The Scots College

HSC Mathematics Extension 2

Trial Examination

$12^{\text {th }}$ August 2011
Name:

General Instructions

- Working time : 3 hours +5 minutes reading time.
- Write using blue or black pen
- Board approved calculators may be used (Non Graphic)
- All necessary working should be shown in every question
- Standard Integrals Table attached
- Answer each question on a SEPARATE answer booklet

TOTAL MARKS: 120
Attempt Questions 1-8
All questions are of equal value
Weighting: 40 \%

Question 1 (Marks 15) Use a SEPARATE writing booklet.
a) Evaluate

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sin x-\cos x}{\sin x+\cos x} d x
$$

b) Find

$$
\int \frac{d x}{\sqrt{x(2-x)}}
$$

using the substitution $\sqrt{\frac{x}{2}}=\sin \theta$
c) Show that

$$
\int_{1}^{3} \frac{2 x^{2}-3 x+11}{(x+1)\left(x^{2}-2 x+5\right)} d x=2 \ln 2+\frac{\pi}{8}
$$

d) Find

$$
\int x \ln (x+1) d x
$$

e) Find

$$
\int \frac{d x}{1+\sin x+\cos x}
$$

Question 2 (Marks 15) Use a SEPARATE writing booklet.
a) i) Find the square root of $-5-12 i$.
ii) Hence solve $z^{2}-i z+1+3 i=0$, expressing your answer in the form $a+i b$, where a and b are real numbers.
b) i) Write $\frac{\sqrt{3}+i}{\sqrt{3}-i}$ in the modulus - argument form.
ii) Hence express $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^{10}$ in the form $x+i y$, where x and y are both real.
c) i) Sketch on the Argand diagram the locus of the complex number z, which satisfies the condition

$$
\arg \left(\frac{z-2}{z-2 i}\right)=\frac{\pi}{2}
$$

(ii) Hence, or otherwise, find the complex number z (in the form $a+i b$, where a and b are both real) which has the maximum value of $|z|$.
d) Let $z=\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}$
i) Show that $1-z+z^{2}-z^{3}+z^{4}=0$
ii) Show that $(1-z)\left(1+z^{2}\right)\left(1-z^{3}\right)\left(1+z^{4}\right)=1$

Question 3 (Marks 15) Use a SEPARATE writing booklet.
a) The graph of $y=f(x)$ is given below.

Using the graph of $y=f(x)$, sketch on separate axes, the graphs of
i. $\quad|y|=|f(x)|$
ii. $\quad y^{2}=f(x)$
iii. $\quad y=\frac{1}{f(x)}$
iv. $\quad y=e^{f(x)}$
v. $\quad y=\sin ^{-1} f(x)$
b) (i) Show that if $I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{2}} d x$, then

$$
I_{n}=\frac{n-1}{n+2} I_{n-2}
$$

(ii) Hence evaluate $\int_{0}^{1} x^{4} \sqrt{1-x^{2}} d x$

Question 4 (Marks 15) Use a SEPARATE writing booklet.
a) A hyperbola has the asymptotes $y=x$ and $y=-x$, and it passes through the point (5,4). Find
i. the equation of the hyperbola
ii. its eccentricity
iii. the length of the principal axis
iv. the coordinates of the foci
v. equation of the directrices
vi. the length of the latus rectum
b) The point $P\left(c p, \frac{c}{p}\right)$, lies on the hyperbola $x y=c^{2}$. The tangent at P meets the x-axis at A and the y-axis at B. The normal to the hyperbola at P meets the line $y=x$ at the point C.
i. \quad Show that the equation of the tangent at P is $x+p^{2} y=2 c p$.
ii. Find the coordinates of A and B.
iii. \quad Find the equation of the normal at P.
iv. Show that the x-coordinate of the point C is given by $x=\frac{c}{p}\left(p^{2}+1\right)$.
v. Prove that $\triangle A B C$ is an isosceles triangle.

Question 5 (Marks 15) Use a SEPARATE writing booklet.
a) $\quad P(a \cos \theta, b \sin \theta)$ is a variable point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
i. Show that the equation of the tangent to the ellipse at P is $b x \cos \theta+a y \sin \theta=a b$.
ii. Deduce the equation of the normal to the ellipse at P.
iii. Find the coordinates of X and Y, the points where the tangent and the normal respectively, meet the y-axis.
iv. Show that the circle with $X Y$ as the diameter, passes through the foci of the ellipse..
b) $\quad P Q R S$ is a square. X and Y are mid-points of $P Q$ and $P S$ respectively. $S X$ and $R Y$ intersect at the point T.

i. Prove that $Q R T X$ is a cyclic quadrilateral.
ii. Hence prove that $Q T=Q R$

Question 6 (Marks 15) Use a SEPARATE writing booklet.

a) A solid is formed by rotating the circle $x^{2}-2 a x+y^{2}=0$ about the line $x=3 a$.

Find the volume of the solid generated by taking slices perpendicular to the axis of rotation.
b) The base of a certain solid is the region between the curve $y=\frac{x^{3}}{4}, \quad 0 \leq x \leq 2$, and the line $y=x$.

Each plane section of the solid perpendicular to the x -axis is a parabola whose chord lies on the base of the solid, with one end point A on the line $y=x$ and the other end point B on the curve $y=\frac{x^{3}}{4}$. The axis of the parabola is vertical and passing through the mid-point of $A B$ and the maximum height of the parabola, from the base, is equal to the length of the chord $A B$.

By first finding the area of a slice taken perpendicular to the x-axis, find the volume of the solid.
c) A sequence $u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots$ is defined by the relation
$u_{n}=u_{n-1}+6 u_{n-2}$, for $n \geq 3$.

Given that $u_{1}=1$ and $u_{2}=-12$, prove by using mathematical induction $u_{n}=-6\left[(-2)^{n-2}+3^{n-2}\right]$, for all positive integers n.

Question 7 (Marks 15) Use a SEPARATE writing booklet.
a) i. By using De Moivre's Theorem or otherwise, prove that

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta} .
$$

ii. Using part (i) solve the equation

$$
x^{4}+4 x^{3}-6 x^{2}-4 x+1=0
$$

and hence find the value of

$$
\tan \frac{\pi}{16} \times \tan \frac{3 \pi}{16} \times \tan \frac{5 \pi}{16} \times \tan \frac{7 \pi}{16}
$$

b) It is given that the product of two of the roots of the equation
$x^{4}+x^{3}-16 x^{2}-4 x+48=0$, is equal to 6 .
Show that the equation can be written in the form
$\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=0$, where a, b, c and d are integers.
Hence or otherwise solve the equation.
c) i. Find all the values of m for which the polynomial $3 x^{4}-4 x^{3}+m=0$ has no real roots.
ii. Determine the real roots of the polynomial when $m=1$
a) A particle P of mass $m \mathrm{~kg}$ is projected vertically upwards from the ground, with an initial velocity of $u \mathrm{~m} / \mathrm{s}$, in a medium of resistance $m k v^{2}$, where k is a positive constant and v is the velocity of the particle.
i. Show that the maximum height H, from the ground, attained by the particle P is given by $H=\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right)$, where g is the acceleration due to gravity.
ii. At the same time that P is projected upwards, another particle, Q, of equal mass, initially at rest, is allowed to fall downwards in the same medium, from a height of H metres from the ground, along the same vertical path as P. Show that at the time of collision of P and Q,
$\frac{1}{v_{2}^{2}}-\frac{1}{v_{1}^{2}}=\frac{1}{V^{2}}$,
where v_{1} and v_{2} are the velocities of particles P and Q respectively, at the time of collision, and $V=\sqrt{\frac{g}{k}}$.
b)

Find the stationary points, stating their nature, for the curve

$$
\begin{equation*}
x^{2}+y^{2}=x y+3 \tag{3}
\end{equation*}
$$

c) i. An electrical circuit has four bulbs P, Q, R and S placed as shown in the diagram. The probability of each bulb being defective, independently, is given by p. Current can flow from X to Y through either or both of the branches of the electrical circuit. However, no current will flow through a branch that has at least one defective bulb.

Show that the probability that the current does not flow from X to Y is $\left(2 p-p^{2}\right)^{2}$

Question 8 continued........

ii. In the household there are four such circuits in one connection. Find the probability that current does not flow from A to B.

End of Assessment

Standard Integrals

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x &
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Mathematic i Ext 2. Trials 20 ill
(a) $\int_{0}^{\pi / 4} \frac{\sin x-\cos x}{\sin x+\cos x} d x$

$$
\begin{aligned}
& =-\int_{0}^{\frac{\pi}{4}} \frac{\cos x-\sin x}{\sin x+\cos x} d x \\
& =-[\ln [\sin x+\cos x]]_{0}^{\pi / 4} \\
& =-\left[\ln \left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-\ln (0+1)\right] \\
& =-\ln \frac{2}{\sqrt{2}} \\
& =-\ln \sqrt{2} \\
& =-\frac{1}{2} \ln 2
\end{aligned}
$$

(163)

Name: \qquad
Teacher: \qquad

Question No. 1.

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x(2-x)}} \cdot \sqrt{\frac{x}{2}}=\sin \theta \\
x & =2 \sin ^{2} \theta \\
= & \int \frac{4 \sin ^{2} \theta \cos \theta d \theta}{\sqrt{2 \sin ^{2} \theta \cdot 2 \cos ^{2} \theta}} \\
= & \int \frac{4 \sin \theta \cos \theta}{2 \sin \theta \cos \theta} d \theta \\
= & \int 2 \sin \theta \cos \theta d \theta \\
= & 2 \theta+C \\
= & 2 \sin -1 \sqrt{\frac{x}{2}}+C
\end{aligned}
$$

(C)

$$
\begin{aligned}
& \int_{1}^{3} \frac{2 x^{2}-3 x+11}{(x+1)\left(x^{2}-2 x+5\right)} d x=2 \ln 2+1 / 8 \\
& \frac{2 x^{2}-3 x+11}{(x+1)\left(x^{2}-2 x+5\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-2 x+5} \\
& = \\
& \begin{aligned}
& A\left(x^{2}-2 x+5\right)+(B x+C)(x+1) \\
&(x+1)\left(x^{2}-2 x+5\right) \\
& 2 x^{2}-3 x+11=A\left(x^{2}-2 x+5\right)+(B x+C)(x+1) \\
& x=-1 \\
& 2+3+11=A(1+2+5) \\
& 16=8 A \Rightarrow A=2 \\
& x=0 \\
& 11=2(5)+C(1) \\
& \therefore C=A 1
\end{aligned}
\end{aligned}
$$

Equating coeft of x^{2}

$$
\begin{gathered}
\begin{array}{c}
2=2+B
\end{array} \quad \therefore B=0 \\
\therefore \int_{1}^{3} \frac{2 x^{2}-3 x+11}{(x+1)\left(x^{2}-2 x+5\right)} d x=\int\left[\frac{2}{2+1}+\frac{41}{(x-1)^{2}+4}\right] d x \\
=[2 \ln (x+1)]_{1}^{3}+\left[\frac{4}{2} \tan ^{-1} \frac{x-1}{2}\right]_{1}^{3} \\
=(2 \ln 4-2 \ln 2)+\left[2^{1} \tan ^{-1} 1-2 \tan ^{-1} 0\right] \\
=2 \ln 2+\frac{1}{2} \cdot \pi / 4
\end{gathered}
$$

\qquad
Teacher: \qquad

Question No.
(d)

$$
\begin{aligned}
\text { d) } & \int x \ln (x+1) d x \quad k^{\prime}=x \quad x^{\prime}=\frac{x^{2}}{2} \quad u^{\prime}=\frac{1}{x+1} \\
= & \frac{x^{2}}{2} \ln (x+1)-\int \frac{x^{2}}{2(x+1)} d x \\
= & \frac{x^{2}}{2} \ln (x+1)-\frac{1}{2} \int \frac{x^{2}-1+1}{x+1} d x \\
= & \frac{x^{2}}{2} \ln (x+1)-\frac{1}{2} \int\left(x-1+\frac{1}{x+1}\right) d x \\
= & \frac{x^{2}}{2} \ln (x+1)-\frac{1}{2}\left[\left(\frac{x^{2}}{2}-x\right)+\ln (x+1)\right]+C
\end{aligned}
$$

\qquad
Teacher: \qquad
Question No.
(e)

$$
\begin{aligned}
& \text { 2) } \int \frac{d x}{1+\operatorname{sen} x+\cos x} \quad \text { der } t= \\
&=\int \frac{\tan \frac{x}{2}}{d t}= \frac{1}{2} \sec ^{2} \frac{2}{2} d x \\
&=\frac{1}{2}\left(1+t^{2}\right) d x \\
&=\int \frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}} \frac{2 d t /\left(x+t^{2}\right)}{\frac{1+t^{2}+2 t+1-t^{2}}{1+t^{2}}} \\
&=\int \frac{2 d t}{2+2 t} \\
&= \int \frac{2 d t}{1+t^{2}} \\
&= \ln (1+t)+C \\
&= \ln \left(1+\tan \frac{x}{2}\right)+C
\end{aligned}
$$

\qquad
\qquad
Question No. 2
(a) (i) let $\sqrt{-5-126}=x+i y$

$$
\begin{aligned}
& x^{2}+2 i x y+y^{2}=-5-121 \\
& x^{2}-y^{2}=-5 \\
& 2 x y=-12 \Rightarrow x y=-6 \\
& y=-6 / x \\
& x^{2}-\frac{36}{x^{2}}=-5 \\
& x^{4}+5 x^{2}-36=0 \\
& \left(x^{2}+9\right)\left(x^{2}-4\right)=0 \\
& x^{2}=-9 \text { or } x^{2}=4 \\
& \left(x^{\prime}\right) \quad \therefore x=2, y=-3 \\
& \therefore x=-2 \quad y=3 .
\end{aligned}
$$

\therefore Square roots of

$$
-5-12 i \text { are 2-3i ar -2+3i }
$$

\qquad
\qquad

Question No._2
(a) (ii)

$$
\begin{aligned}
& z^{2}-i z+1+3 i=0 \\
z & =\frac{i \pm \sqrt{(-i)^{2}-4(1)(+1+3 i)}}{2(1)} \\
& =\frac{i \pm \sqrt{-1-4-12 i}}{2} \\
& =\frac{i \pm \sqrt{-5-12 i}}{2} \\
& =\frac{i+2-3 i}{2} \frac{i-2+3 i}{2} \\
& =\frac{2-2 i}{2} \text { or } \frac{-2+4 i}{2} \\
& =\frac{1-c}{} \text { or }-\frac{1+2 i}{}
\end{aligned}
$$

\qquad
\qquad

Question No. 2
(b)

$$
\begin{aligned}
& \text { (i) } \frac{\sqrt{3}+i}{\sqrt{3}-i} \\
& \sqrt{3}+i=2(\cos \pi / 6+i \sin \pi / 6) \\
& \sqrt{3}-i=2(\cos (-\pi / 6)+i \sin (\pi / 6)) \\
& \frac{\sqrt{3}+i}{\sqrt{3}-i}=\cos \left(\frac{\pi}{6}+\pi / 6\right)+i \sin (\pi / 6+\pi / 6) \\
&=\cos \pi / 3+i \sin \pi / 3
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^{10} & =\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{10} \\
& =\left(\cos \frac{10 \pi}{3}+i \sin \frac{10 \pi}{3}\right) \\
& =-\cos \left(\frac{2 \pi}{4} / 3\right)+i \sin ((m \pi / 3) \\
& =-\frac{1}{2}-\frac{\sqrt{3}}{2} i
\end{aligned}
$$

\qquad
\qquad
Question No. 2
(C) (1)

(ii) Max. value of z lies along the lune

$$
\begin{aligned}
& y=x \\
& \therefore \quad|z|=\sqrt{2}+\sqrt{2}=2 \sqrt{2} \\
& z=2+21
\end{aligned}
$$

\qquad
Teacher: \qquad
Question No. 2
(d)

$$
\begin{aligned}
z & =\cos \frac{\pi}{5}+i \sin \frac{\pi}{5} \\
z^{5} & =\cos \frac{5 \pi}{5}+i \sin \frac{5 \pi}{5} \\
& =-1+0 \\
& =-1
\end{aligned}
$$

(i)

$$
\begin{aligned}
1-z & +z^{2}-z^{3}+z^{4} \\
r & =-2, n=5 \\
S_{5} & =\frac{1-(-z)^{5}}{1-(-z)} \\
& =\frac{1+z^{5}}{1+z} \quad(z \neq-1) \\
& =\frac{0}{1+z} \quad\left(\because z^{5}=-1\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (1-z)\left(1+z^{2}\right)\left(1-z^{3}\right)\left(1+z^{4}\right) \\
& =\left(1-z+z^{2}-z^{3}\right)\left(1-z^{3}+z^{4}-z^{7}\right) \\
& =\left(-z^{4}\right)\left(1-z^{3}+z^{4}+z^{2}\right)\left(\because 1-z+z^{2}-z^{3}+z^{4}=0\right. \\
& =\left(-z^{4}\right)(z)\left(\because 1-z+z^{2}-z^{3}+z^{4}=0\right)=-z^{7}=z^{5} \cdot z^{2} \\
& =-z^{5}=1 \text { as requied. }
\end{aligned}
$$

Name: \qquad
Teacher: \qquad
Question No. 3
(a) (i) $|y|=|f(x)|$

Name: \qquad
Teacher: \qquad
Question No. 3

ANSWER SHEET

Name: \qquad
Teacher:

Question No. 3 .
(a) (v)
\qquad
Teacher: \qquad
Question No. 3 ,

$$
\begin{aligned}
& \text { (b) (1) } I_{n}=\int_{0}^{1} x^{n} \sqrt{1-x^{2}} d x \quad u=x^{n-1} \quad v^{\prime}=x \sqrt{1-x^{2}} \\
&=\left[-\frac{x^{n-1}}{3}\left(1-x^{2}\right)^{3 / 2}\right]_{0}^{1}+\int_{0}^{1} \frac{(n-1) x^{n-2}}{3}\left(1-x^{2}\right)^{3 / 2} d x=-\frac{1}{3}\left(1-x^{2}\right)^{3 / 2} \\
&=(0-0)+\frac{n-1}{3} \int_{0}^{1} x^{n-2}\left(1-x^{2}\right)\left(1-x^{2}\right)^{\frac{3}{2}} d x \\
&=\frac{n-1}{3} \int_{0}^{1}\left(x^{n-2} \sqrt{1-x^{2}}-x^{n} \sqrt{1-x^{2}}\right) d x \\
&=\frac{n-1}{3}\left(I_{n-2}-I_{n}\right) \\
& 3 I_{n}=(n-1) I_{n-2}-(n-1) I_{n} \\
& 3 I_{n}+(n-1) I_{n}=(n-1) I_{n-2} \\
&(n+2) I_{n}=(n-1) I_{n-2} \\
& \therefore I_{n}=\frac{n-1}{n+2} I_{n-2}
\end{aligned}
$$

Name: \qquad
Teacher: \qquad

Question No. 3 =

$$
\begin{aligned}
\text { (b) (ii) } I_{4} & =\int_{0}^{1} x^{4} \sqrt{1-x^{2}} d x \\
& =4 k \frac{3}{5} I_{2} \\
& =\frac{3}{5} \cdot\left[\frac{1}{3} I_{0}\right]
\end{aligned}
$$

$$
I_{0}=\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

$$
=\frac{\pi}{4}(1)^{2}=\frac{\pi}{4}
$$

$$
\therefore \int_{0}^{1} x^{4} \sqrt{1-x^{2}} d x=\frac{3}{5} \times \frac{1}{3} \times \frac{\pi}{4}
$$

$$
=\frac{\pi}{20}
$$

\qquad
\qquad
Question No. 4
(a) Assmptolés are $y=x$ and $y=-x$
(1) \therefore Recramulan hyperbola

$$
x^{2}-y^{2}=a^{2}
$$

$\operatorname{sub}(5,4)$

$$
\begin{gathered}
25-16=a^{2} \\
a^{2}=9 \\
a=3
\end{gathered}
$$

Equation $x^{2}-y^{2}=9$
(ii) Eccentricity: $\sqrt{2}$
(iii). Lerpth of principal anis: 6
(iv) Foch : $(\pm 3 \sqrt{2}, 0)$
(iv) Equaturn of driectrix $x= \pm a / e$

$$
x= \pm \frac{3}{\sqrt{2}}
$$

(vi) Length of Laths Rectum: $2 b^{2} / a=2 a^{2} / a$

$$
=2 a=6
$$

\qquad
\qquad

$$
\begin{aligned}
\text { (i) } y & =c / x \\
\frac{d y}{d x} & =-c^{2} / x^{2} \\
\text { at } x & =c p \\
\frac{d y}{d x} & =-\frac{c^{2}}{c^{2} p^{2}} \\
& =-1 / p^{2}
\end{aligned}
$$

Equaturi of tompent

$$
\begin{aligned}
& y-\frac{c}{p}=-\frac{1}{p^{2}}(x-c p) \\
& p^{2} y-c p=-x+c p
\end{aligned}
$$

$$
o r \quad x+p^{2} y=2 c p
$$

(ii)

$$
\begin{aligned}
& y=0, \quad x=2 c p \quad \therefore A(2 c p, 0) \\
& x=0, \quad y=2 c p / p^{2} \\
&=2 c / p
\end{aligned} \therefore B(0,2 c / p)
$$

\qquad
\qquad
Question No. 4
(b) (iii) $m_{N}=p^{2}$

Equation of normal

$$
\begin{aligned}
& y-\frac{c}{p}=p^{2}(x-x c p) \\
& p y-c=p^{3} x-2 c p^{4} \\
& \text { or } p^{3} x-p y=2 c p^{4}-c
\end{aligned}
$$

(iv) $y=x$

$$
\begin{aligned}
& y=x \\
& \therefore \quad p^{3} x-p x=c\left(p^{4}-1\right) \\
& p x\left(p^{2}-1\right)=c\left(p^{2}-1\right)\left(p^{2}+1\right) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& x\left(p^{2}-1\right)=\frac{c}{p}\left(p^{2}+1\right) \Rightarrow\left(p+\frac{c}{p}\right) \\
& \therefore x=\frac{c}{p}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \\
\text { (v) } A C^{2} & =\left(c p+\frac{c}{p}-2 \varphi\right)^{2}+\left(c p+\frac{c}{p}-\frac{c}{p}\right)^{2} \\
& =\left(\frac{c}{p}-c p\right)^{2}+\left(c p+\frac{c}{p}\right)^{2} \\
& =2\left(\frac{c^{2}}{p^{2}}+c^{2} p^{2}\right) \\
B C^{2} & =\left(c p+\frac{c}{p}-0\right)^{2}+\left(c p+\frac{c}{p}-\frac{2 c}{p}\right)^{2}=\left(c p+\frac{c}{p}\right)^{2}+\left(c p-\frac{c}{p}\right. \\
\therefore A C & =B C
\end{aligned}
$$

\qquad
\qquad
Question No. 5
(a) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad P(a \cos \theta, 6 \sin \theta)$
(i) Differentiating $w \cdot r \cdot t \cdot x$

$$
\begin{aligned}
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{b^{2} x}{a^{2} y}
\end{aligned}
$$

When $x=a \cos \theta, y=b \sin \theta$

$$
\begin{aligned}
& \text { When } x=a \cos \theta, y=b \operatorname{dy} \\
& \qquad \frac{b^{2} \cdot a \cos \theta}{a^{2} \cdot b \sin \theta}=-\frac{b \cos \theta}{a \sin \theta}
\end{aligned}
$$

Equation of lamest

$$
\begin{aligned}
& \text { aten of ray ert } \\
& y-b \sin \theta=-\frac{b \cos \theta}{a \sin \theta}(x-a \cos \theta) \\
& a y \sin \theta-a b \sin ^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta \\
& b x \cos \theta+a y \sin \theta=a b\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& b x \cos \theta+a y \sin \theta=a b
\end{aligned}
$$

\qquad
\qquad
Question No. 5
(a) (ii) $m_{N}=\frac{a \operatorname{sen} \theta}{b \cos \theta}$

Equation of normal

$$
\begin{aligned}
& \text { Equation of } \\
& y-b \sin \theta=\frac{a \sin \theta}{b \cos \theta}(x-a \cos \theta) \\
& \text { by } \cos \theta-b^{2} \sin \theta \cos \theta=a x \sin \theta-a^{2} \sin \theta \cos \theta \\
& a x \sin \theta-b x \cos \theta=\left(a^{2}-b^{2}\right) \sin \theta \cos \theta
\end{aligned}
$$

(iii) for x :

$$
\begin{gathered}
y=0 \quad b x \cos \theta=a b \\
x=\frac{a}{\cos \theta}
\end{gathered}
$$

$$
\frac{\operatorname{for} y}{y=0} \quad a x \sin \theta=\left(a^{2}-b^{2}\right) \sin \theta \cos \theta x
$$

$$
\begin{aligned}
& a x \sin \theta=\frac{a^{2}-b^{2}}{a} \cos \theta \quad-b y \cos \theta=\left(a^{2}-b^{2}\right) \sin \theta \cos \theta \\
& x=-a^{2}-b^{2} \sin \theta
\end{aligned}
$$

$$
\begin{array}{ll}
\quad \therefore=a & y=-\frac{a^{2}-b^{2}}{b} \sin \theta \\
\because T-a r & y\left(0,-\frac{a^{2}-b^{2}}{b} \sin \theta\right)
\end{array}
$$

\qquad
\qquad
Question No. 5
(a) $(i v)$

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& a^{2} e^{2}=a^{2}-b^{2}
\end{aligned}
$$

$$
\begin{aligned}
A B & =\frac{b}{\sin \theta}+\frac{a^{2}-b^{2}}{b} \sin \theta \\
& =\frac{b^{2}+\left(a^{2}+b^{2}\right) \sin ^{2} \theta}{b \sin \theta} \\
& =\frac{b^{2}+a^{2} e^{2} \sin ^{2} \theta}{b \sin \theta} \\
\text { radins: } & \frac{b^{2}+a^{2} e^{2} \sin \theta}{2 b \sin \theta}
\end{aligned}
$$

$$
\text { mider of } A B
$$

$$
x=0
$$

$$
y=\left(\frac{b}{\sin \theta}-\frac{a^{2}-b^{2}}{b} \sin \theta\right) \div 2
$$

$$
=\frac{b^{2}+a^{2} e^{2} \sin ^{2} \theta}{2 b \sin \theta}
$$

\therefore Equation' of cuicle:

$$
\begin{aligned}
& \text { qratai of cuicle: } \\
& x^{2}+\left(y-\frac{b^{2}+a^{2} e^{2} \sin ^{2} \theta}{2 b \sin \theta}\right)^{2}=\left(\frac{b^{2}+a^{2} e^{2} \sin ^{2} \theta}{2 b \sin \theta}\right)^{2}
\end{aligned}
$$

$\operatorname{sub} x= \pm a e, y=0$
LHS: $\quad a^{2} e^{2}+\left(\frac{b^{2} * a^{2} e^{2} \sin ^{2} \theta}{2 b \sin \theta}\right)^{2}=\frac{4 a^{2} b^{2} e^{2} \sin ^{2} \theta+\left(b^{2}-a^{2} e^{2} \sin ^{2} \theta\right)^{2}}{4 b^{2} \sin ^{2} \theta}$

$$
=\left(\frac{b^{2}+a^{2} e^{2} \sin ^{2} \theta}{2 b \sin \theta}\right)^{2}
$$

\therefore Circh passes $=$ Rits
though S \& S^{\prime}.
\qquad
\qquad
Question No. 5
(b)

(1) In $\triangle P X S$ and $\triangle Y R S$
$P_{X}=$ SY (ha yo equal sides of a square)
$\rho S=S R \quad$ (equal sides of squaw)
$\angle S P X=\angle S R Y=90^{\circ} \quad(\because P Q R)$ is a

$$
\therefore \triangle P X S I \equiv \triangle Y R S \text { (SAS) }
$$

$\therefore \angle P S X=\angle S R Y$ (corresponding $L^{\prime} ' s$ of congruent $\triangle ' S$)
In $\triangle S Y T$ and $\triangle S R Y$
$\angle S Y T=\angle S R R$ (common apple)
$\angle Y S T=\angle S R Y$ (proven above).
$\therefore \angle S T Y=\angle Y S R . \quad($ angle sum of $\triangle)$
$\therefore \angle S T Y=90^{\circ} \quad\left(\because \angle Y S R=90^{\circ}\right.$, witeurd apple of Square)

$$
\angle S T Y=\angle R Q X=90^{\circ}
$$

\therefore QRTX is a cyclic quadribteral.
\qquad
Teacher: \qquad

Question No. 5
(b) (ii) Jain $\times R$

In $\triangle P S X$ and $\triangle Q R X$
$R_{X}=Q_{X}$ (X is min pr of $P Q$)
$P S=Q R$ (equal sides of fquoue)

$$
\begin{aligned}
& \angle S B X=\angle R Q X=90^{\circ} \\
& \therefore \triangle S P X \equiv \triangle Q R X \quad(S A S)
\end{aligned}
$$

$\therefore \angle P \times S=\angle Q \times R$ (correspandi' $G^{\prime}{ }^{\prime}$)
$\angle P \times S=\angle Q R T$ (ext eur ante of oychic quadulateral equal to opp. intern 6)
$\angle Q \times R_{2} \angle Q T R$ (angles in same segment)

$$
\therefore \angle Q R T=\angle Q T R
$$

$\therefore Q R=Q T$ (equal sides opporitéto equal angles of a $\triangle Q R T)$
\qquad
\qquad
Question No. 6
(a) $x^{2}-2 a x+y^{2}=0$
$a \quad x^{2}-2 a x+a^{2}+y^{2}=a^{2}$

$$
(x-a)^{2}+y^{2}=a^{2}
$$

$$
\begin{aligned}
&(x-a)^{2}=a^{2}-y^{2} \\
& x-a= \pm \sqrt{a^{2}-y^{2}} \\
& x=a \pm \sqrt{a^{2}-y^{2}} \\
& x_{2}+x_{1}=2 a \\
& x_{2}-x_{1}=2 \sqrt{a^{2}-y^{2}}
\end{aligned}
$$

Let a section of thicluren by be taken 1 to $x=3 a$.
volume of the seleten' when rotated about $x=3 a$ is

$$
\begin{aligned}
\delta V & =\pi\left[\left(3 a-x_{1}\right)^{2}-\left(3 a-x_{2}\right)^{2}\right] \delta y \\
& =\pi\left[\left(6 a-x_{1}-x_{2}\right)\left(-x_{1}+x_{2}\right)\right] \delta y \\
& =\pi(6 a-2 a)\left(2 \sqrt{a^{2}-y^{2}}\right) \delta y \\
& =8 a \pi \sqrt{a^{2}-y^{2}} \delta y \\
\therefore V & =\int_{-a}^{a} 8 a \pi \sqrt{a^{2}-y^{2}} d y \\
& =8 a \pi \int_{-a}^{a} \sqrt{a^{2}-y^{2}} d y \\
& =8 a \pi \cdot \frac{\pi a^{2}}{2}=4 a^{3} \pi^{2} a^{3}
\end{aligned}
$$

Name: \qquad
Teacher: \qquad
Question No. 6
(b)

Area If Sector.

Let a sector of thickness δx be taken 1 to x-axis using Simpson's mule, the area of the sectemi is

$$
A(x)=\frac{h}{3}(0+4(2 h)+0)
$$

where $h=\frac{x-x^{3} / 4}{2}=\frac{4 x^{2}-x^{3}}{8}$

$$
\begin{aligned}
\therefore A(x) & =\frac{4 x-x^{3}}{8 \times 3}\left(8 \cdot \frac{4 x-x^{3}}{8}\right) \\
& =\frac{\left(4 x-x^{3}\right)^{2}}{24}
\end{aligned}
$$

$$
f V=A(x) \delta x
$$

$$
\therefore V=\int_{0}^{2} \frac{\left(4 x-x^{3}\right)^{2}}{2 \varphi} d x
$$

$=\frac{1}{24} \int_{0}^{2}\left(16 x^{2}-8 x^{4}+x^{6}\right) d x$
$=\frac{1}{24}\left[16 \frac{x^{3}}{3}-\frac{8 x^{5}}{5}+\frac{x^{7}}{7}\right]_{0}^{2}=\frac{1}{24}\left[\frac{16}{3}(8)-\frac{8}{5}(32)-\frac{1}{7}(128)\right]$

$$
=\frac{128}{315} u^{3}
$$

\qquad
Teacher: \qquad
Question No. 6
(c) $u_{n}=u_{n-1}+6 u_{n-2}, n \geqslant 3, \quad u_{1}=1, u_{2}=-12$

To prove

$$
u_{n}=-6\left[(-2)^{n-2}+3^{n-2}\right]
$$

Step 1 -prove tie for $n=1$ and $n=2$

$$
\begin{array}{rlrl}
\text { Step } 1 & \text { - prove true for } & n=1 & \text { ard } \\
\begin{array}{rlr}
u_{1} & =-6\left((-2)^{-1}+3^{-1}\right) & u_{2}
\end{array}=-6\left[(-2)^{0}+3\right] \\
& =-6\left[-\frac{1}{2}+\frac{1}{3}\right] & & =-6(1+1) \\
& =-6 \cdot \frac{-1}{6} \\
& =1 \text { True True. }
\end{array}
$$

stance the for $n \div 11$ and $n 22$
Step 2 Assume true for $n=k$ \& $n=k+1 ; k \geqslant 1$

$$
\begin{aligned}
& \text { Step } 2 \text { Assume true for } n=k \text { \& } n=k+1, u_{k+1}^{k-1}=-6 \cdot\left[(-2)^{k-1}+3^{k-1}\right] \\
& \text { ie } u_{k}=-6\left[(-2)^{k-2}+(3)^{k-2}\right]
\end{aligned}
$$

Step 3 : prove true for $n=k+2$

$$
\begin{aligned}
\frac{\text { Step } 3}{\text { ie. prove }} u_{k+2} & =-6\left[(-2)^{k}+3^{k}\right] \\
\text { LHS }-u_{k+2} & =u_{k+1}+6 u_{k} \\
& =-6\left[(-2)^{k-4}+3^{k-4}\right]-36\left[(-2)^{k-2}+3^{k-2}\right] \text { from } \\
& =-6\left[\frac{(-2)^{k}}{-2}+\frac{3^{k}}{3}\right]-36\left[\frac{(-2)^{k}}{4}+\frac{3^{k}}{9}\right] \\
& =3(-2)^{k}+2\left(3^{k}\right)-9(-2)^{k}-4\left(3^{k}\right) \\
& =-6(-2)^{k}-6\left(3^{k}\right) \\
& =-6\left[(-2)^{k}+3^{k}\right]=\text { RHO }
\end{aligned}
$$

StAnce the for $n=k+2$
Step: Ar the second pronexile of The Scots College, Bellevue Hill, NSW mothemaheal inductor; it is true for all $n \geqslant 1$
\qquad
\qquad
Question No. 7
(a)

$$
\begin{aligned}
\text { (1) } \left.\begin{array}{rl}
\cos 4 \theta+i \operatorname{sen} 4 \theta= & (\cos \theta+i \sin \theta)^{\varphi} \\
= & \cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta
\end{array}\right)+6 \cos ^{2} \theta(i \sin \theta)^{2} & +4 \cos \theta(i \sin \theta)^{4} \\
& +(i \sin \theta)^{4} \\
= & \cos ^{4} \theta+4 i \cos ^{3} \theta \sin \theta-6 \cos ^{2} \theta \sin ^{2} \theta-4 i \cos \theta \sin ^{3} \theta \\
& +\sin ^{4} \theta
\end{aligned}
$$

Equating real and imaginary pants.

$$
\begin{align*}
& \cos 4 \theta=\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta \\
& \sin 4 \theta=4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta \tag{2}
\end{align*}
$$

(2) \div (1)
$\tan 4 \theta=\frac{4 \cos ^{3} \theta \sin \theta-4 \cos \theta \sin ^{3} \theta}{\cos ^{4} \theta-6 \cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta}$
Divider each term an $R H$ by $\cos ^{4} \theta$

$$
\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}
$$

\qquad
\qquad
Question No. 7
(a) (ii)

$$
\begin{aligned}
& x^{4}+4 x^{3}-6 x^{2}-4 x+1=0 \\
& x^{4}-6 x^{2}+1=4 x-4 x^{3}
\end{aligned}
$$

or $\frac{4 x-4 x^{3}}{1-6 x^{2}+x^{4}}=1$
Let $x=\tan \theta$

$$
\text { then } \quad \frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{2} \theta}=1
$$

Using the identity from part (1)
$\tan 4 \theta=1$

$$
\begin{aligned}
4 \theta & =\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4} \\
\therefore \theta & =\frac{\pi}{16}, \frac{5 \pi}{16}, \frac{9 \pi}{16}, \frac{13 \pi}{16} \\
& =\frac{\pi}{16}, \frac{5 \pi}{16},-\frac{7 \pi}{16},-\frac{3 \pi}{16} \\
\therefore x & =\tan \frac{\pi}{16}, \tan \frac{5 \pi}{16}, \tan \left(-\frac{\pi \pi}{16}\right), \tan \left(-\frac{3 \pi}{16}\right) \\
& =\tan \frac{\pi}{16}, \tan \frac{5 \pi}{16},-\tan \frac{7 \pi}{16},-\tan \frac{3 \pi}{16}
\end{aligned}
$$

Roduct of roots $=1$ from the polynomid efraten
$\therefore \tan \frac{\pi}{16} \times \tan \frac{5 \pi}{76} \times-\tan \frac{7 \pi}{16} \times-\tan \frac{3 \pi}{16}=1$
ar $\tan \frac{\pi}{16} \times \tan \frac{5 \pi}{16} \times \tan \frac{7 \pi}{16} \times \tan \frac{3 \pi}{16}=1 /$ The Sous college, Bellevue Bill, sw
\qquad
\qquad
Question No. 7
(b) $P(x)=x^{4}+x^{3}-16 x^{2}-4 x+48=0$

Let la roots be $\alpha, \beta, \gamma, \delta$, let $\alpha \beta=6$

$$
\begin{align*}
& \alpha+\beta+\gamma+\delta=-1 \\
& \alpha \beta+\beta \gamma+\gamma \delta+\alpha \delta+\alpha \gamma+\beta \delta=-16 \tag{2}\\
& \alpha \beta \gamma+\beta \gamma \delta+\gamma \delta \alpha+\alpha \beta \delta=4 \tag{3}
\end{align*}
$$

$\alpha \beta \gamma \gamma=48$
$r \delta=48 / 6 \div 8$
$P(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\gamma) \leqslant \theta$

$$
\begin{align*}
& =(x-\alpha)(x-\beta)(x-\gamma)(x-\gamma) \tag{5}\\
& =\left(x^{2}-(\alpha+\beta) x+\alpha \beta\right)\left(x^{2}-(\gamma+\gamma) x+\gamma \delta\right)=0 .
\end{align*}
$$

From (3) $\quad 6 r+8 \beta+8 \alpha+6 \delta=4$
or $8(\alpha+\beta)+6(r+8)=4$
(1) $\times 8 \quad 8(\alpha+\beta)+8(\gamma+8)=-8$
(5) -(6)

$$
-2(r+8)=12
$$

$$
r+8=-6
$$

$$
\alpha+\beta=5
$$

$$
\begin{gathered}
\alpha+\beta=5 \\
\therefore P(x)=\left(x^{2}-5 x+6\right)\left(x^{2}+6 x+8\right)=0 \\
\text { or }(x-3)(x-2)(x+4)(x+2)=0 \\
\therefore x=3,2,-4,-2
\end{gathered}
$$

\qquad
\qquad
Question No. 7
(C) (1) $3 x^{4}-4 x^{3}+m=0$
let $f(x)=3 x^{4}-4 x^{3}+m$

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=36 x^{2}-24 x
\end{aligned}
$$

$f^{\prime}(x)=0 \quad 12 x^{2}(x-1)=0 \quad$ when $x=1$

$$
f^{\prime \prime}(x)>0 \therefore \text { mix -pr. }
$$

$$
f(0)=m, f(1)=\beta-4+m)=(n-1
$$

$\therefore x=0$ is ahroizantal poi:

For $f(x)=0$ to hare no real rooks.
the poi and St. point must lie on the same side of x-axis $i e$ above the x-axis $(\because y$-wot >0, (ie $m>0$)
ie $f(0) \times f(1) \geqslant 0$

$$
(m) \times(m-1)>0
$$

$\therefore \frac{m \nless 0 \text { or } m>1}{(\because y \text {-wit below }} \begin{gathered}x \text {-axis } \therefore \text { there win }\end{gathered}$
$\therefore m>1$ for real roots x-axis \therefore there will be two witeregpts.

Name: \qquad
Teacher: \qquad

Question No.

(c) (ii) When $m=1$

$$
f(0)=1, f(1)=0
$$

\therefore st. point les on the x-axis, polis abovethe
There is one real rook
\qquad
\qquad
Question No. 8
(a) (i)

$$
\begin{aligned}
\Sigma F & =m \ddot{x}=-m g-m k v^{2} \\
\ddot{x} & =\frac{v d v}{d x}=-g-k v^{2} \\
d x & =-\frac{v d v}{g+k v^{2}} \\
x & =\int-\frac{v d v}{g+k v^{2}} \\
& =-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+C
\end{aligned}
$$

when $x=0, v=u$

$$
\begin{aligned}
0 & =-\frac{1}{2 k} \ln \left(g+k u^{2}\right)+C \\
C & =\frac{1}{2 k} \ln \left(g+k u^{2}\right) \\
\therefore x & =-\frac{1}{2 k} \ln \left(g+k v^{2}\right)+\frac{1}{2 u} \ln \left(g+k u^{2}\right) \\
& =\frac{1}{2 k} \ln \frac{g+k u^{2}}{g+k v^{2}}
\end{aligned}
$$

for max $H H, v=0$

$$
\begin{aligned}
& A=\frac{1}{2 u} \ln \frac{g+k u^{2}}{g} \\
& \text { or } H=\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right)
\end{aligned}
$$

\qquad
\qquad
Question No. 8

For Q:
(a)

$$
\sum F=m \ddot{x}=m g-m k v^{2}
$$

for terminal velocity $\ddot{x}=0$

$$
\begin{aligned}
& g=k V^{2} \\
& \text { or } V=\sqrt{g / k}
\end{aligned}
$$

$$
v \frac{d v}{d x}=g-k v^{2}
$$

$$
d x=\frac{v d v}{g-k v^{2}}
$$

$$
x=\int \frac{v d v}{g-u v^{2}}
$$

$$
=-\frac{1}{2 k} \ln \left(g-k v^{2}\right)+C
$$

When $x=0, v=0$

$$
\begin{aligned}
0 & =-\frac{1}{2 k} \ln g+C \quad \therefore C=\frac{1}{2 k} \ln g \\
\therefore x & =-\frac{1}{2 k} \ln \left(g-k v^{2}\right)+\frac{1}{2 k} \ln g \\
& =\frac{1}{2 k} \ln \frac{g}{g-k r^{2}}
\end{aligned}
$$

Let the particles collude or T when for $P, x_{1}=x_{1}, v=v_{1}$, and for $Q, x=x_{2}, v=r_{2} \Rightarrow x_{1}+x_{2}=H$.
from ${ }_{a}$ (1)

$$
x_{1}=\frac{1}{2 k} \ln \frac{g+k u^{2}}{g+k v_{1}{ }^{2}} \quad x_{2}=\frac{1}{2 k} \ln \frac{g}{g-k v_{2}{ }^{2}}
$$

\qquad
Teacher: \qquad
Question No. 8
a). (ii)

$$
\begin{aligned}
& \text { ii) } x_{1}+x_{2}=H=\frac{1}{2 k} \ln \left(1+\frac{k u^{2}}{g}\right) \\
& \frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g}\right)=\frac{1}{2 k} \ln \left(\frac{g+k u^{2}}{g+k v_{1}^{2}}\right)+\frac{1}{2 k} \ln \left(\frac{g}{g-k v_{2}^{2}}\right) \\
& \frac{g+k a_{2}^{2}}{g}=\frac{g+k u^{2}}{g+k v_{1}^{2}} \cdot \frac{g}{g-k v_{2}^{2}} \\
& \left(g+k v_{1}^{2}\right)\left(g-k v_{2}^{2}\right)=g^{2} \\
& k^{2}\left(\frac{g}{k}+v_{1}^{2}\right)\left(\frac{g}{k}-v_{2}^{2}\right)=g^{2} \\
& \left(\frac{g}{k}+v_{1}^{2}\right)\left(\frac{g}{k}-v_{2}^{2}\right)=g^{2} \\
& a\left(v^{2}+v_{1}^{2}\right)\left(v^{2}-v_{2}^{2}\right)=v^{4} \\
& v^{4}+v^{2}\left(v_{1}^{2}-v_{2}^{2}\right)-v_{1}^{2} v_{2}^{2}=v^{4} \\
& \text { or } v^{2}\left(v_{1}^{2}-v_{2}^{2}\right)=v_{1}^{2} v_{2}^{2}
\end{aligned}
$$

~ Divionj by $v^{2} v_{1}^{2} v_{2}^{2}$

$$
\frac{1}{v_{2}^{2}}-\frac{1}{v_{1}^{2}}=\frac{1}{v^{2}}
$$

\qquad
\qquad

Question No 8
(b) $\quad x^{2}+y^{2}=x y+3$

Differentiating imphiently with respect to x

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}=x \frac{d y}{d x}+7 \\
& (x-2 y) \frac{d y}{d x}=2 x-y \\
& \therefore \frac{d y}{d x}=\frac{2 x-y}{x-2 y}
\end{aligned}
$$

for Stanenay points $y^{\prime}=0$

$$
2 x-y=0 \quad \therefore y=2 x
$$

Solving (1) \& (2) Simuttareousl, sub $y=2 x$ into (0)

$$
\begin{gathered}
x^{2}+4 x^{2}=2 x^{2}+3 \\
3 x^{2}=3 \quad x=1, y=2 \\
\text { or } x=-1, \quad y=-2 \\
y^{\prime \prime}=\frac{(x-2 y)\left(2-y^{\prime}\right)-(2 x-y)\left(1-2 y^{\prime}\right)}{(x-2 y)^{2}}
\end{gathered}
$$

(i) When $y^{\prime}=0, x=1, y=2$
(ii) When $y^{\prime}=0, x=-1, y=-2$

$$
y^{\prime \prime}=\frac{(1-4)(2)}{(1-4)^{3}}<0
$$

$\therefore(1,2)$ is max pr

$$
\begin{aligned}
y^{\prime \prime} & =\frac{(-1+4)(2)}{(-1+4)^{3}}>0 \\
& \therefore(-1-2)^{5} \min
\end{aligned}
$$

\qquad
\qquad
Question No. 8
(C) (1) for the promeh $X-P-Q-Y$

Curisat will not flow if P defective or Q defective or P and φ defective.
$\therefore P($ no current flow through $x-P-Q-y)$

$$
\begin{aligned}
& =p(1-p)+(1-p) p+p \cdot p \\
& =p-p^{2}+p-p^{2}+p^{2} \\
& =2 p-p^{2}=p(2-p)
\end{aligned}
$$

Sinilenty. P (no current flow through $x-R-s-y$)

$$
=2 p-p^{2}+p(2-p)
$$

$\therefore p\left(\right.$ no current flow from $\left.x t_{0} y\right)=\left(2 p-p^{2}\right)^{2}=p^{2}(2-p)^{2}$
(ii) Let $q=$ probabity of no current thant an one of the form cricuiti. then $q=\left(2 p-p^{2}\right)^{2}=p^{2}(2-p)^{2}$ then from above.
$P($ no current from A to $B)=\left(2 q-q^{2}\right)^{2}$ where
Robabitit:

$$
\begin{aligned}
& \text { from above } \\
& \text { current from } A \text { to } B)=\left(2 q-q^{2}\right)^{2} \text { where }\left(2 p-p^{2}\right)^{2} \\
& =\left[2\left(2 p-p^{2}\right)^{2}-\left(2 p-p^{2}\right)^{4}\right]^{2} q=[2-p)^{2}\left[2-p^{2}(2-p)^{2}\right]^{2} \\
& =p^{4}(2-p)^{4}\left(2-p^{2}\left(4-4 p+p^{2}\right)\right]^{2} \\
&
\end{aligned}
$$

