Ouestion 1 MARKS

(a) Find the exact value of:

(i)
$$\int_{0}^{2} \frac{x^{3}}{x^{2} + 2} dx$$
 [2]

(ii)
$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{1+\sin x}} dx$$
 [2]

(b) Find
$$\int \frac{1}{5 + 4\cos 2\theta} d\theta$$
. [4]

(c) Given that $I_* = \int_0^{\frac{\pi}{4}} \sec x \tan^n x dx$, n = 1, 2, 3...

(i) Find
$$I_1$$
. [1]

(ii) Prove that
$$I_{s} = \frac{\sqrt{2}}{n} - \frac{n-1}{n} I_{s-2}$$
 [4]

(iii) Evaluate
$$I_{\varsigma}$$
. [2]

Question 2 (Start a new booklet)

MARKS

[3]

[1]

- (a) Find the equation of the tangent to the curve $x^3 + y^3 8y + 7 = 0$ at the point $\{1, 2\}$
- (b) Draw a neat sketch of the function $f(x) = x^2 c^2$, where c is a positive constant. State the coordinates of its vertex and its points of intersection with both coordinate axes.
- (c) Hence, on separate diagrams, draw neat sketches of the following:

(i)
$$y = \frac{1}{x^2 - c^2}$$

(ii)
$$y = \frac{1}{x^2 - e^2}$$

(iii)
$$y^2 = \frac{1}{x^2 - c^2}$$
 [2]

(d) Given that
$$f(x) = \frac{(5-x)(1+x)}{5}$$
 and $h(x) = \ln \{f(x)\}$:

- (i) State the largest possible domain of y = h(x). [1]
- (ii) Sketch the graph of y = h(x). [2]
- (iii) Find the equation of the inverse function $y = h^{-1}(x)$. [2]
- (iv) Find the domain of the inverse function $y = h^{-1}(x)$. [1]

Question (3 (Start a new booklet)	MARKS
(a) z^2	+(1+i)z + k = 0 has $1-2i$ as a root.	
(i)	Find the other root in the form $a + ib$.	[7]
(i i)	Find the value of k .	[1]
	separate Argand Diagrams, sketch the locus of z described by each of the fidition:	following
(i)	$\arg\left(\frac{z}{z+2}\right) = \frac{\pi}{4}$	[3]
(ii)	z-2 =3 z+2i	[3]
(iii) $z\overline{z} = z + \overline{z}$	[2]
z, giv	sequence of complex numbers z_n is given by the rule $= w$ and $z_n = c(\overline{z_{n-1}})$ for $n = 1, 2, 3,,$ where w is a ren complex number and c is a complex number with solution 1. Show that $z_3 = w$.	[2]
(d) (i)	Express $z_1 = \sqrt{2} - i\sqrt{2}$ in modulus-argument form.	(1)
(ii)	On an Argand Diagram OPQ is an equilateral triangle where O is the origin, P is the point representing the complex number z_1 (as in part (i)) and Q is a point in the first quadrant representing the complex number z_2 .	[2]

O The Scots College 2004

Question 4	MARKS			
(a) (i)	Show that $1+i$ is a root of the equation $z^4 - 6z^3 + 15z^2 - 18z + 10 = 0$.	[2]		
(ii)	Hence, solve this equation over the field of complex numbers.	[3]		
(b) The	roots of the equation $x^3 + 7x^2 - 5x - 1 = 0$ are α, β and γ .			
(b) the	100ts of the equation $x + ix = 3x - 1 = 0$ are α, β and γ .			
(i)	Evaluate $\alpha^2 + \beta^2 + \gamma^2$.	[2]		
(ii)	Evaluate $\alpha^3 + \beta^3 + \gamma^3$.	[2]		
(iii)	Find the cubic equation with roots $\alpha^2, \beta^2, \gamma^2$.	[2]		
(c) $P(x) = (x+c)^4 - 32x$ and $P(x)$ has a double root at $x = \alpha$.				
(1)	Prove that $\alpha = 2 - c$.	[2]		
(ii)	Find the numerical values of a and c .	[2]		

© The Scots College 2004

- (a) Sketch the following hyperbola, showing the foci, the directices and the asymptotes: $\frac{y^2}{9} \frac{x^2}{4} = 1$.
- [3]

- (b) H is the hyperbola $2xy = a^2$
- (i) Prove that, for all values of t, the point $P\left(\frac{at}{2}, \frac{a}{t}\right)$ lies on H [3] and that the tangent at P has equation $2x + t^2y = 2at$.
- (ii) S is the point (a,a) and the perpendicular from S to the above tangent meets the tangent at T. Prove that the line ST has equation $t^2x 2y = at^2 2a$.
- (iii) Prove that, as P moves on the hyperbola, the locus of T is a circle centred at the origin.
- (c) P is a point on the ellipse $4x^2 + 5y^2 = 20$. The curve has S and S as its foci. Show that the sum of the distances from P to the foci is independent of the position of P.

Question 6 (Start a new booklet)

MARKS

[1]

- (a) Consider the curve $f(x) = x^2(a-x)$, $0 \le x \le a$.
 - (i) Sketch the graph of y = f(x).
 - S is the region enclosed by y = f(x) and the x axis. A vertical strip of S, width &x, at a distance of x from the y axis, revolves about the y axis to form a cylindrical shell. Show that, if &x is small, the volume, δV , of the shell is approximately $2\pi(ax^3 x^4)\delta x$.
 - (iii) Find the volume of the solid formed when S revolves about the y axis. [2]
- (b) The base of a solid is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Sections perpendicular to the x axis are squares with one side in the base of the solid.

 Show that the volume of the solid is $\frac{16ab^2}{3}$ cubic units.
- (c) (i) Use De Moivre's Theorem to show that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. [2]
 - (ii) Deduce $8x^3 6x 1 = 0$ has solutions $x = \cos\theta$ where $\cos 3\theta = \frac{1}{2}$.
 - (iii) Find the roots of $8x^3 6x 1 = 0$ in the form of $\cos \theta$ [2] for $0 \le \theta \le \pi$.
 - (iv) Hence evaluate $\cos \frac{\pi}{9} \cos \frac{2\pi}{9} \cos \frac{4\pi}{9}$. [1]

Question 7 (Start a new booklet)

[1]

AB is an arc of a circle centre C and radius R. A smooth surface is formed by rotating the arc AB through one revolution about the y axis. A light, inextensible string of length l, $l \le R$, is attached to point A, and a particle of mass m is attached to the other end. The particle is set in motion, tracing out a horizontal circle on the surface with constant angular velocity ω radians per second, while the string stays taut.

- (i) When the particle is in the position P shown in the diagram, explain why the direction of the force N exerted by the surface on the particle is towards C.
- (ii) If the string makes an angle θ with the vertical, show that $\angle ACP = 2\theta$. [1]
- (iii) Show on a diagram the tension force T, the force N and the weight force of magnitude mg acting on the particle, indicating their directions in terms of θ .
- (iv) By resolving forces show that $N = ml \sin \theta \left(\frac{g}{l} \sec \theta \omega^2 \right)$. [4]
- (v) Deduce that there is a maximum value ω for the motion to occur as described and write down this maximum value.

O The Scots College 2004

Question 7 Continued

MARKS

(vi) If l = R, find T in terms of l, m and ω^2 .

[3]

(vii) Describe what happens to T and N as ω increases.

[2]

Question 8 (Start a new booklet)

(a)

Copy the diagram into your writing booklet.

[1]

ii) Show that ATBP is a cyclic quadrilateral.

[4]

(b) The real number x is such that $x^2 = x + 1$. [5] The Fibonacci sequence of numbers T_a , where $n = 1, 2, 3 \dots$ is given by $T_1 = 1$, $T_2 = 1$ and $T_a = T_{a-1} + T_{a-2}$, where $n = 3, 4, 5 \dots$

Use Induction to show that $x^n = T_{n-1} + T_n x$ for all positive integers $n \ge 2$.

(c) By considering $\int_0^3 (1+x)^n dx$, prove that

[5]

$$\sum_{k=0}^{n} \frac{1}{k+1} {}^{n}C_{k} 3^{k+1} = \frac{1}{n+1} (4^{n+1} - 1)$$