(O) Shore (O) chool

4 unit mathematics

Criad hSC Examination 1987

1. (i) Find the indefinite integrals: (a) $\int \frac{9+x^{2}}{9-x^{2}} d x$ (b) $\int \frac{2 x+8}{x^{2}+4 x+8} d x$
(ii) Evaluate $\int_{1}^{2} x \sqrt{3 x-2} d x$
(iii) Let n be an integer greater than 1 and let $I_{n}=\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{n}}$. Prove that $2 n I_{n+1}=$ $2^{-n}+(2 n-1) I_{n}$. Hence, deduce the value of $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{3}}$.
2. (i) Given that $w=\frac{2-3 i}{1+i}$, determine (a) $|w|$ (b) \bar{w} (c) $w+\bar{w}$
(ii) Describe, in geometric terms, the locus (in the Argand plane) represented by $2|z|=z+\bar{z}+4$.
(iii) Mark clearly on an Argand diagram the region in the complex plane satisfied by $-\frac{\pi}{6} \leq \arg z \leq \frac{\pi}{3}$
(iv) Find the locus of $\left|\frac{z+1}{z+2}\right|=1$
3. (i) Show, by geometrical considerations or otherwise, that, if the complex numbers z_{1} and z_{2} are such that $\left|z_{1}\right|=\left|z_{2}\right|$, then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is purely imaginary.
(ii) Prove that $\cos 7 \theta=64 \cos ^{7} \theta-112 \cos ^{5} \theta+56 \cos ^{3} \theta-7 \cos \theta$. Hence, show that $x=\cos \left(\frac{2 r+1}{14}\right) \pi$ for $r=0,1,2,4,5,6$ are the roots of the equation $64 x^{6}-112 x^{4}+$ $56 x^{2}-7=0$. Deduce that $\cos \frac{\pi}{14} \cdot \cos \frac{3 \pi}{14} \cdot \cos \frac{5 \pi}{14}=\frac{\sqrt{7}}{8}$
4. (i) Find the factors of $x^{3}-1$ and hence find the complex cube roots of unity.
(ii) Show that $1+i$ is a zero of the polynomial $x^{3}-x^{2}+2$ and find its other two zeros in the complex field.
(iii) Find the polynomial of least degree with integral coefficients all of which have no common factor, but having $1-i$ as a two-fold root.
(iv) If α, β, γ are the zeros of the polynomial $x^{3}-x^{2}+15 x+3$ in the field of complex numbers, find the values of
(a) $(\alpha-1)(\beta-1)(\alpha-1)(b) \alpha^{2}+\beta^{2}+\gamma^{2}$.
5. (i) Derive the gradient of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{1}, y_{1}\right)$ and hence find the equation of the tangent at $(a \cos \theta, b \sin \theta)$.
(ii) Show that the normal to the hyperbola $x y=c^{2}$ at the point $\left(c p, \frac{c}{p}\right)$ cuts the hyperbola again at the point $\left(-\frac{c}{p^{3}},-c p^{3}\right)$.
(iii) The tangents at two points $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ on the parabola $y^{2}=$ $4 a x$ intersect at T. The normals at P and Q intersect at N. If angle $P T Q$ is a right angle prove that $T N$ is parallel to the x-axis.
6. (i) The base of the solid shown in the diagram is a circle of radius 5 cm and each section of the solid formed by a plane perpendicular to a fixed diameter $A B$ is an isosceles triangle with height 6 cm . Find the volume of the solid.

(ii) Sketch, on the same graph, the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=8 x$. Find the equation of their common chord. Shade in the area common to both circles. By using a slicing technique, find the volume of the solid formed when this area is revolved about the common chord.
7. (i) Find all x such that $\sin x=\cos 7 x$ and $0<x<\pi$.
(ii) Show that $\cos ^{2}\left(\theta+\frac{7 \pi}{6}\right)+\cos ^{2}\left(\theta+\frac{5 \pi}{6}\right)-\cos ^{2} \theta$ is independent of θ and find its value.
(iii) If a, b, c are real and unequal show that $a^{2}+b^{2}>2 a b$ and hence deduce that $a^{2}+b^{2}+c^{2}>a b+b c+c a$. If $a+b+c=6$ show that $a b+b c+c a<12$.
8. (i) Show that if $0<A<1$ and $0<B<1$, then $\tan ^{-1} A+\tan ^{-1} B=$ $\tan ^{-1}\left(\frac{A+B}{1-A B}\right)$
(ii) A relation is defined implicitly by $x^{2}+x y-2 y^{2}=0$. Show that $\frac{d y}{d x}$ has only two possible values: 1 and $-\frac{1}{2}$. Hence, or otherwise, sketch the relation.
(iii) In a triangle $A B C, b, c$ and B are given such that two distinct triangles $A B C$ are possible. Show that the difference between the two possible values of the third sides of the two triangles is $2 \sqrt{b^{2}-c^{2} \sin ^{2} B}$.
