	Question 1 (15 marks) The Scots College Ext shather Find class.	Marks	
a	Find $\int \frac{\ln x}{x} dx$	1	
ь	By completing the square find $\int \frac{dx}{x^2 + 4x + 8}$	2	
c	Use integration by parts to find $\int \sin^{-1}x dx$	2	
đ	Find $\int \frac{x^2}{x^2 - 9} dx$	3	
e	Evaluate $\int_{0}^{\frac{x}{4}} \sin 5x \cos 4x dx$	3	
f	Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 \sin x + \cos x + 1}$	4	
Question 2 (15 marks)			
а	By first writing $1+i\sqrt{3}$ in mod-arg form, express $(1+i\sqrt{3})^7$ in the form $a+ib$	2	
b	Find the square roots of $40 + 42i$	2	
c	Let $z = \frac{3+4i}{5}$ and $w = \frac{12+5i}{13}$ so that $ z = w = 1$		
	 (i) Write zw and zw in the form x+iy (ii) Hence by considering the square of the moduli find different 	2	
	pairs of positive integers p and q such that $p^2 + q^2 = 65^2$	2	
d	On separate Argand Diagrams sketch		
	z-4 = z+4i	1	
	(ii) $arg(z-4) = arg(z+4i)$	1	
е	In an Argand Diagram, OABCDE (in clockwise order) is a regular hexagon, where O is the origin and A represents the number 4i. (i) Sketch the figure stating the numbers represented by		
	B, C and E.	2	
	(ii) The figure is rotated anticlockwise through 90° about A to give a figure AB'C'D'E'O'. Sketch the figure stating the	•	
	numbers represented by B', C' and E'.	3	

uestion 3 (15 marks)

a The diagram shows the graph of y = f(x). Draw separate one-third page sketches of the graphs of the following:

$$y = \frac{1}{f(x)}$$

$$y^2 = f(x)$$

2

2

(iii)
$$y = \ln f(x)$$

$$|y| = f(|x|)$$

b Sketch the following graphs showing features such as asymptotes, intercepts and turning points.

(i)
$$y = \frac{(x-5)(x+2)}{x-1}$$

(ii)
$$y = \ln(\sin e^x)$$
 3

Question 4 (15 marks)

- a Given that α , β , γ , δ are the roots of $x^4 2x^3 5x^2 + x + 7 = 0$, find
 - (i) $\Sigma \alpha$ (ii) $\Sigma \alpha \beta$ (iii) $\Sigma \alpha \beta \gamma$ (iv) $\alpha \beta \gamma \delta$
 - (v) $\Sigma \alpha^2$ (vi) $\Sigma \alpha^3$ (vii) $\Sigma \alpha^4$ 1,2,1
 - (viii) the equation with roots $\frac{2}{\alpha}, \frac{2}{\beta}, \frac{2}{\gamma}, \frac{2}{\delta}$
- b If ω is a complex cube root of unity, show that
 - (i) ω^2 is the other complex root
 - $(ii) 1 + \omega + \omega^2 = 0$
 - (iii) $(a+b+c)(a+b\omega+c\omega^2)(a+b\omega^2+c\omega) = a^3+b^3+c^3-3abc$
- c Factorise $x^6 7x^2 + 6$ over the
 - (i) rational numbers
 - (ii) real numbers
 - (iii) complex numbers 1,1,1

Question 5 (15 marks)

	(ii) Find the area bounded by these curves	2
	(iii) Find the volume generated when these regions are rotated about the ${\bf x}$ axis.	3
	(iv) Use the foregoing results to find the volume if these regions are rotated about the line $x = -1$	1
b	A solid has an elliptical base with equation $16x^2 + 25y^2 = 400$. Each vertical cross section perpendicular to the x axis is in the shape of a parabola (vertex uppermost) with its latus rectum in the base. Clearly explaining your method, find the volume of the solid.	7
Quest	ion 6 (15 marks)	
a	If P is any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$, show that the difference	
	of the distances of P from the two foci is a constant and thus independent of the position of P. Give the value of this constant.	2
b	The tangent at $P(a\cos\theta, b\sin\theta)$ on an ellipse meets the coordinate axes at Q and R.	
	(i) Find the area of the triangle OQR and deduce its least value.	3
	(ii) Hence state the minimum area of a quadrilateral which circumscribes the ellipse and sketch TWO quadrilaterals with that property.	2
	(iii) Formulate a statement which relates the ratio of the area of an ellipse and that of a circumscribing parallelogram to the ratio of the area of a circle and that of the circumscribing square.	1
c ,	(i) Find the equation of the normal to the curve $xy = c^2$ at $P(cp, \frac{c}{p})$	2
	(ii) This normal meets the x axis at Q. Show that the coordinates of	
	M, the midpoint of PQ, are $(\frac{c(2p^4-1)}{2p^3}, \frac{c}{2p})$	2
	(iii) Find the equation of the locus of M.	3

(i) On the same axes sketch $y = \sin 2x$ and $y = \tan x$ for $|x| \le \pi/2$

Question 7 (15 marks)

- a Two light rigid rods AB and BC, each of length 2m, are smoothly jointed at B and the rod AB is smoothly jointed at A to a smooth vertical rod. The joint at B has a mass of 3 kg attached. A ring of mass 2 kg is smoothly jointed to BC at C and can slide on the vertical rod below A. The ring rests on a smooth horizontal table fixed to the rod $2\sqrt{3}$ m below A. The system rotates about the rod with an angular velocity ω .
 - (i) Find the forces in the rods and the force exerted on the ring by the table. (Draw a clear diagram)
 - (ii) What value must ω exceed for the ring to rise above the table?
- b A body of mass m falling under gravity experiences a resistance per unit mass of kv where v is its velocity. Leaving your answer in terms of g:-
 - (i) Find the terminal velocity of the body.
 - (ii) Find the time taken and how far it falls to attain half of this terminal velocity. (Clearly define your notation)

Question 8 (15 marks)

- a Two equal circles touch at A. AB is a diameter of one circle. BR is the tangent from B to the other circle and cuts the first circle at Q. Find the ratio of BQ:QR.
- b (i) Sketch the quadrilateral |x-2|+|y|=1 and calculate its area
 - (ii) Use the method of cylindrical shells to find the volume generated when this area is rotated around the y axis
- c Let $I_n = \int_0^{\pi/2} \cos^n x dx$
 - (i) Show that $I_n = \frac{n-1}{n} I_{n-2}$, for $n \ge 2$.
 - (ii) Hence show that $\int_{0}^{\pi/2} \cos^{2n} x dx = \frac{\pi(2n)!}{2^{2n+1} (n!)^2}$

5

2

1

3,4

3

2

3

3

4

. •