

SCEGGS Darlinghurst

2010
 HIGHER SCHOOL CERTIFICATE TRIALEXAMINATION

Mathematics Extension 2

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

BLANK PAGE

Total marks - 120
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks)
(a) Find $\int \cos ^{3} x \sin x d x$
(b) Find $\int \frac{1}{1+e^{-x}} d x$
(c) Evaluate $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
(d) Use the substitution $x=\sec \theta$ to evaluate $\int_{1}^{\sqrt{2}} \frac{1}{x \sqrt{x^{2}-1}} d x$
(e) (i) Express $\frac{3}{(x+1)\left(x^{2}+2\right)}$ in the form $\frac{a}{x+1}+\frac{b x+c}{x^{2}+2}$, where a, b and c are constants.
(ii) Hence find $\int \frac{3}{(x+1)\left(x^{2}+2\right)} d x$.

End of Question 1

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=2+3 i$ and $w=\bar{z}$. Find, in the form $x+i y$, where x and y are real:
(i) $w z$
1
(ii) $\frac{Z}{w}$.
(b) (i) Find the square roots of $-3+4 i$ in the form $a+i b$ where a and b are real.
(ii) Hence, solve the equation $(1+i) z^{2}-z-i=0$.
(c) Sketch the region in the complex plane where the inequalities

$$
z+\bar{z}<8,|z| \geq 4 \text { and }|\arg z|<\frac{\pi}{3} \text { hold simultaneously. }
$$

Question 2 continues on page 4

Question 2 (continued)
(d) In the Argand diagram, vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$ represent the complex numbers z_{1} and z_{2} respectively.

Given that $\triangle A O B$ is isosceles and $\angle B O A=\frac{2 \pi}{3}$:
(i) find an expression for z_{2} in terms of z_{1}
(ii) show that $\left(z_{1}+z_{2}\right)^{2}=z_{1} z_{2}$.

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram shows $y=f(x)$. The line $y=x$ is an asymptote.

Draw separate one-third page sketches of the graphs of the following. Clearly label important features.
(i) $y=f(-x)$
(ii) $y=f(x+2)$
(iii) $y=\sqrt{f(x)}$
(iv) $y=x . f(x)$

Question 3 (continued)
(b) The equation $x^{3}+4 x^{2}+2 x-1=0$ has roots α, β and γ.
(i) Evaluate $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$
(iii) Find a cubic polynomial with integer coefficients whose roots are

$$
\alpha^{2}, \beta^{2} \text { and } \gamma^{2}
$$

(c) Find the equation of the tangent to the curve defined by $x^{2}-x y+y^{2}=5$ at the point $(2,-1)$.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $x^{3}-3 x^{2}-9 x+k=0$ has a double root.

Find the possible values of k.
(b) Use the substitution $t=\tan \frac{x}{2}$ to find $\int \frac{1}{5+4 \cos x+3 \sin x} d x$
(c) (i) By completing the square, show that $4 x^{2}+9 y^{2}+24 x-36 y+36=0$
represents an ellipse in the form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
(ii) Find the eccentricity, e.
(iii) Sketch the ellipse showing the centre, the foci and the directrices.

Question 4 continues on page 8

(d)

In the diagram given, $B A$ is a tangent to the circle at A and the secant $B D$ cuts the circle at C.
$D A$ and $D F$ are two chords such that $F G$ and $A E$ are perpendicular to $D A$ and $D F$ respectively.

Copy the diagram.
(i) Prove that $\angle A C B=\angle B A D$.
(ii) Explain why $A G E F$ is a cyclic quadrilateral with diameter $A F$.
(iii) Prove that $\angle A G E=\angle A C D$.

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) Sebastian, a mathematically-minded sculptor, decided to make a series of pieces modelled on volumes formed by mathematical curves.

His first piece entitled "Give me a Sine" was formed by taking the area under the curve $y=\sin x$ between $x=0$ to $x=\pi$ and rotating it about the y-axis.

(i) Using the method of cylindrical shells, show that the volume, V, of the resulting solid of revolution is given by

$$
V=2 \pi \int_{0}^{\pi} x \sin x d x
$$

(ii) Use integration by parts to find the exact volume.
(b) Sebastian's second sculpture, "The Wedge" was obtained by cutting a right cylinder of radius 4 units at 45° through a diameter of its base.

A rectangular slice $A B C D$, of thickness δx, is taken perpendicular to the base of the wedge at a distance x from the y-axis.
(i) Show that the area of $A B C D$ is given by $2 x \sqrt{16-x^{2}}$.
(ii) Find the exact volume of the wedge.
(c) (i) Prove that $\cos (A-B) x-\cos (A+B) x=2 \sin A x \sin B x$.
(ii) Using the above result, show that the equation $\sin 3 x \sin x=2 \cos 2 x+1$ can be written as a quadratic equation in terms of $\cos 2 x$.
(iii) Hence find the general solution of $\sin 3 x \sin x=2 \cos 2 x+1$.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) In preparation for a school formal, a committee of three is to be chosen from four Year 12 Prefects and n Year 12 non-Prefects ($n \geq 2$).
(i) Show that the number of possible committees containing exactly one Prefect is $2 n(n-1)$.
(ii) Find the number of possible committees containing exactly two Prefects.
(iii) Deduce that the probability P of the committee containing either one or two Prefects is

$$
P=\frac{12 n}{(n+4)(n+3)}
$$

(b) For each integer $n \geq 0$, let $I_{n}=\int_{1}^{2} x(\ln x)^{n} d x$.

$$
\begin{aligned}
& \text { (i) Show that for } n \geq 1, \\
& \qquad I_{n}=2(\ln 2)^{n}-\frac{n}{2} I_{n-1}
\end{aligned}
$$

(ii) Hence evaluate I_{3}.
(Leave your answer in exact form.)

Question 6 continues on page 12

Question 6 (continued)
(c)

$P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
The tangent at P meets the lines $x=a$ and $x=-a$ at Q and R respectively.
(i) Show that the equation of the tangent is given by $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$.
(ii) Find the coordinates of Q and R.
(iii) Show that $Q R$ subtends a right angle at the focus $S(a e, 0)$.
(iv) Deduce that Q, S, R, S are concyclic.

End of Question 6

BLANK PAGE

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) A family of six are sitting at a round table.

In how many ways can they be arranged so that Mum and Dad sit together and the youngest daughter, Chelsea, does not sit opposite Dad?
(b) (i) Factorise the cubic polynomial $z^{3}-64$:
(A) over the real numbers.
(B) over the complex numbers.
(ii) Let ω be one of the complex roots of the equation $z^{3}-64=0$.
(A) Show that $\omega^{2}=-4(\omega+4)$.
(B) Hence evaluate $(4 \omega+16)^{3}$.
(c) A sequence of numbers $T_{1}, T_{2}, T_{3}, \ldots$ is defined by $T_{1}=1, T_{2}=5$ and $T_{k}=5 T_{k-1}-6 T_{k-2}$.
(i) Show that the statement $T_{n}=3^{n}-2^{n}$ is true for $n=1,2,3$.
(ii) Prove by induction that $T_{n}=3^{n}-2^{n}$ for all integers $n \geq 1$.
(d) (i) Using the substitution $u=a-x$, show that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

(ii) Hence evaluate $\int_{0}^{\pi} x \sin ^{2} x d x$.

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) Let $f(x)=x-\frac{1}{2} \tan x$.
(i) Show that $f(x)$ is an odd function.
(ii) Find the value of any stationary points in the domain $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and determine their nature.
(iii) Sketch the curve $y=f(x)$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$.
(You do not need to find the values of all x-intercepts.)
(iv) Hence, or otherwise, show that $x \geq \frac{1}{2} \tan x$ for $0 \leq x \leq \frac{\pi}{4}$ and state when equality holds in the given domain.
(b) A spiral is created by constructing a right-angled triangle on the hypotenuse of the previous triangle as shown in the diagram.

Each triangle has an altitude of 1 unit and the hypotenuse lengths form a sequence $1, \sqrt{2}, \sqrt{3}, \sqrt{4}, \sqrt{5}, \ldots$

Let the angle, θ, in each triangle be $\theta_{1}, \theta_{2}, \theta_{3}, \ldots$ as shown in the diagram.
The angle in the nth triangle is given by θ_{n}.
(i) Write down expressions for $\tan \theta_{1}, \tan \theta_{2}, \tan \theta_{3}$ and $\tan \theta_{n}$.
(ii) Within what range of values does θ lie?
(iii) Using the result from part (a) (iv), show that $\sum_{n=1}^{k} \theta_{n} \geq \frac{1}{2} \sum_{n=1}^{k} \frac{1}{n}$.

Question 8 (continued)
(b) (continued)
(iv) The curve $y=\frac{1}{x}$ is drawn in the first quadrant and upper rectangles are drawn as shown in the diagram.

Show that $\sum_{n=1}^{k} \frac{1}{n}>\int_{1}^{k+1} \frac{1}{n} d n$.
(v) Hence, deduce that $\sum_{n=1}^{k} \theta_{n}>\ln \sqrt{k+1}$.

End of paper

d)

$$
\begin{aligned}
\overrightarrow{O B} & =\operatorname{cis} \frac{2 \pi}{3} \overrightarrow{O A} \\
z_{2} & =\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) z_{1} \\
& =\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) z_{1}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\left(z_{1}+z_{2}\right)^{2} & =\left(z_{1}+\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) z_{1}\right)^{2} \\
& =\left(z_{1}+\operatorname{cosis} \frac{2 \pi}{3} z_{1}\right)^{2} \\
& =z_{1}^{2}+2 \operatorname{cis} \frac{2 \pi}{3} z_{1}^{2}+\left(\operatorname{cis} \frac{2 \pi}{3} z_{1}\right)^{2} \\
& =z_{1}^{2}+2 \operatorname{cis} \frac{2 \pi}{3} z_{1}^{2}+\operatorname{cis} \text { cis } \frac{4 \pi}{3} z_{1}^{2} \\
& =z_{1}^{2}+2\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) z_{1}^{2}+\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) z_{1}^{2} \\
& =z_{1}^{2}\left(1-1+\sqrt{3} i-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\
& =z_{1}^{2}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =z_{1}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) z_{1} \\
& =z_{1} z_{2} .
\end{aligned}
$$

Question 3.
a) i) $y=f(-x) \Rightarrow$ reflect original in the yaxis.

ii) $y=f(x+2) \Rightarrow$ shift original left 2 units.
(move axis right 2 units)
$\left.\begin{array}{c}\text { circle } \\ \text { vertical line }\end{array}\right\}$
aigz
region shaded

This part was surprisingly poorly done. It is a standard question. You should recognise each of these regions and how to find cartesian form.

Rear 4
iii) $y=\sqrt{f(x)}$

iv)

There is more than one way to do this. Here's one method using Demoirres and careful expansion of lorackets of using Cartesian form.
some thing's to make your graphs stand out. * Highlight the answer clearing if you've drawn the original as well.
use some points for more difficult concepts/limits Drawing asymptotes will help as well.

* Completing the square is not os easy when
the coefficient of x^{2} is not one.
Do some practice of these if you couldn't do it.

A bit harder because the ellipse is snifted.
iii) Centve $(-3,2)$

$$
\text { Foci }(-3 \pm a e, 2)=(-3 \pm \sqrt{5}, 2)
$$

$$
\begin{aligned}
\text { Directrices } & x=-3 \pm \frac{a}{e} \\
x & =-3 \pm \frac{9}{\sqrt{5}}
\end{aligned}
$$

d)

1) Construct $A F$
$\angle B A D=\angle D F A$ (Angle between a tangent and a chord equals the angle in the alternate segment).
$\angle D F A=\angle A C B \quad$ ($A F D C$ is a cyclic quad.)
(the exterior angle in a cyclic
quadrilateral is equal to the opposite interior angle.)
$\therefore \angle A C B=\angle B A D$
ii) $\angle A G F=90^{\circ}$ (given)
A, G, F are concyclic points since the angle in a semicircle is 90°.
AGF lie on a circle with diameter AF
Scmilarly
$\angle A E F=90^{\circ}$ (given)
\therefore AEF lie on a circle with diameter AF
\because AGEF is a cyclic quadvilateral with diameter AF.
iii) Let $\angle A F E=x$
since AGEF is a cyclic quad. The opposite anglesare supplementary.
$\therefore \angle A G E=180-x$
$\angle A C B=\angle A F D=x$ from part (i) $\therefore \angle A C D=180-x$ (Angles on a straight
$\therefore \angle A G E=\angle A C D$.
(ii)

Reas 5
There is more than one way to do this question.

The instruction Says Copy the Diagram so you must do it.
The marker must be able to clearly see any labels that you have added so that they can follow your reasoning.

Be kria!

This part was Wen done by those who did it.
Drawing the new
circle through
AGEF with help with the logic and reasoning.

This part wasn't
answered very
weu and even
well and even
-hose who did well got mixedup. Have anbther go. les not
too bad.

Question 5.

Drawing the cylindrical slice as a rectangle is the easiest method.
$V=\lim _{\sigma x \rightarrow 0} \sum_{x=0}^{\pi} 2 \pi x \sin x \delta x$

$$
=2 \pi \int_{0}^{\pi} x \sin x d x
$$

ii)

$$
\begin{aligned}
v & =2 \pi \int_{0}^{\pi} x \sin x d x \quad\left\{\begin{array}{l}
\frac{\text { I.B.P. }}{u=x} \\
u^{\prime}=1 \\
u^{\prime}=\sin x \\
\int_{u v^{\prime}=-\cos x}=u v-\int v u^{\prime}
\end{array}\right. \\
& =2 \pi\left([-x \cos x]_{0}^{\pi}+\int_{0}^{\pi} \cos x d x\right) \\
& =2 \pi\left(\{-\pi \cos \pi-0\}+[\sin x]_{0}^{\pi}\right) \\
& =2 \pi\{-\pi x-1+(\sin \pi-\sin 0)) \\
& =2 \pi \times \pi \\
& =2 \pi^{2} \quad \text { units }^{3}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
\text { ABCD Area } & =2 x y \\
& =2 x \sqrt{16-x^{2}}
\end{aligned}
$$

This part was well done. it is an easy integration by parts.
canc 5
Students who had greatest success in this part drew a clear diagram of the crosssection $A B C D$ and showed the area clearly.

Q5 (cont')
b) ii) Each volume

$$
\begin{aligned}
\delta V & =A \delta x \\
& =2 x \sqrt{16-x^{2}} \delta x
\end{aligned}
$$

Total volume

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{4} 2 x \sqrt{16-x^{2}} \delta x \\
& =\int_{0}^{4} 2 x \sqrt{16-x^{2}} d x \\
& =-\int_{0}^{4}-2 x\left(16-x^{2}\right)^{\frac{1}{2}} d x \\
& =-\left[\frac{2}{3}\left(16-x^{2}\right)^{3 / 2}\right]_{0}^{4} \\
& =-\left\{\frac{2}{3}\left(0-16^{3 / 2}\right)\right\} \\
& =-\frac{2}{3} \times-64 \\
& =\frac{128}{3} \\
& =42 \frac{2}{3} \text { unis }^{3}
\end{aligned}
$$

c)

$$
\text { i) } \begin{aligned}
& \cos (A-B) x-\cos (A+B) x \\
= & \cos A x \cos B x+\sin A x \sin B x \\
& -(\cos A x \cos B x-\sin A x \sin B x) \\
= & 2 \sin A x \sin B x .
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \sin 3 x \sin x=2 \cos 2 x+1 \\
& \text { LbS }=\sin 3 x \sin x \quad \text { (using part (1)) } \\
& =\frac{1}{2}(\cos (3-1) x-\cos (3+1) x) \\
& =\frac{1}{2}(\cos 2 x-\cos 4 x) \\
& \therefore \frac{1}{2}(\cos 2 x-\cos 4 x)=2 \cos 2 x+1 \\
& \cos 2 x-\cos 4 x=4 \cos 2 x+2 \\
& \cos 4 x+3 \cos 2 x+2=0
\end{aligned}
$$

This part was well done.

Look for short cuts.
\downarrow use reverse chain rule

$$
\begin{aligned}
& \int f^{\prime}(x) f(x)^{n} d x \\
& =\frac{f(x) n^{n+1}}{n+1}
\end{aligned}
$$

OR use a trig.
substitution.

Easy but don't cramp the setting out.

Lots of algebraic mistakes in this part which was a shame because it's a straight forward trig.
substitution question.

Question 6(continued)
b)

$$
\begin{aligned}
I_{n} & =\frac{\int_{1}^{2} x(\ln x)^{n} d x}{u \operatorname{sen} g \text { I.B.P. } \quad \begin{array}{l}
u=(\ln x)^{n} \\
u^{\prime}=n(\ln x)^{n-1} \cdot \frac{1}{x} \quad \begin{array}{l}
v^{\prime}=x \\
v=\frac{x^{2}}{2}
\end{array} \\
\int u v^{\prime}=u v-\int v u^{\prime}
\end{array}} \\
I_{n} & =\left[\frac{\left.x^{2}(\ln x)^{n}\right]_{1}^{2}-\int_{1}^{2} n(\ln x)^{n-1} \frac{1}{x} \cdot \frac{x^{2}}{2} d x}{}\right. \\
& =\left(\frac{4}{2}(\ln 2)^{n}-\frac{1}{2}(\ln 1)^{n}\right)-\int_{1}^{2} n(\ln x)^{n-1} \frac{x}{2} d x \\
& =2(\ln 2)^{n}-\frac{n}{2} \int_{1}^{2} x(\ln x)^{n-1} d x \\
& =2(\ln 2)^{n}-\frac{n}{2} I_{n-1}
\end{aligned}
$$

iii)

$$
\begin{aligned}
I_{3} & =2(\ln 2)^{3}-\frac{3}{2} I_{2} \\
& =2(\ln 2)^{3}-\frac{3}{2}\left[2(\ln 2)^{2}-\frac{2}{2} I_{1}\right] \\
& =2(\ln 2)^{3}-3(\ln 2)^{2}+\frac{3}{2} I_{1} \\
& =2(\ln 2)^{3}-3(\ln 2)^{2}+\frac{3}{2}\left(2 \ln 2-\frac{1}{2} I_{0}\right)
\end{aligned}
$$

Evaluate $I_{0}=\int_{1}^{2} x(\ln x)^{0} d x$ $=\int_{1}^{2} x d x$ $=\left[\frac{x^{2}}{2}\right]_{1}^{2}$ $=\frac{4}{2}-\frac{1}{2}$ $=\frac{3}{2}$

$$
\begin{aligned}
\therefore I_{3} & =2(\ln 2)^{3}-3(\ln 2)^{2}+3 \ln 2-\frac{3}{4} \times \frac{1}{2} \times \frac{3}{2} \\
& =2(\ln 2)^{3}-3(\ln 2)^{2}+3 \ln 2-\frac{9}{8}
\end{aligned}
$$

Excellent work in this question. would done!
c) i) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Differentiate $w i+x$

$$
\begin{aligned}
\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{\frac{2 x}{a^{2}}}{\frac{2 y}{b^{2}}} \\
\frac{d y}{d x} & =\frac{2 x}{a^{2}} \times \frac{b^{2}}{2 y} \\
\frac{d y}{d x} & =\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

At $p(a \sec \theta, b \tan \theta)$, gradient

$$
\begin{aligned}
m_{T} & =\frac{b^{2} \cdot a \sec \theta}{a^{2} \cdot b \tan \theta} \\
& =\frac{b \sec \theta}{a \tan \theta}
\end{aligned}
$$

Equation of tangent at P.

$$
y-b \tan \theta=\frac{b \sec \theta}{a \tan \theta}(x-a \sec \theta)
$$

$$
a \tan \theta y-a b \tan ^{2} \theta=b \sec \theta x-a b \sec ^{2} \theta
$$

$$
b \sec \theta x-a \tan \theta y=a b\left(\sec ^{2} \theta-\tan ^{2} \theta\right)
$$

$$
b \sec \theta x-a \tan \theta y=a b
$$

$(\div a b) \quad \frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
find than I_{1} I_{1} if you wast.
ii) Tangent cuts Q when $x=a$

$$
\begin{gathered}
\frac{a \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \\
y \frac{\tan \theta}{b}=\sec \theta-1 \\
y=\frac{b}{\tan \theta}(\sec \theta-1) \\
\therefore Q\left(a, \frac{b}{\tan \theta}(\sec \theta-1)\right)
\end{gathered}
$$

Cal
This question partial is standard bookwork.

Everybody should be able to find equations of tangents a normals to hyperbolas ellipse without a problem.

Q6 (continued)	(18)
(connivived) c) ii) Tangent cuts R at $x=-a$ $\begin{array}{r} \frac{-a \sec \theta}{a}-\frac{y \tan \theta}{b}=1 \\ \frac{y \tan \theta}{b}=-\sec \theta-1 \\ y=-\frac{b}{\tan \theta}(\sec \theta+1) \\ \therefore R\left(-a,-\frac{b}{\tan \theta}(\sec \theta+1)\right) \end{array}$	Only one mark for both points Q and R. Be careful with signs!
$0\left(a_{1} \frac{\operatorname{s}}{\tan \theta}(\sec \theta-1)\right) \quad s(a, 0)$ iii) $\begin{aligned} M_{Q S} & =\frac{\frac{b}{\tan \theta(\sec \theta-1)-0}}{a-a c} \\ & =\frac{b(\sec \theta-1)}{\tan \theta \cdot a(1-e)} \end{aligned}$ $\begin{aligned} & R\left(-a, \frac{-b}{\tan \theta}(\sec \theta+1)\right) S(a e, 0) \\ & m_{R S}=\frac{\frac{-b}{\tan \theta(\sec \theta+1)-0}}{-a-a e} \\ &=-\frac{b(\sec \theta+1)}{-\frac{\tan \theta \cdot a(1+e)}{2}} \end{aligned}$	Again, be carefu! with negative signs and no fudging please.
$\begin{aligned} & M_{Q S} \times m_{R S}=\frac{b(\sec \theta-1)}{a \tan \theta(1-e)} \times \frac{b(\sec \theta+1)}{a \tan \theta(1+e)} \\ & \text { for hyperbola }=\frac{b^{2}\left(\sec ^{2} \theta-1\right)}{\tan ^{2} \theta a^{2}\left(1-e^{2}\right)} \\ & \begin{aligned} & b^{2}=a^{2}\left(e^{2}-1\right) \\ & \text { so change } \\ & \text { signs } \gg=\frac{b^{2}}{}\left(\sec ^{2} \theta-1\right) \\ &-a^{2}\left(e^{2}-1\right)\left(\tan ^{2} \theta\right) \\ &=\frac{b^{2}}{-b^{2}} \quad \therefore \quad \operatorname{QSIRS} \\ &=-1 \quad \therefore \angle Q S R=90^{\circ} \end{aligned} \end{aligned}$	

Q6 (continued)	(19)
iv) Similarly using $s^{\prime}(-a e, 0)$	Reas2

$$
\begin{aligned}
& m_{Q S^{\prime}}=\frac{\frac{b}{\tan \theta}(\sec \theta-1)}{a+a e} \\
& m_{R S^{\prime}}=\frac{\frac{-b}{\tan \theta}(\sec \theta+1)}{-a+a e}
\end{aligned}
$$

$$
\begin{aligned}
m_{Q S^{\prime}} \times m_{R S^{\prime}} & =\frac{-b^{2}\left(\sec ^{2} \theta-1\right)}{\tan ^{2} \theta-a^{2}\left(1-e^{2}\right)} \\
& =\frac{-b^{2}}{a^{2}\left(e^{2}-1\right)} \\
& =\frac{-b^{2}}{b^{2}} \\
& =-1 \\
\therefore Q S^{\prime} & \perp R S^{\prime} \\
\angle Q S^{\prime} R & =90^{\circ}
\end{aligned}
$$

Since $\angle Q S R=90^{\circ}, Q, S$ and R lie on a circle with diameter $Q R$

$$
\angle Q S^{\prime} R=90^{\circ} \quad \therefore Q, S^{\prime} R \text { lie on a }
$$

circle with diameter QR

Since $\angle Q S R=90^{\circ}$ and $\angle Q S^{\prime} R=90^{\circ}$ the opposite angles are supplementary.
\therefore QSRS' are concyclic with diameter $Q R$.

This paut was well done by
those that got
this far. it's not very difficult to do this proof.

Question 7 (continued)
c) ii) (continued)

$$
\begin{aligned}
T_{k+1}= & 5 T_{k}-6 T_{k-1} \\
= & 5\left(3^{k}-2^{k}\right)-6\left(3^{k-1}-2^{k-1}\right) \\
& \text { (using the assumption) } \\
= & 5 \cdot 3^{k}-5 \cdot 2^{k}-6 \cdot 3^{k} \cdot 3^{-1}+6 \cdot 2^{k} \cdot 2^{-1} \\
= & 5 \cdot 3^{k}-5 \cdot 2^{k}-2 \cdot 3^{k}+3 \cdot 2^{k} \\
= & 3 \cdot 3^{k}-2 \cdot 2^{k} \\
= & 3^{k+1}-2^{k+1}
\end{aligned}
$$

\therefore If the statement is true for $n=h$ it is true for $n=k_{2}+1$.
Since it is true for $n=1,2,3$, it is true for all integers $n \geqslant 1$ by The principle of mathematical induction.
d i) $\int_{0}^{a} f(x) d x$

Telly well done.
otis was an easy question.

$$
\begin{aligned}
& =\int_{a}^{0} f(a-u) .-d u \\
& =-\int_{a}^{0} f(a-u) d u \\
& =\int_{0}^{a} f(a-u) d u \\
& =\int_{0}^{a} f(a-x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } \\
& \text { i) } \int_{0}^{\pi} x \sin ^{2} x d x \\
& =\int_{0}^{\pi}(\pi-x) \sin ^{2}(\pi-x) d x \\
& {\left[\begin{array}{c}
\text { note that (quad 2) } \\
\sin (\pi-x)=\sin x
\end{array}\right]} \\
& =\int_{0}^{\pi}(\pi-x) \sin ^{2} x d x \\
& =\int_{0}^{\pi} \pi \sin ^{2} x d x-\int_{0}^{\pi} x \sin ^{2} x d x \\
& \therefore 2 \int_{0}^{\pi} x \sin ^{2} x d x=\int_{0}^{\pi} \pi \sin ^{2} x d x \\
& \int_{0}^{\pi} x \sin ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi} \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{\pi}{4}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi} \\
& =\frac{\pi}{4}\left\{\pi-\frac{1}{2} \sin 2 \pi-0\right\} \\
& =\frac{\pi^{2}}{4}
\end{aligned}
$$

Many students missed the point of part (i)
By doing the substitution, the question becomes much easier.
You do not have to use integration by parts at an.

Some careless mistakes with Aghis ard algebraic steps.
set your work out clearly carefully from line to line.

a) iii)

$$
y=x-\frac{1}{2} \tan x
$$

iv) From the graph it can be
seen that for $0 \leq x \leq \frac{\pi}{4}$
the curve $f(x)=x-\frac{1}{2} \tan x$ lies on/above the x-axis

$$
\begin{aligned}
f(x) & \geqslant 0 \\
\therefore \quad x-\frac{1}{2} \tan x & \geqslant 0 \\
x & \geqslant \frac{1}{2} \tan x
\end{aligned}
$$

Equality holds when $x=0$.

Question 8 (continued)
b) i)

$$
\begin{aligned}
& \tan \theta_{1}=\frac{1}{1} \\
& \tan \theta_{1}=1 \\
& \tan \theta_{2}=\frac{1}{\sqrt{2}} \\
& \tan \theta_{3}=\frac{1}{\sqrt{3}} \\
& \tan \theta_{n}=\frac{1}{\sqrt{n}}
\end{aligned}
$$

An easy mark here!
Don't forget to draw in the vertical asymptotes.
ii) The largest angle occurs in the first triangle where $\tan \theta_{1}=1 \quad \therefore \theta_{1}=\frac{\pi}{4}$ The angles reduce in size.

$$
\therefore \quad 0<\theta \leqslant \frac{\pi}{4}
$$

iii)

$$
\begin{aligned}
& \sum_{n=1}^{k} \theta_{n} \\
= & \theta_{1}+\theta_{2}+\theta_{3}+\ldots+\theta_{k} \\
\geqslant & \quad \frac{1}{2} \tan \theta_{1}+\frac{1}{2} \tan \theta_{2}+\frac{1}{2} \tan \theta_{3}+\ldots+\frac{1}{2} \tan \theta_{k}
\end{aligned},
$$

Excellent work those who got this step of logic. you should include the reason for this step as well.
keas 3
b) iv) Sum of the areas of the rectangles is greater than the exact area under the curve $y=\frac{1}{x}$ from $x=1$ to $x=k+1$.

Area of rectangles $>$ Exactarea

$$
\begin{aligned}
&(|x|)+\left(1 \times \frac{1}{2}\right)+\left(1 \times \frac{1}{3}\right)+\cdots+\left(1 \times \frac{1}{k}\right)>\int_{1}^{k+1} \frac{1}{x} d x \\
& \sum_{n=1}^{k} \frac{1}{n}>\int_{\binom{\text {variable does nt }}{\text { matter. }}}^{k+1} \frac{1}{x} d x \\
& \sum_{n=1}^{k} \frac{1}{n}>\int_{1}^{k+1} \frac{1}{n} d x
\end{aligned}
$$

v)

$$
\begin{aligned}
\sum_{n=1}^{k} \theta_{n} \geqslant & \frac{1}{2} \sum_{n=1}^{k} \frac{1}{n} \\
& \quad(\text { from part b) iii)) } \\
> & \frac{1}{2} \int_{1}^{k+1} \frac{1}{n} d n \\
= & \frac{1}{2}[\ln n]_{1}^{k+1} \\
= & \frac{1}{2} \ln (k+1) \\
= & \ln (k+1)^{\frac{1}{2}} \\
= & \ln \sqrt{k+1}
\end{aligned}
$$

Reap 2

Although these were the last 2 parts they were actually easy marks to get in a Question 8.

Wen done if you got the mans for these ports.

