Ohove - Oydney Church of ©ngland Summar © ©chool 4 unit mathematics

$\tau_{\text {Riad }}$)SC Examination 1993

1. Evaluate the following integrals. Give your answers correct to 3 significant figures.
(a) $\int_{3}^{4} \frac{4}{x^{2}-3 x+2} d x$
(b) $\int_{1}^{2} 2^{x} d x$ (c) $\int_{0}^{1} \sin ^{-1} x d x$
(d) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\sin x}$
(e) $\int_{0}^{1.5} \sqrt{9-x^{2}} d x$
2. (a) For the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{25}=1$ find:
(i) the eccentricity
(ii) the coordinates of the foci
(iii) the equations of the asymptotes
(iv) the equations of the directrices

Sketch the graph showing the above information.
(b) $P(a \cos \theta, b \sin \theta)$ is any point on the ellipse whose equation is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and S is the focus of the ellipse. Prove that the line through S perpendicular to the tangent at P, and the line $O P$ produced, meet on the directrix corresponding to the focus S.
3. (a) Solve for $z: z+\frac{2+8 i}{z}=4+i$
(b) Express $w=\frac{(-1+i \sqrt{3})(1+i)}{\sqrt{3}-i}$ in modulus-argument form.
(c) Given that $(2-i)$ is a zero of $2 x^{3}+m x^{2}+n x+15$, determine m and n, where m and n are real. Hence factorise $2 x^{3}+m x^{2}+n x+15$ in the real field.
4. (a) Determine all the roots of $8 x^{4}-25 x^{3}+27 x^{2}-11 x+1=0$ given that it has a root of multiplicity 3 .
(b) α, β, γ are the roots of $x^{3}+2 x^{2}-3 x+4=0$
(i) Evaluate $\alpha^{2}+\beta^{2}+\gamma^{2}$
(ii) Evaluate $\alpha^{3}+\beta^{3}+\gamma^{3}$
(iii) Find the equation whose roots are $\frac{\alpha \beta}{\gamma}, \frac{\alpha \gamma}{\beta}, \frac{\beta \gamma}{\alpha}$.
5. (a) Let $I_{n}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n} x d x$, where n is an integer. Show that $I_{n}=\frac{1}{n-1}-I_{n-2}$ and hence evaluate I_{7}.
(b) (i) Write down the general solution of $\tan 4 \theta=1$.
(ii) Use De Moivre's theorem to express $\cos 4 \theta$ and $\sin 4 \theta$ in terms of $\cos \theta$ and $\sin \theta$. Hence show that $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$.
(iii) Find the roots of the equation $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$ in trigonometric form. Hence show that $\tan ^{2} \frac{\pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\tan ^{2} \frac{5 \pi}{16}+\tan ^{2} \frac{7 \pi}{16}=28$.
6. (a) A solid has a base in the form of a circle with centre the origin and radius 6 units. If every section perpendicular to the x-axis is an equilateral triangle, show that the volume of the solid is $288 \sqrt{3}$ cubic units.
(b) The region bounded by the curve $y=x^{3}$, the line $y=1$ and the y-axis is rotated about the line $y=-1$. By noticing that rectangular strips taken parallel to the axis of rotation give rise to cylindrical shells, find the volume of the solid of revolution.
7. (a) A quiz consists of twenty True-False questions. Find the chance that someone who knows the correct answers to ten of the questions, but answers the remaining ones by tossing a coin, will obtain a score of at least 85% on the quiz.
(b) By using mathematical induction prove that: $\sin (n \pi+x)=(-1)^{n} \sin x$ for all positive integral values of n.
(c)

$A B C D$ is a cyclic quadrilateral. E is a point on diagonal $B D$, such that $\angle D A E=$ $\angle B A C$. Prove that:
(i) $A B \cdot C D=A C \cdot B E$
(ii) $B C \cdot D A=A C \cdot D E$
(iii) $A B \cdot C D+B C \cdot D A=A C \cdot B D$
8. (a) Prove that $\frac{a^{2}+b^{2}}{2}>\left(\frac{a+b}{2}\right)^{2}$, where a and b are positive, real and unequal.
(b) Sketch $y=1+x^{2}$ and hence sketch on separate diagrams: (do not use calculus)
(i) $y=\frac{1}{x^{2}+1}$ (ii) $y=\frac{x}{x^{2}+1}$ (iii) $y=\left|\frac{x}{x^{2}+1}\right|$ (iv) $y= \pm \sqrt{\frac{x}{x^{2}+1}}$
(c) For the rational function $F(x)=\frac{x^{4}}{x^{2}-1}$
(i) Find if $F(x)$ is odd or even or neither.
(ii) Show algebraically that the range of $F(x)$ is: $y \leq 0$ or $y \geq 4$. Hence calculate the coordinates of its three turning points.
(iii) Considering large values of $|x|$ and any discontinuities, sketch the graph of $y=F(x)$. Show also the curved asymptotes by dotted lines.

