$
\begin{array}{rlr}
w^{2} & =(-1+\sqrt{3} i)^{2} & \text { (ii) }|w|=2 \quad \\
& =1-2 \sqrt{3} i-3 & \arg w=2 \pi / 3 \\
& =-2-2 \sqrt{3} i & \\
& =2(-1-\sqrt{3} i) \\
& =2 \bar{w}
\end{array}
$$

(iii)

$$
\begin{aligned}
\omega^{3}-8 & =\left(2 \operatorname{cis} \frac{2 \pi}{3}\right)^{3}-8 \\
& =2^{3} \operatorname{cis} 2 \pi-8 \\
& =8 \times 1-8 \\
& =0
\end{aligned}
$$

$\therefore W$ is a root of $z^{3}-8=0$
(b) (i)

(ii) $\arg \left(\frac{z-i}{z-1}\right)=\frac{\pi}{2}$

While there was the option of finding all three roots \& showing w was one of them (using mod-arg or cartesian form), this was not the fastest approach!

You must draw these graphs as carefully \& as accurately \& as to scale as you can. If you can't draw a circle invest in a compass \& whether or not you think you can draw a straight line use a ruler!

Notice the open circles at i \& 1 and that the lows passes through the origin.

$$
\begin{aligned}
& (c)(1+i)^{n}=\binom{n}{0}+\binom{n}{1} i+\binom{n}{2} i^{2}+\binom{n}{3} i^{3}+\binom{n}{4} i^{4}+\cdots \\
& (\sqrt{2} \operatorname{cis} \pi / 4)^{n}=\left[\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots\right]+i\left[\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right] \\
& 2^{n / 2} \operatorname{cis} \frac{n \pi}{4}=\left[\binom{n}{0}-\binom{n}{2}+\binom{n}{4}-\cdots\right]+i\left[\binom{n}{1}-\binom{n}{3}+\binom{n}{5}-\cdots\right]
\end{aligned}
$$

Taking the real part of both sides

$$
2^{n / 2} \cos \frac{n \pi}{4}=1-\binom{n}{2}+\binom{n}{4}-\binom{n}{6}+\cdots
$$

(d)

(i)

$$
\overrightarrow{O P}=z+1=\overrightarrow{O I}+\overrightarrow{O Z}
$$

$\therefore O I P Z$ is a parallelogram
Since $|O z|=|O I|=1$, the adjacent sides of OIPZ are equal \& thus OIPZ is a rhombus. $\sqrt{ }$

Not many could clearly explain this obvious enough fact.

Comm 1
(ii) $\arg \left(\frac{z-1}{z+1}\right)=$ angle of rotation from $(z+1)$ to $(z-1)$
$=$ angle of rotation from $\overrightarrow{O P}$ to $\overrightarrow{I Z}$
You have to explain why $\arg \left(\frac{z-1}{z+1}\right)$ is the angle between the diagonals.
$=\pi / 2$ (diagonals of a rhombus are 1)
$\therefore \frac{z-1}{z+1}$ is purely imaginary $\sqrt{ } \sqrt{ }$ Comm 2
(iii)

$$
\begin{aligned}
|z+1| & =\sqrt{1^{2}+1^{2}-2 x|\times| \times \cos (\pi-\theta)} \text { OR } \cos \theta / 2=\frac{|z+1| / 2}{1} \\
& =\sqrt{2+2 \cos \theta} \quad[\cos \text { rule] } \quad|\quad| z+1 \mid=2 \cos \theta / 2 \text { [SOHCAHTOA] }
\end{aligned}
$$

Question 3 (15 marks)
(a)

Calk 4, Comm 11
This is the easiest version of this question you could possibly get - and it wasn't too successful.
The question even told you it was only a branch of the hyperbola!

Foci: $(\pm 2,0) \Rightarrow a e=2$

$$
\begin{aligned}
& 2 a=2 \\
& \therefore e=2 \& a=1 \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& b=\sqrt{3}
\end{aligned}
$$

Directrices: $x= \pm \frac{1}{2}$
Asymptotes: $y= \pm \sqrt{3} x$
x-intercepts: $x= \pm 1$
Note: $|z-2|-|z+2|=2$
\Rightarrow distance from z to 2 is greater thaw the distance from z to -2 .
\checkmark correct branch $\sqrt{ } \sqrt{ }$ correct features

Comm 3

Questions 3 (b)

Student Number

Question Bb (continued)
(iii)

$$
y=f(x)-x
$$

(c) (i)

(ii)

$$
\begin{aligned}
y^{2} & =\frac{1}{9} x(x-3)^{2} \\
& =\frac{1}{9}\left(x^{3}-6 x^{2}+9 x\right) \\
2 y \frac{d y}{d x} & =\frac{1}{9}\left(3 x^{2}-12 x+9\right) \\
& =\frac{1}{3}\left(x^{2}-4 x+3\right) \\
\frac{d y}{d x} & =\frac{(x-1)(x-3)}{6 y} \sqrt{ } \text { Calc } 1
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \begin{array}{l}
\text { length } \\
\text { of the } \\
\text { top half }
\end{array}=\int_{0}^{3} \sqrt{1+\frac{(x-1)^{2}(x-3)^{2}}{36 y^{2}}} d x \\
& =\int_{0}^{3} \sqrt{1+\frac{(x-1)^{2}(x-3)^{2}}{4 x(x-3)^{2}}} d x \int \\
& =\int_{0}^{3} \sqrt{\frac{4 x+x^{2}-2 x+1}{4 x}} d x \\
& =\int_{0}^{3} \frac{x+1}{2 \sqrt{x}} d x \\
& =\left[\frac{x^{3 / 2}}{3}+x^{1 / 2}\right]_{0}^{3}
\end{aligned}
$$

Comm 2

$$
=2 \sqrt{3} \quad \text { Talc } 3
$$

\therefore total length of the curve is $4 \sqrt{3}$ units.

Important features:

- the vertical asymptote at the origin
- the curve intersects itself with a non-zero gradient at $(3,0)$ - maximin at $(1, \pm 2 / 3)$

Not many had the faith that the algebra/integral would work out. Sometimes you just need to be confident in your own algebra \& believe that eventually the integral will be doable.

Full marks were given for an answer of $2 \sqrt{3}$, but in fact to get the total length you need to double this answer.

Question 4 (15 marks)
(a) $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$
(i) Since $P(x)$ has real coefficients, if $a+b i$ \& $a+2 b i$ are roots, the conjugates $a-b i$ \& $a-2 b i$ are also roots.

Sum of roots $=-b / a$

$$
\begin{aligned}
a+b i+a-b i+a+2 b i+a-2 b i & =4 \\
4 a & =4 \\
a & =1
\end{aligned}
$$

Product of roots $=+e / a$

$$
\begin{gathered}
\left(a+b_{i}\right)(a-b i)(a+2 b i)(a-2 b i)=10 \\
\left(a^{2}+b^{2}\right)\left(a^{2}+4 b^{2}\right)=10 \\
\left(1+b^{2}\right)\left(1+4 b^{2}\right)=10 \\
4 b^{4}+5 b^{2}-9=0 \\
\left(4 b^{2}+9\right)\left(b^{2}-1\right)=0
\end{gathered}
$$

$$
b=1 \quad \text { since } b \in \mathbb{R} \& \quad b>0
$$

(ii) The roots are: $1 \pm i, 1 \pm 2 i$

$$
\begin{array}{r}
1+i, 1-i \rightarrow \text { sum }=2, \text { prod }=2 \\
1+2 i, 1-2 i \rightarrow \text { sum }=2, \text { prod }=5 \\
\therefore \quad P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10 \\
\quad=\left(x^{2}-2 x+2\right)\left(x^{2}-2 x+5\right)
\end{array}
$$

You must state this theorem whenever you need to use it.
you really do need to state exactly why $b \neq \pm \sqrt{-\frac{9}{4}},-1$
(b)

$$
\begin{aligned}
& V=\int_{0}^{\pi / 2} 2 \pi x \cos x d x d \\
& =2 \pi\left([x \cdot \sin x]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x\right) \\
& =2 \pi\left(\frac{\pi}{2}-0+[\cos x]_{0}^{\pi / 2}\right) \\
& =2 \pi\left(\frac{\pi}{2}-1\right) \\
& =\pi^{2}-2 \pi \quad \text { units }^{3} .{ }^{\text {Calces }}
\end{aligned}
$$

(c) Taking slices perpendicular to the axis:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{a \sqrt{3}} x^{2}-a^{2} d y \\
& =2 \pi \int_{0}^{a \sqrt{3}} 4 a^{2}-y^{2}-a^{2} d y \\
& =2 \pi\left[3 a^{2} y-y^{3} / 3\right]_{0}^{a \sqrt{3}} \\
& =2 \pi\left[3 a^{3} \sqrt{3}-a^{3} \sqrt{3}-0\right] \\
& =4 \pi a^{3} \sqrt{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Talc 3

This question could have been done by shells aswell.
Too many got caught up in wanting to subtract a volume from $\frac{4}{3} \pi(2 a)^{3}$

- which just made it harder.
(d) $x^{3}+k x+1=0$
(i)

$$
\begin{aligned}
S_{1} & =\alpha+\beta+\gamma \\
& =0 \\
S_{2} & =\alpha^{2}+\beta^{2}+\gamma^{2} \\
& =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =0^{2}-2 \times k \\
& =-2 k
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& S_{n+3}+k S_{n+1}+S_{n} \\
& =\left(\alpha^{n+3}+\beta^{n+3}+\gamma^{n+3}\right) \\
& \quad+k\left(\alpha^{n+1}+\beta^{n+1}+\gamma^{n+1}\right) \\
& \quad+\left(\alpha^{n}+\beta^{n}+\gamma^{n}\right) \quad / \\
& =\alpha^{n}\left(\alpha^{3}+k \alpha+1\right)+\beta^{n}\left(\beta^{3}+k \beta+1\right) \\
& \quad+\gamma^{n}\left(\gamma^{3}+k \gamma+1\right) \\
& =\alpha^{n} \times 0+\beta^{n} \times 0+\gamma^{n} \times 0 \\
& =0 \quad \begin{array}{l}
\text { since } \alpha, \beta, \gamma \text { are roots } V \\
\text { \& satisfy the equation })
\end{array}
\end{aligned}
$$

Not everything is induction!
(iii)

$$
\begin{aligned}
S_{4} & +k S_{2}+S_{1}=0 \\
S_{4} & =-S_{1}-k S_{2} \\
& =-0-k x-2 k \\
& =2 k^{2} \\
\therefore \alpha^{4} & +\beta^{4}+\gamma^{4}=2 k^{2}
\end{aligned}
$$

Question 5 (15 marks)
(a) (i)

$$
\left.\left.\begin{array}{ll}
\text { (i) } & P: x=a \sec \theta
\end{array} \quad y=b \tan \theta\right] \text { dx }=a \sec \theta \tan \theta \quad \frac{d y}{d \theta}=b \sec ^{2} \theta\right)
$$

\therefore EON OF NORMAL:

$$
\begin{aligned}
& y-b \tan \theta=-\frac{a \tan \theta}{b \sec \theta}(x-a \sec \theta) \\
& \frac{b y}{\tan \theta}-b^{2}=-\frac{a x}{\sec \theta}+a^{2} \\
& \frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2} \int \\
& \text { calc } 2
\end{aligned}
$$

(ii) $A:\left(\frac{\left(a^{2}+b^{2}\right) \sec \theta}{a}, 0\right)$
$B:\left(0, \frac{\left(a^{2}+b^{2}\right) \tan \theta}{b}\right)$

$$
\therefore M=\left(\frac{\left(a^{2}+b^{2}\right) \sec \theta}{2 a}, \frac{\left(a^{2}+b^{2}\right) \tan \theta}{2 b}\right)
$$

(iii) $G=\left(\frac{\left(a^{2}+b^{2}\right) \sec \theta}{3 a}, \frac{\left(a^{2}+b^{2}\right) \tan \theta}{3 b}\right) /$ Part (iii) was an easy application of a formula \& there was an abnormally high number who couldn't get it right.
(iv) Lows of G :

$$
\begin{aligned}
& x=\frac{\left(a^{2}+b^{2}\right) \sec \theta}{3 a} \Rightarrow \sec \theta=\frac{3 a x}{a^{2}+b^{2}} \\
& y=\frac{\left(a^{2}+b^{2}\right) \tan \theta}{3 b} \Rightarrow \tan \theta=\frac{3 b y}{a^{2}+b^{2}}
\end{aligned}
$$

Since $\sec ^{2} \theta-\tan ^{2} \theta=1$

$$
\begin{aligned}
& \frac{9 a^{2} x^{2}}{\left(a^{2}+b^{2}\right)^{2}}-\frac{9 b^{2} y^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1 \\
& \frac{x^{2}}{\left(\frac{a^{2}+b^{2}}{3 a}\right)^{2}}-\frac{y^{2}}{\left(\frac{a^{2}+b^{2}}{3 b}\right)^{2}}=1
\end{aligned}
$$

Which is a hyperbola which intersects the x axis at

$$
L=\left(\frac{a^{2}+b^{2}}{3 a}, 0\right)
$$

(v)

$$
\begin{aligned}
\frac{O L}{O K}<1 & \Rightarrow \frac{\frac{a^{2}+b^{2}}{3 a}}{a}<1 \\
& \Rightarrow a^{2}+b^{2}<3 a^{2} \\
& \Rightarrow b^{2}<2 a^{2} \\
& \Rightarrow a^{2}\left(e^{2}-1\right)<2 a^{2} \\
& \Rightarrow e^{2}-1<2 \\
& \Rightarrow e^{2}<3 \\
& \Rightarrow e<\sqrt{3} \quad(e>0)
\end{aligned}
$$

Also, since it's a hyperbola $e>1$

$$
\begin{aligned}
& {\left[\text { or } b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow e^{2}=\frac{b^{2}}{a^{2}}+1>1 \Rightarrow e>1\right]} \\
& \therefore \quad 1<e<\sqrt{3} \quad \text { Res } 2
\end{aligned}
$$

To find the cartesian equation you need to $\sqrt{ }$ get rid of the parameter.
(b) (i)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(y+1)^{2} \sin \pi / 3 \\
& =\frac{1}{2}(\sec x+1)^{2} \times \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{4}(\sec x+1)^{2} .
\end{aligned}
$$

(ii)

$$
\text { ii) } \begin{aligned}
& V=\int_{0}^{\pi / 4} \frac{\sqrt{3}}{4}(\sec x+1)^{2} d x \\
= & \frac{\sqrt{3}}{4} \int_{0}^{\pi / 4} \sec ^{2} x+2 \sec x+1 d x \\
= & \frac{\sqrt{3}}{4}[\tan x+2 \ln (\sec x+\tan x)+x]_{0}^{\pi / 4} \\
= & \frac{\sqrt{3}}{4}\left[1+2 \ln (\sqrt{2}+1)+\frac{\pi}{4}-0\right] \\
= & \frac{\sqrt{3}}{4}\left[1+2 \ln (\sqrt{2}+1)+\frac{\pi}{4}\right] \text { units }^{3}
\end{aligned}
$$

Talc 4

Question 6 (15 marks)
(a) (i) let $x=\pi-u \quad x=0, u=\pi$ $d x=-d u \quad x=\pi, u=0$

$$
\begin{aligned}
I_{1} & =\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\
& =\int_{\pi}^{0} \frac{(\pi-u) \sin (\pi-u)}{1+\cos ^{2}(\pi-u)} \cdot-d u \\
& =\int_{0}^{\pi} \frac{(\pi-u) \sin u}{1+\cos ^{2} u} d u \\
& =\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x=I_{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& I_{1}+I_{2}=\int_{0}^{\pi} \frac{x \sin x+(\pi-x) \sin x}{1+\cos ^{2} x} d x \\
&=-\pi \int_{0}^{\pi} \frac{(-\sin x)}{1+\cos ^{2} x} d x \\
&=-\pi\left[\tan ^{-1}(\cos x)\right]_{0}^{\pi} \sqrt{1} \\
&=-\pi\left(\tan ^{-1}(-1)-\tan ^{-1}(1)\right) \\
&=-\pi(-\pi / 4-\pi / 4) \\
&=\frac{\pi^{2}}{2} \\
& \therefore I_{1}=I_{2}=\frac{\pi^{2}}{4} \\
& \therefore \int_{0} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi^{2}}{4} \text { calc } 4
\end{aligned}
$$

When doing a substitution you need to substitute EVERYTHING - the limits \& $d x$ too!
\leftarrow Not many recognised this reverse chain rule.
(b) (i)

$$
\begin{aligned}
\frac{z^{2}-1}{z} & =z-z^{-1} \\
& =\operatorname{cis} \theta-\operatorname{cis}(-\theta) \\
& =\cos \theta+i \sin \theta-(\cos (-\theta)+i \sin (-\theta)) \\
& =\cos \theta+i \sin \theta-\cos \theta--i \sin \theta \\
& =2 i \sin \theta
\end{aligned}
$$

OR/
$\frac{z^{2}-1}{z}=\frac{(\cos \theta+i \sin \theta)^{2}-1}{\cos \theta+i \sin \theta} \times \frac{\cos \theta-i \sin \theta}{\cos \theta-i \sin \theta} \sqrt{ } \quad$ lead \& direction such questions.

$$
\begin{aligned}
& =\frac{\left(\cos ^{2} \theta+\sin ^{2} \theta\right)(\cos \theta+i \sin \theta)-(\cos \theta-i \sin \theta)}{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =\cos \theta+i \sin \theta-\cos \theta+i \sin \theta \\
& =2 i \sin \theta
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& z+z^{3}+z^{5}+z^{7}+z^{9} \\
= & \frac{z\left(\left(z^{2}\right)^{5}-1\right)}{z^{2}-1} \\
= & \frac{z^{z^{0}-1}}{\frac{z^{2}-1}{z}} \\
= & \frac{\cos 10 \theta+i \sin 10 \theta-1}{2 i \sin \theta} \times \frac{-i}{-i} \\
= & \frac{\sin 10 \theta+i(1-\cos 10 \theta)}{2 \sin \theta}
\end{aligned}
$$

(iii)

$$
\text { (iii) } \begin{aligned}
& \operatorname{Re}\left(z+z^{3}+z^{5}+z^{7}+z^{9}\right) \\
& =\operatorname{Re}\left(\frac{\sin 10 \theta+i(1-\cos 10 \theta)}{2 \sin \theta}\right) \\
\Rightarrow \cos \theta & +\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta \\
& =\frac{\sin 10 \theta}{2 \sin \theta}
\end{aligned}
$$

Each part of this question was very clear \& followed directly from the previous part. You need to be confident following the lead \& direction given

$$
\begin{aligned}
& \cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta=\frac{1}{2} \\
& \Rightarrow \frac{\sin 10 \theta}{2 \sin \theta}=\frac{1}{2} \\
& \Rightarrow \sin 10 \theta=\sin \theta
\end{aligned}
$$

$$
\begin{aligned}
10 \theta=\theta+2 \pi k, & 10 \theta=\pi-\theta+2 \pi k \\
9 \theta=2 \pi k, & 11 \theta=\pi+2 \pi k \\
\theta=\frac{2 \pi k}{9}, & \frac{\pi+2 \pi k}{11} \quad k \in \mathbb{Z}
\end{aligned}
$$

These type of General Solution questions are absolutely standard \& there is no excuse for not knowing this work.
Keas 7

since choosing $A \cup B, C \cup D, E \cup F$ is equivalent to $A \cup B, E \cup F, C \cup D$ etc.
(ii) Case 1: Amy or Ben has a bye

OR \#ways Amy plays Ben

$$
=\frac{\binom{5}{2}\binom{3}{2}}{2!} \times\binom{ 1}{1}=15
$$

\therefore \# ways Amy is not

$$
\begin{aligned}
\text { playing Ben } & =105-15 \\
& =90 \mathrm{~V}
\end{aligned}
$$

This perms \& combs question was quite successful for those who attempted it. Don't be terrified of perms \& combs - they are very doable \& practice does make perfect.

$$
\begin{aligned}
n & =905-13 \\
& =90 \mathrm{~J}
\end{aligned}
$$

Question 7 (15 marks)
(a) (i)

$$
\begin{aligned}
& (x-y)^{2} \geqslant 0 \\
& x^{2}+y^{2}-2 x y \geqslant 0 \\
& x^{2}+y^{2} \geqslant 2 x y
\end{aligned}
$$

(ii) Dividing by $x y$

$$
\Rightarrow \frac{x}{y}+\frac{y}{x} \geqslant 2 \quad(\text { since } x, y>0)
$$

(iii)

$$
\begin{aligned}
x^{3}+y^{3} & =(x+y)\left(x^{2}-x y+y^{2}\right) \\
& \geqslant(x+y)(2 x y-x y) \\
& =x y(x+y) \\
& =x y z\left(\frac{x}{z}+\frac{y}{z}\right)
\end{aligned}
$$

(iv) Similarly, $y^{3}+z^{3} \geqslant x y z\left(\frac{y}{x}+\frac{z}{x}\right)$
\& $z^{3}+x^{3} \geqslant x y z\left(\frac{z}{y}+\frac{x}{y}\right)$
Adding these:

$$
\left.\begin{array}{rl}
2\left(x^{3}+y^{3}+z^{3}\right) & \geqslant x y z\left(\frac{x}{z}+\frac{y}{z}+\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}\right.
\end{array}\right)
$$

(v) $x=\sqrt[3]{a}, y=\sqrt[3]{b}, z=\sqrt[3]{c} \Rightarrow a+b+c \geqslant 3 \sqrt[3]{a b c}$

Similarly $a+b+d \geqslant 3 \sqrt[3]{a b d}$

$$
a+c+d \geqslant 3 \sqrt[3]{a c d}
$$

$$
b+c+d \geqslant 3 \sqrt[3]{b c d}
$$

Multiplying these

$$
\begin{aligned}
\Rightarrow(a+b+c)(a+b+d)(a+c+d)(b+c+d) \geqslant & 81 a b c d \\
& \text { Reas } 5
\end{aligned}
$$

Remember the technique of applying an inequality several times over \& then putting it together.
(b) (i) A divides $C B$ externally in the 1 really liked this ratio $C A: A B=\varphi+1: \varphi$ question but not many gave it a go which B divides $A C$ internally in the is a pity. ratio $A B: B C=\varphi: 1$

$$
\begin{aligned}
\therefore \frac{\varphi+1}{\varphi} & =\frac{\varphi}{1} \\
\varphi^{2} & =\varphi+1
\end{aligned}
$$

(ii) Solutions to $\varphi^{2}=\varphi+1$

$$
\begin{gathered}
\varphi^{2}-\varphi-1=0 \\
\varphi=\frac{1 \pm \sqrt{5}}{2} \\
\therefore \varphi=\frac{1+\sqrt{5}}{2}, \theta=\frac{1-\sqrt{5}}{2}
\end{gathered}
$$

When $n=1$: $L H S=F_{1}=1$

$$
\text { RUS }=\frac{\varphi-\theta}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{5}}=1
$$

\& when $n=2$: LHS $=F_{2}=1$

$$
\begin{aligned}
\text { RHS } & =\frac{\varphi^{2}-\theta^{2}}{\sqrt{5}} \\
& =\frac{(\varphi+1)-(\theta+1)}{\sqrt{5}} / \\
& =\frac{\varphi-\theta}{\sqrt{5}}=\frac{\sqrt{5}}{\sqrt{5}}=1
\end{aligned}
$$

It's true for $n=1$ \& $n=2$ so let $k-1$ \& k be integers for which it's true i.e. $F_{k-1}=\frac{\varphi^{k-1}-\theta^{k-1}}{\sqrt{5}}$

$$
\& F_{k}=\frac{\varphi^{k}-\theta^{k}}{\sqrt{5}}
$$

Then $F_{k+1}=F_{k}+F_{k-1}$

$$
=\frac{\varphi^{k}-\theta^{k}}{\sqrt{5}}+\frac{\varphi^{k-1}-\theta^{k-1}}{\sqrt{5}}
$$

(from assumption)

$$
\begin{aligned}
& =\frac{\varphi^{k-1}(\varphi+1)-\theta^{k-1}(\theta+1)}{\sqrt{5}} \\
& =\frac{\varphi^{k-1} \cdot \varphi^{2}-\theta^{k-1} \cdot \theta^{2}}{\sqrt{5}}
\end{aligned}
$$

(since $\varphi^{2}=\varphi+1 \& \theta^{2}=\theta+1$)

$$
=\frac{\varphi^{k+1}-\theta^{k+1}}{\sqrt{5}}
$$

\& so it's true for the next integer $k+1$
\therefore By strong induction, $F_{n}=\frac{\varphi^{n}-\theta^{n-1}}{\sqrt{5}}$
(c)

$$
\begin{aligned}
& \Uparrow \underset{g+k v}{ } \quad \begin{array}{l}
t=0 \\
v=u
\end{array} \\
& \ddot{x}=-g-k v
\end{aligned}
$$

This standard question was well done by most.

$$
\text { (i) } \quad \frac{d v}{d t}=-(g+k v)
$$

$$
\int_{u}^{0} \frac{d v}{g+k v}=\int_{0}^{T}-d t
$$

$$
\left[\frac{1}{k} \ln (g+k v)\right]_{u}^{0}=[-t]_{0}^{T} \sqrt{ } /
$$

$$
\frac{1}{k} \ln g-\frac{1}{k} \ln (g+k u)=-T+0
$$

$$
T=\frac{1}{k} \ln \left(\frac{g+k u}{g}\right)
$$

$$
\begin{aligned}
& \int_{u}^{0} \frac{v d v}{g+k v}=\int_{0}^{H}-d x \\
& \frac{1}{k} \int_{u}^{0} \frac{g+k v}{g+k v}-\frac{g}{g+k v} d v=\int_{0}^{H}-d x \\
& \frac{1}{k}\left[v-\frac{g}{k} \ln (g+k v)\right]_{u}^{0}=[-x]_{0}^{H} \sqrt{ } \\
& \frac{1}{k}\left(0-\frac{g}{k} \ln g-u+\frac{g}{k} \ln (g+k u)\right)=-H \\
& H=\frac{1}{k}\left(u-g\left(\frac{1}{k} \ln (g+k u)-\frac{1}{k} \ln g\right)\right) \\
& =\frac{1}{k}\left(u-g \cdot \frac{1}{k} \ln \left(1+\frac{k u}{g}\right)\right)=\frac{u-g T}{k} v
\end{aligned}
$$

(and \checkmark for finding C if an indefinite integral was done, then 3 rd \checkmark for $v=0$ \& successfully finding T)

$$
T=\frac{1}{k} \ln \left(1+\frac{k u}{g}\right)
$$

(ii) $v \frac{d v}{d x}=-(g+k v)$

Question 8 (15 marks)
Reas 15
(a) (i) If α is a double root of $x^{n}-b x^{2}+c=0$ Many got an easy first then $\alpha^{n}-b \alpha^{2}+c=0$
\& α is also a single root of $n x^{n-1}-2 b x=0$

$$
\begin{equation*}
\Rightarrow n \alpha^{n-r}-2 b \alpha=0 \tag{2}
\end{equation*}
$$

(2)

$$
\begin{array}{r}
x \alpha \Rightarrow n \alpha^{n}-2 b \alpha^{2}=0 \\
\alpha^{n}=\frac{2 b \alpha^{2}}{n} \tag{3}
\end{array}
$$

Substitute into (1)

$$
\begin{array}{r}
\Rightarrow \frac{2 b \alpha^{2}}{n}-b \alpha^{2}+c=0 \\
\alpha^{2}\left(\frac{2 b-n b}{n}\right)=-c \\
\alpha^{2}=\frac{n c}{n b-2 b}
\end{array}
$$

(ii) Substituting this into (3)

$$
\begin{aligned}
& \Rightarrow\left(\frac{n c}{n b-2 b}\right)^{n / 2}=\frac{2 b}{n} \cdot \frac{n c}{n b-2 b} \\
& \Rightarrow n^{n / 2} c^{n / 2} \cdot(n-2)=2 c \cdot(n-2)^{n / 2} b^{n / 2}
\end{aligned}
$$

squaring both sides

$$
\begin{aligned}
& \Rightarrow n^{n} c^{n}(n-2)^{2}=4 c^{2}(n-2)^{n} b^{n} \\
& \Rightarrow n^{n} c^{n-2}=4 b^{n}(n-2)^{n-2}
\end{aligned}
$$

(b) (i) $A B / / D M$ (both lines are \perp to $A C$)

$$
\therefore B M=M C \Rightarrow A D=D C
$$

(intercepts on parallel lines $A B \& D M$ are in the same ratio)
$\therefore P M$ bisects $A C$ at right angles \& hence PM is the diameter (the perpendicular bisector of a chord passes through the centre)
(ii) $\ln \triangle M C D$ \& $\triangle M P C$

$$
\angle M D C=90^{\circ}=\angle M C P
$$

(given $M D \perp A C$ \& angles in a semicircle are 90°)

$$
\angle C M D=\angle P M C \text { (common) }
$$

$\therefore \triangle M C D$ III $\triangle M P C$ (AA similarity test)
(iii) $\frac{M D}{M C}=\frac{M C}{M P}$ (corresponding sides in III Δs in the same ratio)

$$
\Rightarrow \frac{M D}{M B}=\frac{M B}{M P} \quad(\text { since } M C=M B)
$$

In $\triangle D M B$ \& $\triangle B M P$

$$
\begin{aligned}
\frac{M D}{M B} & =\frac{M B}{M P} \quad \text { (above) } \\
\angle D M B & =L B M P \quad \text { (common) }
\end{aligned}
$$

$\therefore \triangle O M B|I| \triangle B M P$ (SAS similarity test)

Well done to those who recognised this was an easy 2 marks to pick up.
(iv) $\angle D B M=$ LBPM (corresponding angles in $111 \Delta s$ are equal)
$\angle B P M=\angle A B K$ (alternate angles on $\sqrt{ }$ parallel lines $A B \& P M=$)

$$
\therefore \angle D B M=\angle A B K
$$

(v) In $\triangle A B D \& \triangle H B K$

$$
\begin{aligned}
\angle D A B= & \angle K H B=90^{\circ} \quad \text { (given) } \\
\angle A B D= & \angle A B C-\angle D B C \\
= & \angle H B A-\angle K B A \\
& (\angle A B C=\angle H B A \text { common } \\
& \quad \& \angle D B C=\angle K B A \text { pant iv) } \\
= & \angle H B K
\end{aligned}
$$

$\therefore \triangle A B D$ III $\triangle H B K$ (AA similarity test)

In $\triangle D C B \& \triangle K A B$

$$
\begin{aligned}
\angle C B D & =\angle A B K \quad \text { (part iv) } \\
\angle D C B & \left.=180-90-\angle A B C \quad \text { (Lsum } \triangle=180^{\circ}\right) \\
& =180-90-\angle H B A \quad \text { (common) } \\
& \left.=\angle K A B \quad \text { (Lsum } \triangle=180^{\circ}\right)
\end{aligned}
$$

$\therefore \triangle D C B \| \angle A B$ (AA similarity test)

$$
\begin{aligned}
& \left.\frac{A D}{H K}=\frac{D B}{K B} \quad \begin{array}{l}
\text { (corresponding sides in } 111 \\
\triangle s \\
A B D
\end{array}\right) \\
& \frac{D B}{K B}=\frac{D C}{K A} \quad \begin{array}{c}
\text { (corresponding same sides in } 111 \\
\triangle S D C B
\end{array} \\
&
\end{aligned}
$$

$$
\begin{aligned}
\therefore \frac{A D}{H K}=\frac{D C}{K A} & \Rightarrow \frac{A D}{D C}=\frac{H K}{K A} \\
& \Rightarrow \therefore \frac{H K}{K A}=1(\text { since } A D=D C) \\
\therefore H K & =K A
\end{aligned}
$$

