

SCEGGS Darlinghurst

2010 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 2

This is a TRIAL PAPER only and does not necessarily reflect the content or format of the Higher School Certificate Examination for this subject.

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1–8
- All questions are of equal value

BLANK PAGE

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks)

(a) Find
$$\int \cos^3 x \sin x \, dx$$
 2

(b) Find
$$\int \frac{1}{1+e^{-x}} dx$$
 2

(c) Evaluate
$$\int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx$$
 3

(d) Use the substitution
$$x = \sec \theta$$
 to evaluate $\int_{1}^{\sqrt{2}} \frac{1}{x\sqrt{x^2-1}} dx$ 3

(e) (i) Express
$$\frac{3}{(x+1)(x^2+2)}$$
 in the form $\frac{a}{x+1} + \frac{bx+c}{x^2+2}$, where **3**
a, *b* and *c* are constants.

(ii) Hence find
$$\int \frac{3}{(x+1)(x^2+2)} dx$$
. 2

End of Question 1

Marks

Question 2 (15 marks) Use a SEPARATE writing booklet.

- (a) Let z = 2 + 3i and $w = \overline{z}$. Find, in the form x + iy, where x and y are real:
 - (i) wz 1 (ii) $\frac{z}{w}$.
- (b) (i) Find the square roots of -3 + 4i in the form a + ib where a and b 3 are real.
 - (ii) Hence, solve the equation $(1+i)z^2 z i = 0$. 3
- (c) Sketch the region in the complex plane where the inequalities 3 $z + \overline{z} < 8$, $|z| \ge 4$ and $|\arg z| < \frac{\pi}{3}$ hold simultaneously.

Question 2 continues on page 4

1

Question 2 (continued)

(d) In the Argand diagram, vectors \vec{OA} and \vec{OB} represent the complex numbers z_1 and z_2 respectively.

Given that $\triangle AOB$ is isosceles and $\angle BOA = \frac{2\pi}{3}$:

(i) find an expression for z_2 in terms of z_1

(ii) show that
$$(z_1 + z_2)^2 = z_1 z_2$$
. 3

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows y = f(x). The line y = x is an asymptote.

Draw separate one-third page sketches of the graphs of the following. Clearly label important features.

- (i) y = f(-x) 1
- (ii) y = f(x+2) 1
- (iii) $y = \sqrt{f(x)}$ 2
- (iv) y = x. f(x) 2

Question 3 continues on page 6

Question 3 (continued)

(b) The equation $x^3 + 4x^2 + 2x - 1 = 0$ has roots α , β and γ .

(i) Evaluate
$$\alpha^2 + \beta^2 + \gamma^2$$
 2

(ii) Evaluate
$$\alpha^3 + \beta^3 + \gamma^3$$
 2

- (iii) Find a cubic polynomial with integer coefficients whose roots are α^2 , β^2 and γ^2 .
- (c) Find the equation of the tangent to the curve defined by $x^2 xy + y^2 = 5$ 3 at the point (2, -1).

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) The equation
$$x^3 - 3x^2 - 9x + k = 0$$
 has a double root. 2

Find the possible values of *k*.

(b) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find $\int \frac{1}{5 + 4\cos x + 3\sin x} dx$ 3

(c) (i) By completing the square, show that $4x^2 + 9y^2 + 24x - 36y + 36 = 0$ 1 represents an ellipse in the form $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

- (ii) Find the eccentricity, *e*. 1
- (iii) Sketch the ellipse showing the centre, the foci and the directrices. **3**

Question 4 continues on page 8

Question 4 (continued)

(d)

In the diagram given, BA is a tangent to the circle at A and the secant BD cuts the circle at C.

DA and DF are two chords such that FG and AE are perpendicular to DA and DF respectively.

Copy the diagram.

(1) Prove that $\angle ACB = \angle BAD$.	ove that $\angle ACB = \angle BAD$.	
--	--------------------------------------	--

(ii) Explain why *AGEF* is a cyclic quadrilateral with diameter *AF*. **1**

(iii) Prove that
$$\angle AGE = \angle ACD$$
. 2

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a) Sebastian, a mathematically-minded sculptor, decided to make a series of pieces modelled on volumes formed by mathematical curves.

His first piece entitled "Give me a Sine" was formed by taking the area under the curve $y = \sin x$ between x = 0 to $x = \pi$ and rotating it about the y-axis.

(i) Using the method of cylindrical shells, show that the volume, *V*, of the resulting solid of revolution is given by

$$V = 2\pi \int_0^\pi x \sin x \, dx$$

(ii) Use integration by parts to find the exact volume.

3

2

Question 5 continues on page 10

Question 5 (continued)

(b) Sebastian's second sculpture, "The Wedge" was obtained by cutting a right cylinder of radius 4 units at 45° through a diameter of its base.

A rectangular slice *ABCD*, of thickness δx , is taken perpendicular to the base of the wedge at a distance x from the y-axis.

(i)	Show that the area of <i>ABCD</i> is given by $2x\sqrt{16-x^2}$.	2
(ii)	Find the exact volume of the wedge.	3
(i)	Prove that $\cos(A - B)x - \cos(A + B)x = 2\sin Ax \sin Bx$.	1
(ii)	Using the above result, show that the equation $\sin 3x \sin x = 2\cos 2x + 1$ can be written as a quadratic equation in terms of $\cos 2x$.	2

(iii) Hence find the general solution of $\sin 3x \sin x = 2\cos 2x + 1$. 2

End of Question 5

(c)

Question 6 (15 marks) Use a SEPARATE writing booklet.

- (a) In preparation for a school formal, a committee of three is to be chosen from four Year 12 Prefects and *n* Year 12 non-Prefects $(n \ge 2)$.
 - (i) Show that the number of possible committees containing exactly 1 one Prefect is 2n(n-1).
 - (ii) Find the number of possible committees containing exactly two Prefects. 1
 - (iii) Deduce that the probability *P* of the committee containing either one or 1 two Prefects is

$$P = \frac{12n}{\left(n+4\right)\left(n+3\right)}$$

(b) For each integer
$$n \ge 0$$
, let $I_n = \int_1^2 x(\ln x)^n dx$.

(i) Show that for
$$n \ge 1$$
,

$$I_n = 2(\ln 2)^n - \frac{n}{2} I_{n-1}$$

(ii) Hence evaluate I_3 . (Leave your answer in exact form.)

Question 6 continues on page 12

3

2

Marks

Question 6 (continued)

 $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangent at *P* meets the lines x = a and x = -a at *Q* and *R* respectively.

(i) Show that the equation of the tangent is given by $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$. 2

(ii) Find the coordinates of
$$Q$$
 and R . 1

- (iii) Show that QR subtends a right angle at the focus S(ae,0). 2
- (iv) Deduce that Q, S, R, S' are concyclic.

End of Question 6

2

BLANK PAGE

Question 7 (15 marks) Use a SEPARATE writing booklet.				
(a)	A family of six are sitting at a round table. In how many ways can they be arranged so that Mum and Dad sit together and the youngest daughter, Chelsea, does not sit opposite Dad?			
(b)	(i)	Factorise the cubic polynomial $z^3 - 64$:		
		(A) over the real numbers.	1	
		(B) over the complex numbers.	1	
	(ii)	Let ω be one of the complex roots of the equation $z^3 - 64 = 0$.		
		(A) Show that $\omega^2 = -4(\omega + 4)$.	1	
		(B) Hence evaluate $(4\omega + 16)^3$.	1	
(c)	A sequence of numbers T_1 , T_2 , T_3 , is defined by $T_1 = 1$, $T_2 = 5$ and $T_k = 5T_{k-1} - 6T_{k-2}$.			
	(i)	Show that the statement $T_n = 3^n - 2^n$ is true for $n = 1, 2, 3$.	2	
	(ii)	Prove by induction that $T_n = 3^n - 2^n$ for all integers $n \ge 1$.	2	
(d)	(i)	Using the substitution $u = a - x$, show that	1	

$$\int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx$$

(ii) Hence evaluate
$$\int_0^{\pi} x \sin^2 x \, dx$$
. 4

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet.

(a) Let
$$f(x) = x - \frac{1}{2} \tan x$$
.

(i) Show that f(x) is an odd function.

(ii) Find the value of any stationary points in the domain $-\frac{\pi}{2} < x < \frac{\pi}{2}$ and **3** determine their nature.

- (iii) Sketch the curve y = f(x) for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. (You do not need to find the values of all *x*-intercepts.) 2
- (iv) Hence, or otherwise, show that $x \ge \frac{1}{2} \tan x$ for $0 \le x \le \frac{\pi}{4}$ 2 and state when equality holds in the given domain.

Question 8 continues on page 16

Marks

1

Question 8 (continued)

(b) A spiral is created by constructing a right-angled triangle on the hypotenuse of the previous triangle as shown in the diagram.

Each triangle has an altitude of 1 unit and the hypotenuse lengths form a sequence 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, ...

Let the angle, θ , in each triangle be $\theta_1, \theta_2, \theta_3, \dots$ as shown in the diagram. The angle in the *n*th triangle is given by θ_n .

(iii) Using the result from part (a) (iv), show that
$$\sum_{n=1}^{k} \theta_n \ge \frac{1}{2} \sum_{n=1}^{k} \frac{1}{n}$$
. 3

Question 8 continues on page 17

Question 8 (continued)

(b) (continued)

(iv) The curve $y = \frac{1}{x}$ is drawn in the first quadrant and upper rectangles 1 are drawn as shown in the diagram.

Show that
$$\sum_{n=1}^{k} \frac{1}{n} > \int_{1}^{k+1} \frac{1}{n} dn$$
.

(v) Hence, deduce that
$$\sum_{n=1}^{k} \theta_n > \ln \sqrt{k+1}$$
. 1

End of paper

Ext 2 Trial HSC Examination 2010.			
Ext 2 Trial HSC Examination 2010. QUESTIONS I a) $\int \cos^3 x \sin^2 dx$ $= -\cos^4 x + C$ $\sqrt{\sqrt{2}}$ b) $\int \frac{1}{1+e^{-x}} dx$ $(multiply top 4 bottom by e^x)$ $= \int \frac{e^2}{e^x + 1} dx$ $= \ln(e^x + 1) + C$ $\int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$ $\int_0^{1-(1-x^2)+1} dx$	There are other answers possible but this is the easiest. Note this technique if you weren't sure. Substitution of $u=e^{-x}$ is possible but it's a much longer solution for QI b! Use either method shown here. <u>Method</u> I has Some tricks that are worth noticing.	Al continued (d) $x = \sec \theta$ $\sec \theta = x$ $dx = \sec \theta \tan \theta d\theta$ $\cos \theta = \frac{1}{x}$ $(\sec standard integrals)$ $\theta = \cos^{-1}(\frac{1}{x})$ Change limits $x = \sqrt{2}$ $\theta = \cos^{-1}(\frac{1}{2}) = \frac{1}{x}$ $x = 1$ $\theta = \cos^{-1}(\frac{1}{2}) = 0$ $\int_{0}^{\sqrt{2}} \frac{1}{x\sqrt{x^{2}-1}} dx$ $= \int_{0}^{\frac{\pi}{4}} \frac{1}{\sec \theta \sqrt{\sec^{2}\theta - 1}} = \sec \theta + \tan \theta d\theta$ $= \int_{0}^{\frac{\pi}{4}} \frac{1}{\sec \theta \sqrt{\tan^{2}\theta}} \sec \theta + \tan \theta d\theta$ $= \int_{0}^{\frac{\pi}{4}} \frac{1}{\sec \theta \sqrt{\tan^{2}\theta}} \sec \theta + \tan \theta d\theta$ $= \int_{0}^{\frac{\pi}{4}} \frac{1}{1} d\theta$ $= \int_{0}^{\frac{\pi}{4}} \frac{1}{1} d\theta$ $= \frac{\pi}{4} - 0$ $= \frac{\pi}{4}$	(2) (*) The substitution and integration Steps were well done but it really isn't hard to find the new limits. You should be able to do $\sec 0 = \sqrt{2}$ $\cos 0 = \sqrt{2}$ $\cos 0 = \sqrt{2}$ $0 = 1\frac{1}{4}$
2=0,0-0		e) $\frac{3}{(x+i)(x^2+2)} = \frac{a}{x+i} + \frac{bx+c}{x^2+2}$ $3 = a(x^2+2) + (bx+c)(x+i)$ Substitute $x=-1$ 3 = 3a + 0 a=1 $3 = 1x^2 + cx_1$ 3 = 2 + c c=1 3 = 1(1+2) + (b+i)(1+i) 3 = 3 + 2(b+i) 0 = 2(b+i) b=-1 $\frac{3}{(x+i)(x^2+2)} = \frac{1}{x+i} + \frac{-x+i}{x^2+2}$	this part was very wen done by everyone (i)

Question 3 (continued)
(3)
(a)
$$x^{2} - xy + y^{2} = 5$$

Differentiate w.r.t x. (implicit differentiation
 $2x - (x \frac{dy}{dx} + y \cdot 1) + 2y \frac{dy}{dx} = 0$
(make dis the subject)
 $2z - x \frac{dy}{dx} - y + 2y \frac{dy}{dx} = 0$
 $\frac{dy}{dx} (2y - x) = y - 2x$
 $\frac{dy}{dx} = \frac{y - 2x}{2y - x}$
 $\frac{dy}{$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

.

.

*

Question T(2)a)
$$3 \overset{0}{\longrightarrow} 0^{\circ}$$
(2)a) $3 \overset{0}{\longrightarrow} 0^{\circ}$ (2)examine feetbaal seed Cheles were(2)examine feetbaal seed Cheles were(2)b) $5, z^2 - 64$ (2)(3) $z^2 - 64$ (2)(4) $z = (z - 4))(z^2 + 12z + 12z)$ (5) $z = (z - 4)(z^2 + 2z + 12z))$ (6) $z = (z - 4)(z^2 + 2z + 12z))(z^2 + 2z - 61)$ e (z - 4)(z^2 + 2z + 12z)(z^2 + 2z - 61)e (z - 4)(z^2 + 2z + 12z)(z^2 + 2z - 61)e (z - 4)(z^2 + 2z + 12z)(z^2 + 2z - 61)free feetbaal over (z - 4z - 6z + 5z - 6z + 1z - 2z - 6z + 1z - 5z - 6z + 1z - 2z - 6z + 1z - 5z - 6z + 1z - 2z + 1z + 1z - 2z - 6z + 1z - 2z + 1z + 1z - 2z - 2z + 1z

Question 5.(2)Cuestion 8 (cont1)(3)a)
$$j_1f(z) = x - \frac{1}{2} \tan x$$

 $f(x) = -x - \frac{1}{2} \tan (x)$
 $= -x + \frac{1}{2} \tan (x)$
 $= -x + \frac{1}{2} \tan (x)$
 $= -x + \frac{1}{2} \tan (x)$
 $= -(x - \frac{1}{2} \tan x)$
 $= -f(x)$ This question
 $part a) is notoblicit an add $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $= -f(x)$ This question
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = x - \frac{1}{2} + \frac{1}{2} \tan (x)$
 $f(x) = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

26 Question 8 (continued) 67 Question 8 (cont') a) iii) Commz An easy markhere! b) 1) tan 0, = + $tan \Theta_1 = 1$ Don't forget to (王,王-之) max TP. draw in the tan O2=古 nertical asymptotes. $\tan \theta_2 = \frac{1}{2}$ tan On = ton "H -7x -12--TL T. min TP (-=;-=;+=) iij The largest angle occurs in the first triangle where $\tan \Theta_1 = 1$... $\Theta_1 = T_2$ y=z- tanz The angles reduce in size. .. 0<0ミ蛋 \checkmark be Vasymptotes ij 3 Wh 0, Reas 2 iv) From the graph it can be seen that for 0=25 IL Explain this $= \Theta_1 + \Theta_2 + \Theta_3 + \dots + \Theta_K$ direct use using clear of a iv) as the curve $f(x) = x - \frac{1}{2} \tan x$ lies (using a iv)) language or $\gg \pm \tan \theta_1 + \pm \tan \theta_2 + \pm \tan \theta_3 + \dots + \pm \tan \theta_k$ instructed . You on/above the x-axis symbols in might not get the f(x) ~0 logical steps. instructions in HSC. x-htanx >0 Excellent work x ッ きtanx those who got > +×1 + + × + + + × + + ··· + + × + this step of logic. Equality holds when x=0. You should include the reason for this step as well. Reas 3 Since 女》 for O<x<1 For OCOST OCtanOSI OCXSI

Question 8 (continued)

b) iv) Sum of the areas of the rectangles is greater than the exact area under the curve $y = \frac{1}{2}$ from x = 1 to $x = \frac{1}{2} + 1$.

Reas 2 this page Authough these

28

were the last 2 parts they were actually easy marks to get in a Russtion 8.

Wen done if you got the marks for these ports.