The Scots College

HSC Mathematics Extension 2

Trial

August 2010

Name:

General Instructions

- Working time : 3 hours + 5 minutes Reading time.
- Write using blue or black pen
- Board approved calculators may be Used (Non Graphic)
- All necessary working should be shown in every question
- Standard Integrals Table attached

Total marks: 120
Attempt Questions 1-8
All questions are of equal value
Weighting: 40 \%

Answer each question in a SEPARATE writing booklet.
Question 1 (Marks 15) Use a SEPARATE writing booklet.
a) Evaluate

$$
\int_{0}^{1} \frac{2 d x}{\sqrt{2-x^{2}}}
$$

b) Find

$$
\int \frac{\tan x}{\ln (\cos x)} d x
$$

c) Evaluate

$$
\int_{0}^{1} \sin ^{-1} x d x
$$

d)
i) Find the real numbers a, b, and c such that

$$
\frac{1+4 x}{\left(x^{2}+1\right)(4-x)} \equiv \frac{a}{4-x}+\frac{b x+c}{x^{2}+1}
$$

ii) Hence evaluate

$$
\int_{0}^{2} \frac{1+4 x}{\left(x^{2}+1\right)(4-x)} d x
$$

e) By using the substitution $x=2 \cos \theta$ or otherwise evaluate

$$
\int_{-2}^{0} \sqrt{4-x^{2}} d x
$$

Question 2 (Marks 15) Use a SEPARATE writing booklet.
a) Express $\left(\frac{1+i}{1-i}\right)^{3}$ in the form $a+i b$; where a and b are real numbers
b) i) Write $\frac{5-i}{2-3 i}$ in the form $x+i y$, where x and y are real numbers.
ii) Write $\frac{5-i}{2-3 i}$ in the modulus-argument form.
iii) Calculate $\left(\frac{5-i}{2-3 i}\right)^{4}$.
c) Sketch the region on the Argand diagram where the inequalities

$$
|z-\bar{z}|<4 \text { and } \quad|z+1|>1
$$

hold simultaneously.
d) In the Argand diagram below, $A B=O P=O Q, \quad O P \| A B$ and $O P \perp O Q$. A represents the complex number $5+3 i$ and B represents $11+5 i$. Copy this diagram into your answer scripts and find the complex numbers represented by the point :
i) P
ii) Q

Question 3 (Marks 15) Use a SEPARATE writing booklet.
a) i) Determine whether $f(x)=\frac{x}{x^{2}-1}$ is an odd or even function.
ii) Sketch the graph of $y=f(x)$.
iii) Using the graph of $y=f(x)$, sketch on separate axes, the graphs of
($\alpha) \quad y=f(-x)$
(β) $y=|f(x)|$
(γ) $\quad y=[f(x)]^{2}$
b) Tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b}=1$ at points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ intersect at $T . \quad M$ is the mid-point of $P Q$.
i) Given that the tangent to the ellipse at P has equation $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$ write down the equation of the tangent to the ellipse at Q.
ii) Show that the line $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=\frac{x x_{2}}{a^{2}}+\frac{y y_{2}}{b^{2}}$ passes through T and M.
iii) Deduce that O, T and M are collinear.
iv) If $\angle P T Q$ is a right angle, show that $\frac{x_{1} x_{2}}{a^{4}}+\frac{y_{1} y_{2}}{b^{4}}=0$
c) i) If $a>b>0$, sketch the curve and shade the region $\int_{b}^{a} \sqrt{a^{2}-x^{2}} d x$.
ii) By using your diagram, or otherwise, show that

$$
\int_{b}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{a^{2}}{2} \cos ^{-1}\left(\frac{b}{a}\right)-\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

Question 4 (Marks 15) Use a SEPARATE writing booklet.
a) i) Sketch the graph of the curve $y=x+e^{-x}$ showing clearly the coordinates of any turning points and the equations of any asymptotes.
[2]
ii) The region in the first quadrant between the curve $y=x+e^{-x}$ and the line $y=x$ and bounded by the line $x=1$ is rotated through one complete revolution about the y-axis. Use the method of cylindrical shells to show that the volume V of the solid of revolution is given by

$$
V=2 \pi \int_{0}^{1} x e^{-x} d x
$$

iii) Find the volume of the solid of revolution.
b) Let $f(x)=x^{2}\left(x^{2}-2\right)$. The tangent to the curve $y=f(x)$ at the point A with x coordinate α meets the curve again at B.
i) Show the tangent $A B$ has equation $y=4 \alpha\left(\alpha^{2}-1\right) x+\alpha^{2}\left(2-3 \alpha^{2}\right)$.
ii) Deduce that $x^{2}\left(x^{2}-2\right)=4 \alpha\left(\alpha^{2}-1\right) x+\alpha^{2}\left(2-3 \alpha^{2}\right)$ has real roots $\alpha, \alpha, \beta, \gamma \quad$ for some β, γ.
iii) For $\alpha \neq 0$, find $\beta+\gamma$ and $\beta \gamma$ in terms of α and write down a quadratic equation with roots β, γ.
iv) Find the possible values of α.

Question 5 (Marks 15) Use a SEPARATE writing booklet.
a) If $u_{1}=12, u_{2}=30$ and $u_{n}=5 u_{n-1}-6 u_{n-2}$ for $n \geq 3$.
(i) Determine u_{3} and u_{4}.
(ii) Show that $u_{n}=2 \times 3^{n}+3 \times 2^{n}$ for $n=1$ and $n=2$.
(iii) If $u_{k}=2 \times 3^{k}+3 \times 2^{k}$ and $u_{k+1}=2 \times 3^{k+1}+3 \times 2^{k+1}$, where k is a positive integer, prove that

$$
u_{k+2}=2 \times 3^{k+2}+3 \times 2^{k+2}
$$

b) (i) Show that $\operatorname{cosec} 2 \theta+\cot 2 \theta=\cot \theta$ for all real values of θ.
(ii) Use the result above to :
(α) find in surd form the values of $\cot \frac{\pi}{8}$ and $\cot \frac{\pi}{12}$.
(β) show without using calculators that

$$
\operatorname{cosec} \frac{4 \pi}{15}+\operatorname{cosec} \frac{8 \pi}{15}+\operatorname{cosec} \frac{16 \pi}{15}+\operatorname{cosec} \frac{32 \pi}{15}=0
$$

c) i) Show that for $a>0$ and $n \neq 0$,

$$
\log _{a^{n}}(x)=\frac{1}{n} \log _{a} x
$$

ii) Hence evaluate

$$
\log _{2} 3+\log _{4} 3+\log _{16} 3+\log _{256} 3+\cdots .
$$

Question 6 (Marks 15) Use a SEPARATE writing booklet.
a) The base of a certain solid is the region between the x -axis and the curve $y=\sin 2 x$ between $x=0$ and $=\frac{3 \pi}{8}$.

Each plane section of the solid perpendicular to the x -axis is an equilateral triangle with one side in the base of the solid.

Find the volume of the solid.
b) In the expansion of $\left(a x-b x^{-2}\right)^{8}$ the coefficient of x^{2} and x^{-1} are equal.

Show that $a+2 b=0$.
c) A particle of mass $m \mathrm{~kg}$ falls from rest in a medium where the resistance to motion is $m k v$ when the particle has velocity $v \mathrm{~ms}^{-1}$.
i) Draw a diagram showing the forces acting on the particle.
ii) Show that the equation of motion of the particle is $\ddot{x}=k(V-v)$ where $V m s^{-1}$ is the terminal velocity of the particle in this medium, and x metres is the distance fallen in t seconds.
iii) Find the time T seconds taken for the particle to attain 50% of its terminal velocity, and the distance fallen in time in terms of V and k.

Question 7 (Marks 15) Use a SEPARATE writing booklet.
a) Two circles touch externally at a point T.
A and B are points on the first circle such that $A T=B T$, and $A T$ and $B T$ produced meet the second circle at C and D respectively. $R S$ is the common tangent at T. Let $\angle B A T=\alpha$.

i) Copy the diagram and include the information above.
ii) Prove that $\angle B A C=\angle A C D$.
iii) Prove that $A B C D$ is a trapezium with two equal sides.

The line $B C$ cuts the first circle in V and the second circle again in , and the line $A D$ cuts the first circle in U and the second circle again in X.
iv) Prove that the points U, V, W and X are concyclic.
b) In the diagram, $A B$ is the diameter of a semicircle. The angle $A N B$ is 90° and M is a point on $A B$ such that $N M$ is perpendicular to $A B$.

If $A M=p$ and $M B=q$,
i) Show that $N M=\sqrt{p q}$.
ii) Deduce, using the diagram, that $\sqrt{p q} \leq \frac{p+q}{2}$.
iii) Use (ii) to prove that if $p, q, x, y>0$, then

$$
\frac{1}{4}(p+q+x+y) \geq(p q x y)^{\frac{1}{4}}
$$

iv) Deduce that if $l, m, n, z>0$, then $\frac{l}{m}+\frac{m}{n}+\frac{n}{z}+\frac{z}{l} \geq 4$

End of Question 7

Question 8 (Marks 15) Use a SEPARATE writing booklet.
a)

$A B$ is an arc of a circle centre C and radius R. A surface is formed by rotating the arc $A B$ through one revolution about the y -axis. A light, inextensible string of length $l, l \leq R$, is attached to point A, and a particle of mass m is attached to the other end. The particle is set in motion, tracing out a horizontal circle on the surface with constant angular velocity ω radians per second, while the string stays taught.
i) Explain why, when the particle is in position P shown on the diagram, the direction of the force N exerted by the surface on the particle is towards C.
ii) If the string makes an angle θ with the vertical, show that $\angle A C P=2 \theta$.
iii) Show on a diagram the tension force T, the force N and the weight force of magnitude mg acting on the particle, indicating their direction in terms of θ.
iv) Show that

$$
\begin{aligned}
& T \cos \theta+N \sin 2 \theta=m g \\
& T \sin \theta-N \cos 2 \theta=m l \sin \theta \omega^{2}
\end{aligned}
$$

v) Show that

$$
N=m l \sin \theta\left(\frac{g}{l} \sec \theta-\omega^{2}\right) .
$$

vi) Deduce that there is a maximum value ω for the motion to occur as described, and write down this maximum value.

Question 8 continued........
b) i) Show that $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1} \frac{2}{n^{2}}$, where n is a positive integer.
ii) Hence or otherwise show that for $n \geq 1$

$$
\sum_{r=1}^{n} \tan ^{-1} \frac{2}{r^{2}}=\frac{3 \pi}{4}+\tan ^{-1} \frac{2 n+1}{1-n-n^{2}}
$$

End of Assessment

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
&
\end{array}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Tuesday, 10 August 2010
$Q 1(a)$

$$
\begin{aligned}
\int_{0}^{1} \frac{2}{\sqrt{2-x^{2}}} d x & =2 \int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x \\
& =2\left[\sin ^{-1} \frac{x}{\sqrt{2}}\right]_{0}^{1} \\
= & 2\left[\sin ^{-1} \frac{1}{\sqrt{2}}-\sin 0\right] \\
& =2\left(\frac{\pi}{4}\right) \\
& =\frac{\pi}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \frac{\tan x}{\ln (\cos x)} d x \\
& \text { Let } u=\ln (\cos x) \\
& \frac{d u}{d x}=\frac{1}{\cos x}(-\sin x) \\
& d x=-\tan x d x \\
& -\frac{d u}{\tan x}=d x \\
& \Rightarrow \int \frac{\tan x}{x}-\frac{d x}{\tan x} \\
& -\int \frac{d u}{\pi} \\
& -\ln (\ln (\cos x))+c
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int_{0}^{1} \sin ^{-1} x d x=\int_{0}^{1} 1 \cdot \sin ^{-1} x d x \\
& =\left(\sin ^{-1} x\right) \cdot x-\int x \frac{1}{\sqrt{1-x^{2}}} d x \\
& =\left.x \sin ^{-1} x\right|_{0} ^{1}+\frac{1}{2} \int\left(1-x^{2}\right)^{-1 / 2}(-2 x) d x \\
& =\left.x \sin ^{-1} x\right|_{0} ^{1}+\frac{1}{2} \times\left.\frac{1}{1 / 2}\left(1-x^{2}\right)^{1 / 2}\right|_{0} ^{1} \\
& =\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{1} \\
& =\left[\left(1 \cdot \sin ^{-1}(1)+0\right)-(0+\sqrt{1})\right] \\
& =\frac{\pi}{2}-1
\end{aligned}
$$

$$
\begin{align*}
& \text { (d) } \frac{1+4 x}{\left(x^{2}+1\right)(4-x)}=\frac{A}{4-x}+\frac{B x+C}{x^{2}+1} \\
& 1+4 x=A\left(x^{2}+1\right)+(B x+C)(4-x) \\
& x=0 \quad A+4 C=1 \quad-1 \tag{1}\\
& x=4 \quad 17 A=17 \\
& A=1 \tag{2}\\
& x=1 \quad 2 A+3 B+C=5 \tag{3}
\end{align*}
$$

from (1) \& (2) $C=0$
from (3) $B=1$

$$
\begin{aligned}
\therefore \int_{0}^{2} \frac{(1+4 x)}{(4-x)\left(x^{2}+1\right)} d x & =\int_{0}^{2}\left[\frac{1}{4-x}+\frac{x}{x^{2}+1}\right] d x \\
& \left.=-\ln (4-x)+\frac{1}{2} \ln \left(x^{2}+1\right)\right]_{0}^{2} \\
& \left.=\ln \frac{\sqrt{x^{2}+1}}{(4-x)}\right]_{0}^{2} \\
& =\ln \frac{\sqrt{5}}{2}-\ln \frac{1}{4} \\
& =\ln (2 \sqrt{5})
\end{aligned}
$$

$$
\begin{aligned}
& (e) \quad \begin{aligned}
& x=2 \cos \theta \\
& d x=-2 \sin \theta d \theta \\
& x=-2 \quad \theta=\pi \\
& x=0 \quad \theta=\pi / 2 \\
& \int_{\pi}^{\pi / 2} \sqrt{4-4 \cos ^{2} \theta} \cdot(-2 \sin \theta) d \theta \\
&=-2 \int_{\pi}^{\pi / 2} 2 \sin ^{2} \theta d \theta \\
&=-2 \int_{\pi}^{\pi / 2}(1-\cos 2 \theta) d \theta \\
&=-2[(\pi / 2-0)-(\pi-0)] \\
&=\pi
\end{aligned}
\end{aligned}
$$

Q2(a) Consider $\frac{1+i}{1-i}=\frac{1+i}{1-i} \times \frac{1+i}{1+i}$

$$
\begin{aligned}
& =\frac{1+2 i+i^{2}}{1-i^{2}} \\
& =\frac{1+2 i-1}{2} \\
& =i=0+1 i \\
& =i^{3}=i \cdot i^{2}=-i \\
& =0-1 i
\end{aligned}
$$

$$
\begin{aligned}
\therefore\left(\frac{1+i}{1-i}\right)^{3} & =i^{3}=i \cdot i^{2}=-i \\
& =0-1 i
\end{aligned}
$$

(6) $i)$

$$
\begin{aligned}
\frac{5-i}{2-3 i} & =\frac{5-i}{2-3 i} \times \frac{2+3 i}{2+3 i} \\
& =\frac{10+15 i-2 i+3}{2^{2}-(3 i)^{2}}=\frac{13+13 i}{4+9} \\
& =1+i
\end{aligned}
$$

(ii) $\sqrt{1^{2}+1^{2}}=\sqrt{2}$
let $1+i=r(\cos \theta+i \sin \theta)$
$r \cos \theta=1 \quad r \sin \theta=1$
$\tan \theta=1$

$$
\theta=45^{\circ}, 225^{\circ}
$$

since $\cos \theta$ and $\sin \theta$ are porilivé,
θ hies in $1^{s t}$ quad
Hence s $\theta=45^{\circ}$

$$
\frac{5-i}{2-3 i}=\sqrt{2}\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)^{2}
$$

(iii) $\left(\frac{5-i}{2-3 i}\right)^{4}=\left(\sqrt{2}\left(\operatorname{cis} \frac{\pi}{4}\right)\right)^{4}$

$$
=4 \operatorname{cis} \pi
$$

(c) $|z-\bar{z}|<2$ and $|z-1| \geqslant 1$
$z=x+i y, \quad \bar{z}=x-i y$
$\therefore z-\bar{z}=2 i y$
hence $|z-\bar{z}|=|2 i y|$

$$
=|2 y|<2
$$

$\Rightarrow \quad|y|<1$

(d)

$$
\begin{align*}
\overrightarrow{A B} & =(11+5 i)-(5+3 i) \\
& =6+2 i \tag{2}\\
P & =\overrightarrow{A B}=6+2 i \\
Q & =i \times P \\
& =i(6+2 i) \tag{2}\\
& =-2+6 i
\end{align*}
$$

3(a) i) $f(x)=\frac{x}{x^{2}-1}$

$$
\begin{aligned}
f(-x) & =\frac{-x}{x^{2}-1} \\
& =-f(x)
\end{aligned}
$$

\therefore odd function
(ii)

Q3 b
Tuesday, 10 August 2010
7:48 PM
$3(b) i)$ Targest at $P: \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$ (1)

$$
\begin{equation*}
" \quad Q: \frac{x x_{2}}{a^{2}}+\frac{y y_{2}}{b^{2}}=1 \tag{2}
\end{equation*}
$$

(ti) T lise on both tengents

$$
\begin{align*}
& \therefore \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=\frac{x x_{2}}{a^{2}}+\frac{y y_{2}}{b^{2}} \tag{3}\\
& \Rightarrow \frac{x\left(x_{1}-x_{2}\right)}{a^{2}}+\frac{y\left(y_{1}-y_{2}\right)}{b^{2}}=0 \tag{4}
\end{align*}
$$

at $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
(4) $\Rightarrow{ }_{L H H S}=\frac{\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)}{2 a^{2}}$

$$
=\frac{1}{2}\left\{\left(\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}\right)-\left(\frac{x_{2}^{2}}{a^{2}}+\frac{y_{2}^{2}}{b^{2}}\right)\right\}
$$

$$
=\frac{1}{2}\{1-1\}
$$

$$
=0
$$

1-e. coordinatis of M alro satify (3)
iii) (3) is the equatroin of line TM and $(0,0)$ sutisfies thi eq?
Hence O, T, M are collineer
(iv) wing (4) of egn TM
m_{1} if $T m$ i $-\frac{b^{2}\left(x_{1}-x_{2}\right)}{a^{2}\left(y_{1}-y_{2}\right)}$
m_{2} of $P Q$ is $\frac{\left(y_{1}-y_{2}\right)}{\left(x_{1}-x_{2}\right)}$
Product $m_{1} m_{2}=-\frac{b^{2}}{a^{2}}$

3ci) a) b>0, $y=\sqrt{a^{2}-x^{2}}$

ii) $\int_{b}^{a} \sqrt{a^{2}-b^{2}} d x=$ sector $O B A-\triangle O B C$

$$
\cos \angle B O C=\frac{b}{a} \Rightarrow \angle B O C=\cos ^{-1}\left(\frac{b}{a}\right)
$$

Area of scoter $B O A=\frac{1}{2} a^{2} \cos ^{-1}\left(\frac{b}{a}\right)$

$$
B C=\sqrt{a^{2}-b^{2}}
$$

Area $\triangle B O C=\frac{b}{2} \sqrt{a^{2}-b^{2}}$
$\therefore \int_{b}^{a} \sqrt{a^{2}-x^{2}} d x=\frac{a^{2}}{2} \cos ^{-1}\left(\frac{b}{a}\right)-\frac{b}{2} \sqrt{a^{2}-b^{2}}$
$O R$
Let $x=a \cos \theta \Rightarrow \frac{d x}{d \theta}=-a \sin \theta d \theta$
$\begin{aligned} \int_{b}^{a} \sqrt{a^{2}-x^{2}} d x & =\int \sqrt{a^{2}-a^{2} \cos ^{2}} \theta(-a \sin \theta d \theta) \\ & =-a^{2} \int \sin ^{2} \theta d \theta\end{aligned}$
$=-a^{2} \int \frac{1-\cos 2 \theta}{2} d \theta$
$=-\frac{a^{2}}{2}\left(\theta-\frac{\sin 2 \theta}{2}\right)+c$
$=-\frac{a^{2}}{2}(\theta-\sin \theta \cos \theta)+c$
$\cos \theta=\frac{x}{a}, \sin \theta=\frac{\sqrt{a^{2}-x^{2}}}{a}, \theta=\cos ^{-1}\left(\frac{x}{a}\right)$
$>=-\frac{a^{2}}{2}\left[\cos ^{-1}\left(\frac{x}{a}\right)-\frac{x \sqrt{a^{2}-x^{2}}}{a^{2}}\right]_{b}^{a}$
$=\frac{a^{2}}{2}\left[-\cos ^{-1}\left(\frac{a}{a}\right)+0-\left\{-\cos ^{-1}\left(\frac{b}{a}\right)+\frac{b^{2} \sqrt{a^{2}-b^{2}}}{a^{2}}\right\}\right]$
$=\frac{a^{2}}{2}\left[0+\cos ^{-1}\left(\frac{b}{a}\right)-\frac{b^{2} \sqrt{a^{2}-b^{2}}}{a^{2}}\right]$
$=\frac{a^{2}}{2} \cos ^{-1}\left(\frac{b}{a}\right)-\frac{b^{2} \sqrt{a^{2}-b^{2}}}{2}$

Wednesday, 11 August 2010
8:23 PM
(i)

$$
e^{-x}=1
$$

$$
x=0 \text { at Turning pt. }
$$

$$
(0,1)
$$

$$
y^{\prime \prime}=e^{-x}=1>0 \quad \therefore \min
$$

ii)

$$
\begin{aligned}
V & =2 \pi \int_{r}^{r} h d x \\
& =2 \pi \int_{0}^{1} x\left(x+e^{-x}-x\right) d x \\
& =2 \pi \int_{0}^{1} x e^{-x} d x
\end{aligned}
$$

iii) $V=2 \pi \int_{0}^{0} x \frac{d}{d x}\left(-e^{-x}\right) d x$

$$
\begin{aligned}
& =2 \pi\left[\left(-x e^{-x}\right)_{0}^{1}+\int_{0}^{1} e^{-x} d x\right] \\
& =2 \pi\left[-e^{-1}+\left[-e^{-x}\right]_{0}^{1}\right] \\
& =2 \pi\left[-e^{-1}+\left(-e^{-1}+1\right)\right]
\end{aligned}
$$

$$
V=2 \pi\left(1-\frac{2}{e}\right) \quad u^{3}
$$

Q4 b

46 i) $f(x)=x^{2}\left(x^{2}-2\right)$

$$
\Rightarrow f^{\prime}(x)=4 x\left(x^{2}-1\right)
$$

\therefore Gradient of Tangent
at $A(\alpha, f(\alpha))$ is $4 \alpha\left(\alpha^{2}-1\right)$
Equation of Tangent

$$
\begin{aligned}
& y-\alpha^{2}\left(\alpha^{2}-2\right)=4 \alpha\left(\alpha^{2}-1\right)(x-\alpha) \\
& y=4 \alpha\left(\alpha^{2}-1\right) x+\alpha^{2}\left(2-3 \alpha^{2}\right)
\end{aligned}
$$

(ii) The tangent meets the curve where

$$
\begin{equation*}
x^{2}\left(x^{2}-2\right)=4 \alpha\left(\alpha^{2}-1\right) x+\alpha^{2}\left(2-3 \alpha^{2}\right) \tag{1}
\end{equation*}
$$

Tangent touches at A
$\Rightarrow \alpha$ is a double rest of (1)
Since Tangent meets curve again at B, equation (1) has another real root β, where β is the x coordinate of B.

Since equation (1) has real cocffis, the fourth root γ cannot be now real as such roots come in complex conjugatepairs.
Hence eggs: (1) has real roots $\alpha, \alpha, \beta, \gamma$.
iii) Rearranging (1) we get:

$$
\begin{equation*}
x^{4}-2 x^{2}-4 \alpha\left(\alpha^{2}-1\right) x+\alpha^{2}\left(3 \alpha^{2}-2\right)=0 \tag{2}
\end{equation*}
$$

For $\propto \neq 0$

$$
\begin{aligned}
& 2 \alpha+\beta+\gamma=0 \Rightarrow \beta+8=-2 \alpha \\
& \alpha^{2} \beta \gamma=\alpha^{2}\left(3 \alpha^{2}-2\right) \Rightarrow \beta \gamma=\left(3 \alpha^{2}-2\right)
\end{aligned}
$$

Hence $\beta \& 8$ are the roots of the quadratic equation

$$
\begin{equation*}
x^{2}+2 x x+\left(3 x^{2}-2\right)=0 \tag{3}
\end{equation*}
$$

(iv) For $\propto \neq 0$, since (3) has real roots β, γ

$$
\begin{aligned}
\Delta & =4 \alpha^{2}-4\left(3 \alpha^{2}-2\right) \\
& =8\left(1-\alpha^{2}\right) \geqslant 0 \text { and } \alpha^{2} \leqslant 1
\end{aligned}
$$

For $\alpha=0$, tangent at A is the x-axis, meeting the curve again in $(\sqrt{2}, 0),(-\sqrt{2}, 0)$.

Hence $-1 \leq \alpha \leq 1$

Q5 a

Wednesday, 18 August 2010
7:48 PM
Q5 ai

$$
\left.\begin{array}{l}
u_{3}=5(30)-6(12)=78 \\
u_{4}=5(78)-6(30)=210
\end{array}\right\}
$$

ii) $n=1$,

$$
\begin{aligned}
2 \cdot 3^{n}+3 \cdot 2^{n} & =2 \cdot 3^{1}+3 \cdot 2^{1} \\
& =6+6=12=u_{1}
\end{aligned}
$$

$$
n=2 \text {, }
$$

$$
2.3^{n}+3.2^{n}=2.3^{2}+3.2^{2}
$$

$$
=18+12=30=u_{2}
$$

$$
\text { so } u_{n}=2.3^{n}+3.2^{n} \text { for } n=1,2
$$

iii) $u_{k+2}=5 u_{k+1}-6 u_{k}$

$$
\begin{aligned}
& =5\left(2 \cdot 3^{k+1}+3 \cdot 2^{k+1}\right)-6\left(2 \cdot 3^{k}+3 \cdot 2^{k}\right) \\
& =10 \cdot 3^{k+1}+15 \cdot 2^{k+1}-12 \cdot 3^{k}-18 \cdot 2^{k} \\
& =10 \cdot 3^{k+1}+15 \cdot 2^{k+1}-4 \cdot 3^{k+1}-9 \cdot 2^{k+1} \\
& =6 \cdot 3^{k+1}+6 \cdot 2^{k+1} \\
& =2 \cdot 3^{k+2}+3 \cdot 2^{k+2}
\end{aligned}
$$

Q5 b

Wednesday, 11 August 2010
8:49 PM
Q5bi) $\operatorname{cosec} 2 \theta+\cot 2 \theta=\frac{1}{\sin 2 \theta}+\frac{\cos 2 \theta}{\sin 2 \theta}$

$$
\begin{aligned}
& =\frac{1+\cos ^{2} \theta-\sin ^{2} \theta}{2 \sin \theta \cos \theta} \\
& =\frac{2 \cos 2}{2 \sin \theta \cos \theta} \\
& =\cot \theta
\end{aligned}
$$

(ii) ${ }^{(\alpha)} \cot \frac{\pi}{8}=\operatorname{cosec} \frac{\pi}{4}+\cot ^{2} \frac{\pi}{4}$

$$
=\sqrt{2}+1
$$

$$
\cot \frac{\pi}{12}=\operatorname{cosec} \frac{\pi}{6}+\cot \frac{\pi}{6}
$$

$$
=2+\sqrt{3}
$$

(iii) (β)

$$
\begin{aligned}
& \operatorname{cosec} \frac{4 \pi}{15}+\operatorname{cosec} \frac{8 \pi}{15}+\operatorname{cosec} \frac{16 \pi}{15}+\operatorname{cosec} \frac{32 \pi}{15} \\
& =\left[\cot \frac{2 \pi}{15}-\cot \frac{4 \pi}{15}\right]+\left[\cot \frac{4 \pi}{15}-\cot \frac{8 \pi}{15}\right] \\
& +\left[\cot \frac{8 \pi}{15}-\cot \frac{16 \pi}{15}\right]+\left[\cot \frac{16 \pi}{15}-\cot \frac{32 \pi}{15}\right] \\
& =\cot \frac{2 \pi}{15}-\cot \frac{32 \pi}{15} \\
& =\cot \frac{2 \pi}{15}-\cot \left[2 \pi+\frac{2 \pi}{15}\right] \\
& =\cot \frac{2 \pi}{15}-\cot \frac{2 \pi}{15} \\
& =0
\end{aligned}
$$

5()$\left._{i}\right)$

$$
\begin{aligned}
\log _{a^{n}} x & =\frac{\log _{a} x}{\log _{n} a^{n}} \\
& =\frac{\log _{a} x}{n}
\end{aligned}
$$

$$
\text { ii) } \log _{2^{n}} 3=\frac{1}{n} \log _{2} 3
$$

$$
\Rightarrow \log _{2} 3+\log _{4} 3+\log _{16} 3+\log _{256} 3+\cdots
$$

$$
\Rightarrow\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right) \log _{2} 3
$$

$$
\Rightarrow \quad 2 \log _{2} 3
$$

Tuesday, 10 August 2010 8:22 PM

Vol. of sphere $=\frac{1}{2} \cdot y \cdot y \cdot \sin 60^{\circ} \cdot \delta x$
$\therefore v=\frac{\sqrt{3}}{4} \int^{3 \pi / 8} y^{2} d x$
$=\frac{\sqrt{3}}{4} \int_{0}^{0} \sin ^{2 \pi} 2 x d x$
$=\frac{\sqrt{3}}{8} \int_{0}^{3 \pi / 8} 1-\cos 4 x d x$
$=\frac{\sqrt{3}}{8}\left[x-\frac{\sin 4 x}{4}\right]_{0}^{3 \pi / 8}$
$=\frac{\sqrt{3}}{8}\left[\frac{3 \pi}{8}-\frac{-1}{4}-0\right]$
$=\frac{\sqrt{3}(3 \pi+2)}{8}$
$\approx 0.31 u^{3}$

6(b) $\left(a x-b x^{-2}\right)^{8}$
$T_{k+1}=8 c_{k}(a x)^{8-k}\left(-b x^{-2}\right)^{k}$
$\therefore 8-k-2 k=2$

$$
6=3 k
$$

$$
k=2
$$

$$
\text { or } 8-3 k=-1
$$

$$
\begin{gathered}
9=3 k \\
k=3
\end{gathered}
$$

\therefore coif. of $T_{3}=\operatorname{coeff} \cdot$ of T_{4}
${ }^{8} C_{2} a^{6}(-b)^{2}=8 c_{3} a^{5}(-b)^{3}$
$\frac{8 \times 7}{\neq 7} a^{6} b^{2}=\frac{8 \times 7 \times 6^{2}}{\beta^{2} \times f^{2}} a^{5} \cdot-b^{3}$
$a=-2 b$
$a+2 b=0$

Q6 c
Tuesday, 10 August 20.10
8:20 PM
ci) Forces on particle

ii $\quad m \ddot{x}=m g-m k v$

$$
\ddot{x}=k\left(\frac{g}{k}-v\right)
$$

as $v \rightarrow \frac{g}{k}, \quad \ddot{x} \rightarrow 0$
hence terminal velocilig $v=9 / k$

$$
\therefore \quad \ddot{x}=k(v-v)
$$

iii z) $\frac{d v}{d t}=k(v-v)$

$$
\begin{aligned}
& -k \frac{d t}{d v}=\frac{-1}{v-v} \\
& -k t=\ln \{(v-v) A\}, A \text { constant } \\
& \left.\begin{array}{l}
t=0 \\
v=0
\end{array}\right\} \Rightarrow A=\frac{1}{V} \\
& -k t=\ln \left(\frac{V-v}{v}\right) \\
& t=\frac{1}{k} \ln \left(\frac{V}{V-v}\right)
\end{aligned}
$$

Particle attains 50% of terminal velocity when

$$
v=1 / 2 V, t=T=\frac{\ln 2}{k}
$$

and $x=\frac{V}{2 k}(2 \ln 2-1)$

$$
\begin{aligned}
\rightarrow \quad \frac{d v}{d x} & =k(v-v) \\
\frac{d v}{d x} & =k\left(\frac{v-v}{v}\right) \\
-k \frac{d x}{d v} & =\frac{-v}{v-v} \\
& =1+v \frac{-1}{v-v} \\
-k x & =v+v \ln \{(v-v) B\}, B \operatorname{conot} t \\
x=0\} & \Rightarrow B=\frac{1}{v} \\
v=0\} & =v+v \ln \left(\frac{v-v}{v}\right) \\
-k x & =v+\frac{1}{k}\left\{-v+v \ln \left(\frac{v}{v-v}\right)\right\}
\end{aligned}
$$

Tuesday, 10 August 2010
8:49 pk i
$7 a$ i)

ii) $\angle B A C=\angle B T R$ (alt. seg.th.)

$$
\angle B T R=\angle S T D \quad\left(v_{\text {rent. }} \text { opp. } \angle ' s\right)
$$

$$
\angle S T D=\angle A C D \quad \text { (alt.seg.th.) }
$$

$\therefore \angle B A C=\angle A C D=\infty$
iii) But these are alt. angles
$\therefore A B \| D C \Rightarrow A B C D$ is a trap.
Now $\quad A T=B T$
$\therefore \angle T A B=\angle A B T=\alpha$
\& $\angle A B T=\angle T D C=\alpha\binom{$ equal }{ alt. $\angle s^{\prime}}$
$\therefore \quad T C=T D$

In $\triangle B T C$ \& $\triangle A T D$

$$
\begin{array}{ll}
B T=A T & \text { (given) } \\
T C=T D & \text { (above) }
\end{array}
$$

$$
\angle B T C=\angle A T D \text { (vert. opp. } \angle ' s)
$$

$$
\therefore \triangle B T C \equiv \triangle A T D(S, A . S)
$$

$$
\therefore B C=A D\binom{\text { corr. sides }}{\text { in cong. } \Delta s}
$$

$\therefore A B C D$ is a trap. with two equal sides Ie. risos trap.
iv) Let $\angle T B V=\beta$

$$
\therefore \angle U A T=\beta\binom{\text { corresponding } \left.\angle s^{\prime}\right)}{\text { in cong. } \Delta s^{\prime}}
$$

$$
\therefore \angle u v w=\alpha+\beta\left(\begin{array}{ll}
\text { Exr. } \angle & \text { cyc. quad } \\
\text { equals } & \text { int.opp. } \angle
\end{array}\right)
$$

$\frac{y}{8} \angle \omega C T=\gamma$ then $\angle \omega C D=\alpha+\gamma$
$\therefore(\alpha+\beta)+(\alpha+\gamma)=180^{\circ}\binom{$ cont. $\angle s}{$ are suppl }
But $\angle w \times \Delta+(\alpha+\gamma)=180^{\circ}\left(\begin{array}{c}\text { opp } \\ \text { cyc.qued } \\ \text { suppl }\end{array}\right)$

$$
\begin{aligned}
\therefore \angle w \times \Delta & =\alpha+\beta \\
& =\angle U \vee w
\end{aligned}
$$

\therefore UVWX is a cyclic quad.
se U, v, w, x are concyctic.
$\left(\begin{array}{l}\text { ExT } L=\text { int }\end{array}\right)$

8:49 PM
$7 b$ (i) consider $\triangle A N M$ and $\triangle N B M$ (similar)

$$
\begin{align*}
\frac{N M}{B M} & =\frac{M A}{M N} \\
\frac{N M}{q} & =\frac{p}{M N} \\
N M^{2} & =p q \\
N M & =\sqrt{p q} \tag{1}
\end{align*}
$$

(ii) Now $A B \geqslant 2 N M$ ($\because A B$ is a diasudn) \& $A B=p+q$

$$
\begin{align*}
\Rightarrow \quad p+q & \geqslant 2 \sqrt{p q} \\
\sqrt{p q} & \leqslant \frac{p+q}{2}
\end{align*}
$$

(iii)

$$
\begin{aligned}
& \frac{1}{4}(p+q+x+y) \\
& \quad=\frac{1}{2} \cdot \frac{1}{2}(p+q+x+y) \\
& \quad=\frac{1}{2}\left(\frac{p+q}{2}+\frac{x+y}{2}\right) \\
& \geqslant \frac{1}{2}(\sqrt{p q}+\sqrt{x y}) \text { from (2) } \\
&
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \text { using part (iii) } \\
& \begin{aligned}
\frac{l}{m}+\frac{m}{n}+\frac{n}{z}+\frac{z}{l} & \geqslant 4\left(\frac{l}{m}+\frac{m}{n}+\frac{n}{2}+\frac{z}{l}\right)^{1 / 4} \\
& =4(1)^{1 / 4} \\
\text { Ie. } \frac{l}{m}+\frac{m}{n}+\frac{n}{z} & +\frac{z}{l} \geqslant 4
\end{aligned}
\end{aligned}
$$

Q8 a

Wednesday, 11 August 2010
7:47 PM
i)

Dimensions

Force exerted By the surface on The partick is normal to the
swrfore, and here is directed
along the radius towards C.
ii) $\triangle A C P$ is riosceles
\Rightarrow equal ayples at A \& P each $=\frac{\pi}{2}-\theta$ and angle sum is π
$\angle A C P=\pi-2(\pi-\theta)$ $\angle A C P=\pi-2\left(\frac{\pi}{2}-\theta\right)$
$=20$
iii)

(iv) Resultant force is directed towards centre of circular path of particle
and his magnitude $m r \omega^{2}$
$r=R \sin \theta$
Not vert. Force is zero
$T \cos \theta+N \sin 2 \theta=m g$
Net Hor. face is mr $\omega^{2} \underset{\substack{\text { taxis }}}{\text { tow }}$
$T \sin \theta-N \cos 2 \theta=m \ell \sin \theta \omega^{2}$

Q8 (b) i) Let $\tan ^{-1}(n+1)=\alpha$
\& $\tan ^{-1}(n-1)=\beta$

$$
\Rightarrow \quad \tan \alpha=n+1 \quad \& \quad \tan \beta=n-1
$$

Now

$$
\begin{aligned}
& \tan (\alpha-\beta)=\frac{n+1-(n-1)}{1+(n+1)(n-1)} \\
&=\frac{2}{1+n^{2}-1}=\frac{2}{n^{2}} \\
& \therefore \alpha-\beta=\tan \frac{-1}{n^{2}} \quad \because \alpha-\beta \text { \& } \\
& \therefore \tan ^{-1} \frac{2}{n^{2}} \text { are }<90^{\circ}
\end{aligned}
$$

re. $\tan ^{-1}(n+1)-\tan ^{-1}(n-1)=\tan ^{-1} \frac{2}{h^{2}} r$
ii)

$$
\left.\begin{array}{rl}
\sum_{r=1}^{n} \tan ^{-1} \frac{2}{r^{2}}= & \tan ^{-1} \frac{2}{1^{2}}+\tan ^{-1} \frac{2}{2^{2}}+\tan ^{-1} \frac{2}{3^{2}}+\cdots \\
\cdots & +\tan ^{-1} \frac{2}{(n-2)^{2}}+\frac{\tan ^{-1} \frac{2}{(n-1)^{2}}}{} \\
& +\tan ^{-1} \frac{2}{n^{2}} \\
= & \left(\tan ^{-1} 2-\tan ^{-1} 0\right)+\left(\tan ^{-1} 3-\tan ^{-1} 1\right) \\
& \left.+\left(\tan ^{-1} 4-\tan ^{-1} 2\right)+\cdots+\tan ^{-1}(n-1)-\tan ^{-1}(n-3)\right) \\
& +\left(\tan ^{-1} n-\tan ^{-1}(n-2)\right) \\
& +\left(\tan ^{-1}(n+1)-\tan ^{-1}(n-1)\right) \\
=- & \tan ^{-1} 0-\tan ^{-1} 1+\tan ^{-1}(n+1)+\tan -1
\end{array}\right)
$$

