

SCEGGS Darlinghurst

2009 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1–8
- All questions are of equal value

BLANK PAGE

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks)

(a) Find
$$\int_{0}^{\frac{\pi}{3}} \sec^{3} x \tan x \, dx$$
 2

(b) Find
$$\int \sqrt{\frac{5-x}{5+x}} dx$$
. 3

(c) (i) Find real numbers
$$A, B$$
 and C such that 2

$$\frac{10}{(3+x)(1+x^2)} \equiv \frac{A}{3+x} + \frac{Bx+C}{1+x^2}.$$

(ii) Use the substitution
$$t = \tan \theta$$
 to find $\int \frac{10}{3 + \tan \theta} d\theta$. 3

(d) For
$$n \ge 1$$
, let $I_n = \int_0^1 \frac{dx}{(x^2 + 1)^n}$.
(i) By writing $\int_0^1 \frac{dx}{(x^2 + 1)^n}$ as $\int_0^1 1 \times \frac{dx}{(x^2 + 1)^n}$, and using integration by parts, **3**
show that
$$2nI_{n+1} = 2^{-n} + (2n-1)I_n.$$
(ii) Hence evaluate $\int_0^1 \frac{dx}{(x^2 + 1)^3}$.

End of Question 1

Question 2 (15 marks) Use a SEPARATE writing booklet.

- (a) The complex number w is given by $w = -1 + \sqrt{3} i$.
 - (i) Show that $w^2 = 2\overline{w}$. 1
 - (ii) Evaluate |w| and $\arg w$. 2
 - (iii) Show that w is a root of $z^3 8 = 0$. 1

(b) On separate diagrams, draw a neat sketch of the locus defined by

(i)
$$|z-1-3i| \le 2$$
 and $\frac{\pi}{4} \le \arg z \le \frac{\pi}{2}$. 2

(ii)
$$\arg\left(\frac{z-i}{z-1}\right) = \frac{\pi}{2}$$
. 2

(c) By considering the binomial expansion of $(1 + i)^n$ show that

$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots = 2^{\frac{n}{2}} \cos \frac{n\pi}{4}.$$

(d) The points *O*, *I*, *Z* and *P* on the Argand Plane represent the complex numbers 0, 1, *z* and *z* + 1 respectively, where $z = \cos \theta + i \sin \theta$ is any complex number of modulus 1, with $0 < \theta < \pi$.

(i)Explain why *OIPZ* is a rhombus.1(ii)Show that
$$\frac{z-1}{z+1}$$
 is purely imaginary.2

(iii) Find the modulus of z + 1 in terms of θ .

End of Question 2

1

Marks

3

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) The locus defined by |z-2|-|z+2|=2 corresponds to part of a hyperbola 3 in the Argand Plane.

Sketch the locus labeling the foci, directrices, asymptotes and any intercepts with the axes.

The diagram shows the graph of y = f(x). The lines y = x and $y = \frac{1}{2}$ are both asymptotes.

On the answer page provided, draw separate sketches of the following graphs. Clearly indicate any important features.

(i) $y = (f(x))^2$ 2

(ii)
$$y = \frac{1}{f(x)}$$
 2

(iii)
$$y = f(x) - x$$
 2

Question 3 continues on page 5

Question 3 (continued)

(i) Given the sketch of
$$y = \frac{1}{9} x (x-3)^2$$
 above, sketch the curve 2
 $y^2 = \frac{1}{9} x (x-3)^2$.

(ii) Use implicit differentiation to find
$$\frac{dy}{dx}$$
 in terms of x and y for 1
 $y^2 = \frac{1}{9} x (x-3)^2$.

(iii) Given that the length of a curve between x = a and x = b is given by

3

$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \, ,$$

find the entire length of the curve $y^2 = \frac{1}{9} x (x-3)^2$ for $0 \le x \le 3$.

Question 4 (15 marks) Use a SEPARATE writing booklet.

- (a) Consider the polynomial $P(x) = x^4 4x^3 + 11x^2 14x + 10$.
 - (i) If P(x) has zeroes a + bi and a + 2bi, where a and b are real and 3 b > 0, find the values of a and b.
 - (ii) Hence express P(x) as the product of two quadratic factors with real **1** coefficients.
- (b) The region bounded by the curve $y = \cos x$ and the coordinate axes is rotated **3** about the y-axis.

Use the method of cylindrical shells to find the volume of the solid formed.

A cylindrical hole of radius a cm is bored through the centre of a sphere of radius 2a cm.

Show that the volume of the remaining solid is $4\sqrt{3}a^3\pi$ cm³.

Question 4 continues on page 7

Question 4 (continued)

(d) The cubic equation $x^3 + kx + 1 = 0$, where k is a constant, has roots α , β and γ . For each positive integer n, $S_n = \alpha^n + \beta^n + \gamma^n$.

(i)	State the value of S_1 and express S_2	in terms of <i>k</i> .	2

- (ii) Show that for all *n*, $S_{n+3} + kS_{n+1} + S_n = 0$. **2**
- (iii) Hence, or otherwise, express $\alpha^4 + \beta^4 + \gamma^4$ in terms of k. 1

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a)

The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0, cuts the positive *x*-axis at the point *K*. The normal to the hyperbola at the point $P(a \sec \theta, b \tan \theta)$ cuts the *x*-axis at *A* and the *y*-axis at *B*, as shown in the diagram.

(i) Show that the equation of the normal to the hyperbola at the point P is 2

$$\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2.$$

(ii) Find the midpoint
$$M$$
 of AB .

(iii) Find the point G such that G divides the interval OM in the ratio 2:1. 1

(iv) Show that the locus of G is a hyperbola and find the point L at which 3 this locus cuts the positive x-axis.

(v) If
$$\frac{OL}{OK} < 1$$
, show that $1 < e < \sqrt{3}$. 2

Question 5 continues on page 9

3

Question 5 (continued)

(b) The base of a solid is the region in the *xy* plane enclosed by the curve $y = \sec x$ and y = -1 for $0 \le x \le \frac{\pi}{4}$. Each cross-section perpendicular to the *x*-axis is an equilateral triangle.

- (i) Show that the area of the triangular cross-section at a distance x from the 1y - axis is $\frac{\sqrt{3}}{4} (\sec x + 1)^2$.
- (ii) Hence find the volume of the solid.

3

Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) Let
$$I_1 = \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx$$
 and let $I_2 = \int_0^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, dx$

(i) Using a suitable substitution show that
$$I_1 = I_2$$
. 1

(ii) Find the value of
$$I_1 + I_2$$
 and hence evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$. 3

(b) Let $z = \cos \theta + i \sin \theta$ be any complex number of modulus 1.

(i) Show that
$$\frac{z^2 - 1}{z} = 2i\sin\theta$$
. 2

(ii) Using the formula for the sum of a Geometric Progression and the result 2 in part (i), prove that

$$z + z^{3} + z^{5} + z^{7} + z^{9} = \frac{\sin 10\theta + i(1 - \cos 10\theta)}{2\sin \theta}.$$

(iii) Hence write down a simplified expression for

$$\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta$$

and find the general solution to

$$\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta = \frac{1}{2}.$$

Question 6 continues on page 11

3

Question 6 (continued)

(c) Seven players are entered in a round robin tennis competition. Each round consists of three singles matches with the 7th player obtaining a bye.

In how many ways can the first round of the competition be arranged if

(i)	there are no restrictions?	2	2
-----	----------------------------	---	---

(ii) Amy is not playing Ben?

Question 7 (15 marks) Use a SEPARATE writing booklet.

(a) Suppose
$$x > 0$$
, $y > 0$, $z > 0$.
(i) Prove that $x^2 + y^2 \ge 2xy$.
(ii) Hence, or otherwise, prove that $\frac{x}{y} + \frac{y}{z} \ge 2$.
(iii) Prove that $x^3 + y^3 \ge xyz\left(\frac{x}{z} + \frac{y}{z}\right)$.
(iv) Hence show that $x^3 + y^3 + z^3 \ge 3xyz$.
(v) Deduce that $(a+b+c)(a+b+d)(a+c+d)(b+c+d) \ge 81abcd$
where $a > 0$, $b > 0$, $c > 0$, $d > 0$.

(b) (i)
$$A x B 1 C$$
 1

The diagram shows a straight line segment AC divided by B in the ratio x:1. If A divides CB externally in the same ratio that B divides AC internally, show that

$$x^2 = x + 1$$

(ii) A sequence $\{F_n\}$, the Fibonacci numbers, is defined by $F_1 = 1$, $F_2 = 1$ **3** and $F_{n+1} = F_n + F_{n-1}$ for $n \ge 2$.

The golden ratio φ , and its conjugate root θ , are the positive and negative solutions to the equation in part (i).

Prove by induction, that the closed form expression for the Fibonacci numbers is given by

$$F_n = \frac{\varphi^n - \theta^n}{\sqrt{5}}.$$

Question 7 continues on page 13

3

Question 7 (continued)

- (c) A projectile is fired vertically upwards with initial speed *u*. It experiences air resistance proportional to its speed as well as gravitational acceleration *g*, so that in its upwards flight, the equation of motion is $\ddot{x} = -g kv$, for some constant k > 0 and where *v* is the velocity of the projectile.
 - (i) Show that the time *T* taken to reach its maximum height is given by

$$T = \frac{1}{k} \log_e \left(1 + \frac{ku}{g} \right).$$

(ii) By first writing \ddot{x} as $v \frac{dv}{dx}$, show that the maximum height of the particle H **3** is given by

$$H = \frac{u - gT}{k}.$$

Question 8 (15 marks) Use a SEPARATE writing booklet.

(a) α is a double root of the equation $x^n - bx^2 + c = 0$.

(i) Show that
$$\alpha^2 = \frac{nc}{nb-2b}$$
. 2

(ii) Hence show that
$$n^n c^{n-2} = 4b^n (n-2)^{n-2}$$
. 2

In $\triangle ABC$, $\angle A = 90^\circ$, *M* is the midpoint of *BC* and *H* is the foot of the altitude from *A* to *BC*. A circle ℓ is drawn through points *A*, *M* and *C*. The line passing through *M* perpendicular to *AC* meets *AC* at *D* and the circle ℓ again at *P*. *BP* intersects *AH* at *K*.

(i)	Show that <i>PM</i> is the diameter of the circle ℓ .	2
(ii)	Show that $\triangle MCD \parallel \mid \triangle MPC$.	2
(iii)	Hence show that $\Delta DMB \parallel \mid \Delta BMP$.	2
(iv)	Deduce that $\angle DBM = \angle ABK$.	2
(v)	By making further use of similar triangles, or otherwise, show that $AK = KH$.	3

End of Paper

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

NOTE: $\ln x = \log_e x, \quad x > 0$

BLANK PAGE

	SCEGGS 2009 Ext I TRIAL PAPER SOLUTIONS
Question 1 (15 marks)	Calc 15
π/3	
(a) sec ³ xtanx dx	Overall, I don't think QI
0 17/3	was as well done as it
= sec ² x. secritanx dx	should have been.
ο 	Mistakes ranged from
$= \frac{1}{3} \sec^{3} x = \frac{7}{2}$	trivial + & - signs to
	much more fundamental ones.
	You should be aiming
(b) $\int 5-x dx$	for 15/15 in 15 minutes
JJ5+x) rationalise	for this question.
= [5-x dx the numerator	
$\int \sqrt{25 - \varkappa^2}$	
$\int 5 + \int (-2x) dx $	
$\int \sqrt{25-\chi^2}$ 2 $\int \sqrt{25-\chi^2}$	
$= 5 \sin^{-1} \left(\frac{\pi}{5}\right) + \sqrt{25 - \pi^2} + C$	
$(c)(i)$ 10 = 1 $\Box x + 3$	
$(3+x)(1+x^2)$ $3+x$ $1+x^2$	
A=1, B=-1, C=3	
(ii) t=tan0	This question did not
$\frac{dt}{dt} = \sec^2 \Theta = 1 + \tan^2 \Theta$	require the use of
QVO	t - formulae!
at = at	
+ t ²	
J 3+tant	
10 dt working ist	
$\int (3+t)(1+t^2) 3000000000000000000000000000000000000$	
musi de skown.	

$$= \int \frac{1}{3+t} + \frac{-t+3}{1+t^{2}} dt$$

$$= \int \frac{1}{3+t} - \frac{1}{2} \int \frac{2t}{1+t^{2}} + \int \frac{3}{1+t^{2}} dt$$

$$= \ln (3+t) - \frac{1}{2} \ln (1+t^{2}) + 3 \tan^{-1}(t) + C$$
In this particular question, no marks were deducted for not changing back to θ ,

$$= \ln (3+t) - \frac{1}{2} \ln (1+t^{2}) + 3\theta + C$$
In this particular question, no marks were deducted for not changing back to θ ,

$$= \ln (3\cos\theta + \sin\theta) + 3\theta + C$$
but don't forget it because they usually are (deducted)!
(d) (i) $\ln = \frac{1}{3} + \frac{dx}{(x^{2}+1)^{n}}$

$$= \left[x - \frac{1}{(x^{2}+1)^{n}} \right]_{0} - \int (x - n.2x) (x^{n}+1)^{n^{n}}$$

$$= \frac{1}{2^{n}} + 2n \int \frac{x^{2}t^{1}}{(x^{2}+1)^{n+1}} - \frac{1}{(x^{n}+1)^{n+1}} dx$$

$$= 2^{-n} + 2n (\ln - \ln_{1})$$

$$= \tan^{-1} (1 - \ln_{1})$$

$$= 2^{-n} + 2n (1 - \ln_{1}) \ln$$

$$(ii) 1 - \frac{1}{2^{n} + 1} = \frac{1}{2^{n} + 1} = \frac{1}{2^{n} + 1} + \frac{1}{3^{n}} = \frac{1}{4}$$

$$= \frac{1}{32} + \frac{1}{4} + \frac{3}{32} = \frac{1}{4}$$

Question 2 (15 marks)	Comm 7
(a) $W = -1 + \sqrt{3} i$ (i) $W^2 = (-1 + \sqrt{3} i)^2$ (ii) $ W = 2$ $= 1 - 2\sqrt{3}i - 3$ arg $W = 2\pi/3$	
$= -2 - 2\sqrt{3}i$ = 2(-1- $\sqrt{3}i$) = 2 $\sqrt{3}$	
(iii) $W^3 - 8 = (2 \cos \frac{2\pi}{3})^3 - 8$ = $2^3 \cos 2\pi - 8$	While there was the option of finding all three roots
= $8 \times 1 - 8$ = 0 W is a root of $z^3 - 8 = 0$	& showing w was one of them (using mod-arg or cartesian form), this was not
(b) (i) $lm(z)$	the fastest approach!
3i- 1+3i	You must draw these graphs as carefully & as accurately & as to scale as you can.
$ \xrightarrow{\pi/4} Re(2) $	If you can't draw a circle invest in a compass & whether or not you think
(ii) arg $\left(\frac{z-i}{z-1}\right) = \frac{\pi}{2}$	you can draw a straight line use a ruler!
$\downarrow Im(2)$	Notice the open circles
Comm4	the locus passes through the origin.

$$(c) (1+i)^{n} * {n \choose 0} + {n \choose 1} i + {n \choose 2} i^{2} + {n \choose 3} i^{3} + {n \choose 4} i^{4} + \cdots$$

$$(\sqrt{2} cis T_{4})^{n} = {n \choose 0} - {n \choose 2} + {n \choose 4} - \cdots] + i [{n \choose 1} - {n \choose 3} + {n \choose 3} - \cdots]$$

$$2^{1/2} cis T_{4}^{n} = {n \choose 0} - {n \choose 2} + {n \choose 4} - \cdots] + i [{n \choose 1} - {n \choose 3} + {n \choose 3} - \cdots]$$

$$7^{1/2} cis T_{4}^{n} = {n \choose 0} - {n \choose 2} + {n \choose 4} - \cdots] + i [{n \choose 1} - {n \choose 3} + {n \choose 3} - \cdots]$$

$$7^{1/2} cos T_{4}^{n} = 1 - {n \choose 2} + {n \choose 4} - {n \choose 6} + \cdots]$$

$$(d) \qquad 1^{lon(3)}$$

$$(d) \qquad 1^{lon(3)}$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 = OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OI + OZ$$

$$(i) \ OP = 2 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i) \ OP = 2 + 1 + 1 + OZ$$

$$(i)$$

<u>Question 3 (15 marks)</u>	Calc 4, Comm 11
(a) $\lim_{x \to 1} (x^2)$ $y = \sqrt{3}x$ $y = \sqrt{3}x$ $y = \sqrt{3}x$ $y = \sqrt{3}x$ $y = \sqrt{3}x$ $y = \sqrt{3}x$	This is the easiest version of this question you could possibly get — and it wasn't too successful. The question even told you it was only a branch of the hyperbola!
Foci : $(\pm 2, 0) \Rightarrow ae = 2$ $2a = 2 \Rightarrow a = 1$ $\therefore e = 2 & b^2 = a^2(e^2 - 1)$ $b = \sqrt{3}$ Directrices : $x = \pm \frac{1}{2}$ Asymptotes : $y = \pm \sqrt{3}x$ $x = \frac{1}{2} = \sqrt{3}x$	
Note: $ z-2 - z+2 = 2$ =) distance from z to 2 is greater than the distance from z to -2.	
Comm 3	

Comm 6

(c) (i)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 0 & 3 \\ 1 & 2 \\ 1$$

Question 4(15 marks)Calc 6(a)
$$P(x) = x^4 - 4x^3 + 11x^2 - 14x + 10$$
(i) Since $P(x)$ has real coefficients,
if $a + bi \& a + 2bi$ are roots,
the onjugates $a - bi \& a - 2bi$ are olso roots.? You must state this
theorem whenever you
need to use it.Sum of roots = $-b/a$
 $a + bi + a - bi + a + 2bi + a - 2bi = 4$
 $a = 4$
 $a = 1$?Product of roots = $+e/a$
 $(a+bi)(a-bi)(a+2bi)(a-2bi) = 10 $(1 + b^2)(1 + 4b^2) = 10$
 $(1 + b^2)(1 + 4b^2) = 10$
 $(4b^2 + 9)(b^2 - 1) = 0$
 $b = 1$ since be R & b>0you really do need to
 $b \neq x \sqrt{4}, -1$ (ii) The roots are: $1 \pm i$, $1 \pm 2i$
 $1+2i$, $1-2i \rightarrow sum = 2$, prod = 2
 $(+2i, 1-2i \rightarrow sum = 2, prod = 5)$?. $P(x) = x^4 - 4x^3 + 11x^2 - 14x + 10$
 $= (x^2 - 2x + 2)(x^2 - 2x + 5)$$

(b)
$$V = \int_{0}^{\pi_{2}} 2\pi x \cos x \, dx \sqrt{x}$$

$$= 2\pi \left(\left[x \cdot \sin x \right]_{0}^{\pi_{2}} - \int_{0}^{\pi_{2}} \sin x \, dx \right)$$

$$= 2\pi \left(\left[\frac{\pi}{2} - 0 + \left[\cos x \right]_{0}^{\pi_{2}} \right) \right]$$

$$= 2\pi \left(\left[\frac{\pi}{2} - 1 \right] \right)$$

$$= \pi^{2} - 2\pi \quad \text{units}^{3} \quad \text{Calc 3}$$
(c) Taking slices perpendicular to the axis:
 $axis$:
 $axis$:
 $v = 2\pi \int x^{2} - a^{2} \, dy \sqrt{x}$:
 $v = 2\pi \int x^{2} - a^{2} \, dy \sqrt{x}$:
 $= 2\pi \int_{0}^{\pi} 4a^{2} - y^{2} - a^{2} \, dy \sqrt{x}$:
 $= 2\pi \left[3a^{2}y - y^{3} \right]_{0}^{axis} \sqrt{x}$
 $= 2\pi \left[3a^{3}\sqrt{3} - a^{3}\sqrt{3} - 0 \right]$
 $= 4\pi a^{3}\sqrt{3} \quad \text{cm}^{3} . \sqrt{x}$

 $(d) \quad x^3 + kx + 1 = 0$ (i) $S_1 = \alpha + \beta + \delta$ = 0 $S_2 = \alpha^2 + \beta^2 + \beta^2$ = $(\alpha + \beta + \sigma)^2 - 2(\alpha\beta + \beta\sigma + \sigma\sigma)$ $= 0^{2} - 2 \times k$ = -2k(ii) $S_{n+3} + kS_{n+1} + S_n$ Not everything is induction! $= (\alpha^{n+3} + \beta^{n+3} + \gamma^{n+3})$ + $k(\alpha^{n+1} + \beta^{n+1} + \gamma^{n+1})$ + $(\alpha^n + \beta^n + \sigma^n)$ $= \alpha^{n} \left(\alpha^{3} + k \alpha + 1 \right) + \beta^{n} \left(\beta^{3} + k \beta + 1 \right)$ $+ \mathcal{J}^{n}(\mathcal{J}^{3}+k\mathcal{J}+1)$ $= \alpha^{n} \times 0 + \beta^{n} \times 0 + \delta^{n} \times 0$ (since α, β, δ are roots
 & satisfy the equation) (iii) $S_q + kS_2 + S_1 = 0$ $S_4 = -S_1 - kS_2$ = -0 - kx - 2k $= 2k^2$ $\therefore \alpha^{4} + \beta^{4} + \delta^{4} = 2k^{2}$

Question 5 (15 marks)Calc 6, Reas 2(a) (i)
$$P: x = asec 0 y = btan0dx $dx = asec 0 tan0 dx = bsec^2 0 $dx = asec 0 tan0 dx = bsec^2 0 $dx = asec 0 tan0 dx = bsec^2 0 $dx = asec 0 tan0 atan0 $dx = asec 0 atan0 $dx = asec 0$$

(iv) Lows of G:

$$x = (a^{2}+b^{2}) \sec \Theta = 3ax$$
To find the cartesian
equation you need to

$$y = (a^{3}+b^{3}) \tan \Theta = 3by$$

$$a^{2}+b^{2}$$
Since $\sec^{2}\Theta - \tan^{2}\Theta = 1$

$$\frac{9a^{4}x^{2}}{(a^{2}+b^{2})^{2}} - \frac{9b^{4}y^{2}}{(a^{2}+b^{2})^{2}} = 1$$

$$\frac{a^{4}x^{2}}{(a^{2}+b^{2})^{2}} - \frac{9b^{2}y^{2}}{(a^{2}+b^{2})^{2}} = 1$$
Which is a hyperbola which
intersects the x axis at

$$\frac{1}{2} = \left(\frac{a^{2}+b^{2}}{3a}, \frac{2}{3b}\right)$$
Which is a hyperbola which
intersects the x axis at

$$\frac{1}{2} = \left(\frac{a^{2}+b^{2}}{3a}, \frac{2}{3b}\right)$$

$$\frac{1}{2} = \frac{a^{2}+b^{2}}{(a^{2}+b^{2}+b^{2})}$$
Don't be scared of
inequalities. Just start
with what you're given

$$= a^{2}(e^{2}-1) < 2a^{2}$$

$$= 0e^{2} - 1 < 2$$

$$= 0e^{2} - 1 < 2$$

$$= 0e^{2} - 1 < 2$$

$$= 1e^{2} - 1 < 2 < 1$$

$$= 1e^{2} - 1 < 1 < 1e^{2} - 1$$

$$= 1e^{2} - 1 < 1e^{2} - 1$$

$$= 1e^{2} - 1e^{2$$

(b) (i) Area = $\frac{1}{2}(y+1)^2 \sin \frac{\pi}{3}$ $=\frac{1}{2}(\sec x+1)^{2}x\frac{\sqrt{3}}{3}$ $= \frac{\sqrt{3}}{4} (\sec \varkappa + 1)^2 . \checkmark$ (ii) $V = \int \frac{\sqrt{3}}{4} (\sec x + 1)^2 dx$ $= \frac{\sqrt{3}}{4} \int \sec^2 x + 2 \sec x + 1 dx$ $= \frac{\sqrt{3}}{4} \left[\tan x + 2\ln(\sec x + \tan x) + x \right]^{\frac{1}{4}}$ $= \frac{\sqrt{3}}{4} \left[1 + 2\ln(\sqrt{2} + 1) + \frac{\pi}{4} - 0 \right]$ $=\frac{53}{4}[1+2\ln(52+1)+\frac{\pi}{4}]$ units³ Calc 4

$$\begin{array}{c} \underline{\operatorname{Question} 6} & (15 \text{ marks}) & \text{Calc 4, Reas II} \\ \hline \\ (a) (i) \quad \text{let } x = \pi - u & z = 0, u = \pi \\ & dx = -du & z = \pi, u = 0 & \text{you need to substitute} \\ & dx = -du & z = \pi, u = 0 & \text{you need to substitute} \\ \hline \\ & you need to substitute & eventual 6 & - the limits \\ \hline \\ & I_{1} = \int_{0}^{\infty} \frac{x \sin x}{1 + \cos^{2} x} \, dx & g & dx & tes! \\ \end{array}$$

$$\begin{array}{c} = \int_{0}^{\infty} \frac{(\pi - u) \sin(\pi - u)}{1 + \cos^{2} u} & -du \\ = \int_{0}^{\infty} \frac{(\pi - u) \sin u}{1 + \cos^{2} u} \, du \\ = \int_{0}^{\infty} \frac{(\pi - u) \sin x}{1 + \cos^{2} u} \, dx = I_{2} \\ \hline \\ & I_{1} + \cos^{2} x & dx \\ \end{array}$$

$$\begin{array}{c} = \int_{0}^{\pi} \frac{(-\sin x)}{1 + \cos^{2} x} \, dx \\ = -\pi \int_{0}^{\pi} \frac{(-\sin x)}{1 + \cos^{2} x} \, dx \\ = -\pi \int_{0}^{\pi} \frac{(-\sin x)}{1 + \cos^{2} x} \, dx \\ \end{array}$$

$$\begin{array}{c} = -\pi \left[\tan^{-1} (\cos z) \right]_{0}^{\pi} \sqrt{1 + \cos^{2} x} \\ = -\pi \left[\tan^{-1} (-1) - \tan^{-1}(1) \right] \\ = -\pi \left[\tan^{-1} (-1) - \tan^{-1}(1) \right] \\ = \frac{\pi^{2}}{2} & \sqrt{1 + \cos^{2} x} & dx \\ \end{array}$$

(b) (i)
$$\frac{z^2 - 1}{2} = z - z^{-1}$$

= cis θ - cis(- θ)
= cos θ + isin θ - (cos(θ)+isin(θ))
= cos θ + isin θ - (cos(θ)+isin(θ))
= cos θ + isin θ - (cos(θ)+isin(θ))
= cos θ + isin θ - cos θ - isin θ
= 2 isin θ
 $z^{2-1} = \frac{(\omega s \theta + i sin \theta)^2 - 1}{\cos \theta + i sin \theta} \times \frac{\cos \theta - i sin \theta}{\cos \theta - i sin \theta}$
= $\frac{(\cos^2 \theta + sin^2 \theta)(\cos \theta + i sin \theta) - (\cos \theta - i sin \theta)}{\cos^2 \theta + sin^2 \theta}$
= $\cos \theta + i sin \theta - \cos \theta + i sin \theta$
= $2i sin \theta$
(ii) $z + z^3 + z^5 + z^5 + z^5$
= $\frac{z((z^2)^5 - 1)}{z^2 - 1}$
= $\frac{z \cos 10\theta + i sin^10\theta - 1}{2 sin \theta} \times \frac{-i}{z^1}$
= $\frac{sin 10\theta + i(1 - cos 10\theta)}{2 sin \theta}$
(iii) $Re(z + z^7 + z^5 + z^5 + z^5)$
= $e \frac{sin 10\theta + i(1 - cos 10\theta)}{2 sin \theta}$

$$cos\theta + cos 3\theta + cos 5\theta + cos 7\theta + cos 9\theta = \frac{1}{2}$$

$$\Rightarrow \frac{\sin 10\theta}{2\sin \theta} = \frac{1}{2}$$

$$\Rightarrow \sin 10\theta = \sin \theta$$

$$10\theta = \theta + 2\pi k, 10\theta = \pi - \theta + 2\pi k$$

$$\theta = 2\pi k, 11\theta = \pi + 2\pi k$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$f = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$f = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k, k \in \mathbb{Z}$$

$$\theta = 2\pi k, \pi + 2\pi k$$

Question 7 (15 marks)	Calc G, Reas 9
(a) (i) $(x-y)^2 \ge 0$ $x^2+y^2-2xy \ge 0$ $x^2+y^2 \ge 2xy$	
(ii) Dividing by xy $\Rightarrow \frac{x}{y} + \frac{y}{x} > 2 (since x, y > 0)$	
(iii) $\chi^{3} + y^{3} = (\chi + y)(\chi^{2} - \chi y + y^{2})$ $\Rightarrow (\chi + y)(\chi - \chi y)$ $= \chi y (\chi + y)$ $= \chi y z \left(\frac{\chi}{z} + \frac{y}{z}\right)$	
(iv) Similarly, $y^3 + z^3 \ge xyz \left(\frac{y}{x} + \frac{z}{z}\right)$ & $z^3 + x^3 \ge xyz \left(\frac{z}{x} + \frac{x}{y}\right)$	Remember the technique of applying an inequality several times over & then
Adding these: $2(x^{3}+y^{3}+z^{3}) \ge xy \ge \left(\frac{x}{z}+\frac{y}{z}+\frac{y}{z}+\frac{z}{z}+\frac{z}{y}+\frac{z}{y}\right)$	putting it together.
3 xyz (2+2+2) = 6xyz $\therefore x^3 + y^3 + z^3 > 3xyz$	
(v) $\chi = \sqrt[3]{a}$, $y = \sqrt[3]{b}$, $z = \sqrt[3]{c} \Rightarrow a + b + c > 3\sqrt[3]{abc}$ Similarly $a + b + d > 3\sqrt[3]{abc}$ $a + c + d > 3\sqrt[3]{acc}$	
b+c+d > 5 Jbcd Multiplying these	

(b) (i) A divides (B externally in the ratio
$$CA:AB = \varphi+1:\varphi$$

B divides AC internally in the question but not many gave it a go which is a pity.
B divides AC internally in the ratio $AB:BC = \varphi+1$
 $\therefore \quad \frac{\varphi+1}{\varphi} = \frac{\varphi}{1}$
 $\varphi^2 = \varphi+1$
(ii) Solutions to $\varphi^2 = \varphi+1$
 $\varphi^2 - \varphi - 1 = 0$
 $\varphi = \frac{1 \pm \sqrt{5}}{2}$
 $\therefore \quad \varphi = \frac{1+\sqrt{5}}{2}, \quad \Theta = \frac{1-\sqrt{5}}{2}$
When $n = 1$: LHS = $F_1 = 1$
 $RHS = \frac{\varphi-\Theta}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$
 $RHS = \frac{\varphi^2-\Theta^2}{\sqrt{5}}$
 $= \frac{(\varphi+1)-(\Theta+1)}{\sqrt{5}}$
 $= \frac{\varphi-\Theta}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{5}} = 1$
H's true for $n = 1$ & $n = 2$ so let
 $k-1$ & k be integers for which
it's true i.e. $F_{k-1} = \frac{\varphi^{k-1}-\Theta^{k-1}}{\sqrt{5}}$

Then $F_{k+1} = F_k + F_{k-1}$ $= \frac{\varphi^{k} - \Theta^{k}}{\sqrt{5}} + \frac{\varphi^{k-1} - \Theta^{k-1}}{\sqrt{5}}$ (from assumption) $= \frac{\varphi^{k-i}(\varphi+i) - \Theta^{k-i}(\varphi+i)}{\Gamma}$ $= \frac{\varphi^{k-1}}{\varphi^2} + \frac{\varphi^2}{\varphi^2} + \frac{\varphi^{k-1}}{\varphi^2} + \frac{\varphi^2}{\varphi^2}$ (since $\varphi^2 = \varphi + 1 \& \Theta^2 = \Theta + 1$) $\frac{\varphi^{k+l} - \varphi^{k+l}}{\sqrt{5}}$ & so it's true for the next integer k+1 \therefore By strong induction, $F_n = Q^n - Q^{n-1}$

Question 8(15 marks)Reas 15(a) (i) If
$$\alpha$$
 is a double root of $x^n - bx^2 + c = 0$ Many got an easy first
mark - but some didn't
because of privial& α is also a single root of $nx^{n-1} - 2bx = 0$ Mark - but some didn't
because of privial $\Rightarrow n\alpha^{n-1} - 2b\alpha = 0$ (i) If e^{α} is a single root of $nx^{n-1} - 2bx = 0$ $\Rightarrow n\alpha^{n-1} - 2b\alpha = 0$ (ii) Substitute into 0 $\Rightarrow n\alpha^{n-1} - 2b\alpha^2 = 0$ (iii) Substituting this into (3) $=)$ $2b\alpha^2 - b\alpha^2 + c = 0$ $\alpha^2 = \frac{nc}{n}$ (iii) Substituting this into (3) $=)$ $\frac{nc}{nb-2b}$ $=)$ $\frac{nc}{nb-2b}$ $=)$ $n^{n} - 2b - nc - nb-2b$ $=)$ $n^{n} - 2b - nc - nb-2b$ $=)$ $n^{n} - 2b^{-1} = 4c^2(n-2)^n b^n$ $=)$ $n^n c^{n-2} = 4b^n (n-2)^{n-2}$

(b) (i) AB // DM (both lines are 1 to AC)	
$\therefore BM = MC = AD = DC$	
(intercepts on parallel lines	
AB & DM are in the same ratio)	
. PM bisects AC at right angles	
& hence PM is the diameter	
(the perpendicular bisector of a	
chord passes through the centre)	
(ii) In $\Delta MCD \& \Delta MPC$	Well done to those who
$LMDC = 90^\circ = LMCP$	recognised this was an
(given MO L AC & angles	pasy 2 marks to pick up.
in a semicircle are 90°)	
LCMD = LPMC (common)	
. AMCD III AMPC (AA similarity test)	
(iii) MD = MC (corresponding sides in III	
MC MP As in the same ratio)	
=> MD _ MB (since MC = MB)	
MB MP	
In DOMB & DBMP	
MO MB (above)	
MB MP	
LDMB = LBMP (common)	
DOMB III DBMP (SAS similarity test)	
\mathbf{O}	