Set: 12ME2-1 (FES)

SHORE

2008

Trial HSC Examination

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total marks - 120

- Attempt Questions 1 8
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Blank Page

Total Marks – 120 Attempt Questions 1 – 8 All Questions are of equal value

Begin each question on a NEW BOOKLET, writing your name and question number at the top of the page. Extra booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet

(a) Find
$$\int (e^x + e^{-x})^2 dx$$
 2

(b) Find
$$\int \frac{2x^2 - 2x + 1}{(x - 2)(x^2 + 1)} dx$$
 3

(c) Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{2 + \sin x} dx.$ 5

(d) Let
$$I_n = \int_0^1 \frac{1}{(1+x^2)^n} dx$$
; $n=1,2,3,...$

(i) Show that
$$I_{n+1} = \frac{2n-1}{2n}I_n + \frac{1}{n \cdot 2^{n+1}}; n=1,2,3,...$$
 3

(ii) Hence evaluate
$$\int_{0}^{1} \frac{1}{(1+x^{2})^{3}} dx.$$
 2

Р.Т.О.....

Marks

Question 2 Use a SEPARATE writing booklet

(a)
$$z_1 = 1 + i$$
 and $z_2 = \sqrt{3} - i$.
(i) Find $\frac{z_1}{z_2}$ in the form $a + ib$ where a and b are real.
(ii) Write z_1 and z_2 in modulus – argument form.
2

(iii) By equating equivalent expressions for
$$\frac{z_1}{z_2}$$
, write $\cos\frac{5\pi}{12}$ as a surd. 1

Marks

2

1

(iv) Explain why there is no positive integer *n* such $z_1 z_2^n$ is real.

The points *OABC* are the vertices of a rectangle on the Argand diagram with |OA| = 2|OC|. If *OC* represents the complex number p+iq, write down the complex numbers represented by:

(i)
$$\overrightarrow{OA}$$
 1
(ii) \overrightarrow{OB} 1
(iii) \overrightarrow{BC} 1
 \rightarrow 1

(iv)
$$\dot{AC}$$

(c)	(i)	If $z = \cos \theta + i \sin \theta$, explain why $z^n + z^{-n} = 2 \cos n\theta$ and	2
		$z^n - z^{-n} = 2i \sin n\theta$ for positive integers <i>n</i> .	

(ii) By considering the Binomial expansions of
$$(z + z^{-1})^3$$
 and $(z - z^{-1})^3$,
show that $4(\cos^3\theta + \sin^3\theta) = (\cos 3\theta - \sin 3\theta) + 3(\cos \theta + \sin \theta)$.

Question 3 Use a SEPARATE writing booklet

Marks

The diagram shows the graph of $f(x) = 2e^{-x} - 1$. On separate diagrams sketch the following graphs, showing the intercepts on the axes and the equations of any asymptotes:

(i)
$$y = |f(x)|$$
.

(ii)
$$y = \{f(x)\}^2$$
. 1

(iii)
$$y = \frac{1}{f(x)}.$$

(iv)
$$y = ln \{f(x)\}.$$
 1

(b) Consider the curve $y^2 = x^4(4+x)$

(i)	Sketch the curve.	2

- (ii) Find the area of the loop of the curve from x = -4 to x = 0. 3
- (c) The roots of $x^3 3x^2 2x + 4 = 0$ are α, β and γ . Answer the following without finding the actual values of α, β and γ .

(i)	Find a cubic equation whose roots are α^2 , β^2 and γ^2 .	2
(ii)	Hence or otherwise find the value of $\alpha^2 + \beta^2 + \gamma^2$.	1

(iii) Determine the value of $\alpha^3 + \beta^3 + \gamma^3$. 2

Р.Т.О.....

Question 4 Use a SEPARATE writing booklet

Marks

(a) Given $|z+i| \le 2$ and $0 \le \arg(z+1) \le \frac{\pi}{4}$. Sketch the region in an Argand diagram which contains the point *P* representing *z*. **3**

(b) Consider the five 5th roots of unity.

(i)	Solve $z^5 - 1 = 0$ over the complex field giving your answers in modulus-argument form.	3
(ii)	Hence express $z^5 - 1$ as the product of real linear and quadratic factors.	3
(iii)	Write down the complex roots of $z^4 + z^3 + z^2 + z + 1 = 0$ giving your answers in modulus-argument form.	1
(iv)	Hence prove that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$.	2

(c) If
$$x > 0$$
 and $y > 0$ prove that $\frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y}$. 3

Question 5 Use a SEPARATE writing booklet

- (a) A mass of 3kg is attached to the vertex of a cone of vertical angle 60° by an elastic string of length 1 metre. The mass is moving in a horizontal circle on the curved, frictionless surface of the cone. Acceleration due to gravity is 10 m s⁻².
 - T = Tension in string

(b)

N = Normal reaction of the cone surface on the mass.

(i) If the mass is moving at a speed of 1 m s^{-1} , by resolving forces vertically and horizontally find the values of T and N.	4
(i	i) What is the maximum speed of the particle for it to just remain on the cone's surface and what will be the string's tension at this time?	4
A m d w	mass of 1 kg is allowed to fall under gravity from rest at the surface of a addium in which the retardation on the mass is proportional to the istance fallen (x). In other words, the net force for this motion is $g - kx$ Newtons with the downward direction as positive.	
(i) Show that it falls $\frac{2g}{k}$ metres before it becomes stationary.	2
(i	i) Show that the displacement equation in terms of t is given by: $x = \frac{g}{k} \left(\sin\left(\frac{2\sqrt{k} t - \pi}{2}\right) + 1 \right)$	5

P.T.O.....

Question 6 Use a SEPARATE writing booklet

(a) Consider the complex number z which satisfies |z| = 1.

(i) Using double angle trigonometric identities show that:

$$1 + \cos \alpha + i \sin \alpha \equiv 2 \cos \frac{1}{2} \alpha (\cos \frac{1}{2} \alpha + i \sin \frac{1}{2} \alpha).$$

(ii) If $z = \cos \theta + i \sin \theta$, $-\pi < \theta \le \pi$, write $1 + z^2$ in terms of $\cos \theta$ and $\sin \theta$. Hence deduce that if in an Argand diagram, points *A* and *B* represent *z* and $1 + z^2$ respectively, then *A*, *B* and *O* are collinear, where *O* is the origin. State the values of θ such that *B* lies on the interval *OA*.

(b) A solid shape has as its base the parabola $y = x^2$ in the *XY* plane. Sections taken perpendicular to the axis of the parabola (i.e. perpendicular to the y-axis) are equilateral triangles. Using the method of slicing determine the volume of the solid, if the length of the axis of the parabola is 16cm.

(c) With θ increasing, the point P given by (r cos θ, r sin θ) is moving in a circular motion
about O at a distance of r units from O. Starting with the two equations
x = r cos θ and y = r sin θ prove that the Normal acceleration of
P towards O is rω² where ω is the rate of change of θ with respect to time.

3

2

5

Question 7 Use a SEPARATE writing booklet

(a) Consider the polynomial $P(x) = x^4 - 4x^3 + 5x^2 - 2x - 2$.

- (i) Show that the curve y = P(x) has a maximum turning point at (1, -2) and minimum turning points at $x = 1 \pm \frac{1}{2}\sqrt{2}$. Hence deduce from a sketch of the curve that the equation P(x) = 0 has two real roots and two non-real roots.
- (ii) Explain why the real roots cannot be rational. What do you know about the nature of the non-real roots?
- (iii) Given that 1+i is a root of the equation P(x) = 0, factor P(x)into two quadratic factors with rational coefficients. Hence find the *x*-intercepts of the curve y = P(x) and show them on your graph.

(b) (i) Prove that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx.$$

Hence show $\int_{0}^{\pi} x \cos 2x dx = 0.$
(ii) $\frac{v}{2}$

 π

x

-1

-2

revolution is given by $V = 2\pi \int_{0}^{\pi} x \sin^{2} x \, dx$. Hence by using

your answer in part (i) or otherwise find the volume of this solid.

3

2

3

Question 8 Use a SEPARATE writing booklet

(a) A particle of mass M is projected vertically upward under gravity with speed U in a medium in which the resistance is Mk times the speed, here k is a positive constant. If the particle reaches its greatest height H in time T, show that U=gT+kH. (You may assume that the net force is given by -Mg - Mkv with upward direction positive.)

(b) $P(a\cos\theta, b\sin\theta)$ is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. PQ is a diameter of the ellipse. The tangent to the ellipse at P meets the vertical through

Q at R and the Y-axis at V. O is the origin.

- (i) Prove that the tangent at *P* has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1.$ 2
- (ii) Show that the area of $\triangle PQR = 4$ times the area of $\triangle POV$. 1

(iii) Show that the area of
$$\Delta PQR$$
 is $\frac{2ab}{|\tan \theta|}$ square units. 2

(c) $P(t, \frac{1}{t})$ is a variable point on the rectangular hyperbola xy = 1. *M* is the foot of the perpendicular from the origin to the tangent to the hyperbola at *P*.

(i)	Show that the tangent to the hyperbola at <i>P</i> has equation $x + t^2y = 2t$.	2
(ii)	Find the equation of OM.	1
(iii)	Show that the locus of <i>M</i> as <i>P</i> varies has equation $x^2 + y^2 = 2\sqrt{xy}$.	3

End of Paper

4

STANDARD INTEGRALS

 $\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \ x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \quad a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$ $\int \frac{1}{\sqrt{a^2 - r^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} \, dx \qquad = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{\mathbf{x}^2 + a^2}} \, dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_e x$, x > 0

$$\begin{array}{rcl} HSC Trill / I a Ks & E_{14} & 2 2008 & Solutions & Shore School & \\ I(n) & I &= \int (e^{2k} + 2 + e^{-2k})dk \\ &= \frac{1}{2} e^{2k} + 2k - \frac{1}{2} e^{-4k} + c(2) \\ (k) & (k) &$$

HSC Trial Mattes Est 2 2008 -oblions 3 $(c)^{(1)}$ Let $y = x^2 \therefore x = 5y$ $3(a)(i) \int f^{y}$ 9=/fel -: (5) - 3 (5) - 2 - 5 + + = 0 -- (y-2) 55 = 37 - 4 -- (y-2)². y = (37 - 4)² y = { fei} * · y3-4y2-5y +4y +24y-16=0 len Z ·: y3-13y2+28y-16=0 (2) $(ii) = \alpha^2 + (3^2 + 8^2 = -\frac{4}{3})$ (u) 2) = == (1) $\alpha^{3} - 3\alpha^{2} - 2\kappa + 4 = 0$ (iii) Nons K=6.2 $\beta^{3} - 3\beta^{2} - 2\beta + 4 = 0$ $\beta^{3} - 3\beta^{2} - 2\beta + 4 = 0$ $\frac{1}{2}(l)$ - ~+ & + & = 3(~+ ~+ ~) + + (d+ ~+ ~) -12 = 3(13) + 2(3) - 1212=62 = <u>3</u> = (Z) b)(i) z(2) i) Area = 2 Sx JArada Let u= 6+x : x = 4-4 du = dx x = x = 16 : Ara = 25 (-4) - 5 m du = 2 5 Tu (u- 8u + 16) du = 25 " " - 8" + 16 " du = 2[2 m - 8. 2 m 5/4/6. 2 m /). 4 4096 u2 (3) or 391

2008 Solutions HSC Trial Mathe Ext 2 $N_{000} = \frac{1}{2} + \frac{1}{2} - \frac{4}{27} = \frac{2}{7} + \frac{1}{27} - \frac{4}{7} + \frac{1}{7}$ 1x2+(+1)=4 $= \frac{x^{2} + 2x_{3} + y^{2} - 4x_{3}}{x_{3}(2 + y)}$ (b) (i) Let = = = = ai 0, == 1 $= \frac{x^{2} - 2xy + y^{2}}{xy(x+y)}$ But 25= 15 is 50 by delloures R. $= \frac{(c-3)^{2}}{x_{3}(x+3)}$ 1.50= 0, 27, ---·· 0=0, #, 4T, ... Now 2, y>0 : 20 >0, 20 >0 & (2 - y) >0 $Z^{5}_{-1} = (2-1)(2-\frac{1}{3})\cdots$ Now 2 - a == (2 - ~ (- ==) Alterative proof: = (2 - an 2) Conate (~6) >0 ... 2+6 > 2ab Let d= is 3 & wands (2-x)(2-x)=22-2Re(4)2+0(2 where |x| = 1 :. x a = 1 · 6 + V & 2 MV where u = 2 V = 62 $\frac{1}{2} \left(2 - \frac{1}{2} \frac{2\pi}{5} \right) \left(2 - \frac{1}{2} \frac{2\pi}{5} \right) = 2^2 2 \cos \frac{2\pi}{5} + 1$ $\therefore \frac{1}{x} + \frac{1}{y} \ge \frac{2}{\sqrt{xy}} \quad (A)$ 3 (2-45) (2-45)=2-24 52+1 (3) But at 2 2 Jeg ·· 25-1=(2-1)(22-2 -2 -2 +1)(22-2 -2 +1) is ty 5 2 tray $(iii) = \frac{1}{2^{-1}} = 0$ $:: 2^{-1} y(2^{+}+2^{+}+2^{+}+1) = 0$ (1) ·· zty < ty From (A) if + ig 2 2x it いえきのな マニムディンディンディング 1. x+ y 1 x+ y (1) Using sum quots = - # 10827+ 60 KT+ 6 KT+ 6 -27 = -1 Equats real parts : Coo \$7 + co \$7 + co \$7 + co 37 = 7 (b) Ans only + cicle dig. 12/3 But 100 = con (-0) : 2いデ+2いなーン : 6 = + 6 = = -: (2)

HSC Trial Maths Ext 2 2008 Solutions (1)(4)-7 ----- t=0,x=0, v=0 5. (^a) 1 The string 30 Tyranzo N positive downwords. N cm 30 F = mg - kx ()· · · · · dur = mg - kx Now m= Horizontally: :- w dw = g - kor F = Tom 60° - Nom 30° -- Sur av = S(g-kx)dx : mu = = = = 5N 3 But J=1 col r= 2 -- (~] = (sr-+kx) ~6= = T- - 5N $\therefore \mathbf{Y}^2 = \mathbf{g} \mathbf{X}^{-\frac{1}{2}k} \mathbf{X}^{\frac{1}{2}}$:. 12 = T-JIN () : v= x(2g-kx) Verticity : ∴v=0.⇒ ×=0 $x = \frac{29}{K}$ (2) F = Two 30°+ Nuo 60°- mg :. 0= = T+1N-3×10 (i) from (i) 3= x (2g-kx) :- J3T+N = 60 :, dx = 12gx - kx+, v>0 - 3T+ 5N= 60 53 0 $= \int dt = \int \frac{1}{\sqrt{2gx - kx^2}} dx$ ALL: 0 + 3 47 = 12+605 -> T=3+155=28.98 $\int \int k \, dt = \int \frac{dx}{\int -\left(x^2 - \frac{29}{k^2}x + \frac{9^2}{k^2} - \frac{9}{k^2}\right)}$ Subs back into O: 12=3+1553-5N $=\int_{\sqrt{\frac{2}{2}^{2}-\frac{2}{2}}}^{\frac{2}{2}}dx$:- N= 15-9 : N = 15-35 + 7.8038 $\int \int \overline{f} k t = \int S_{m} \left(\frac{(x-\frac{q}{k})}{\frac{q}{2}} \right) \int_{0}^{x} \cdot \cdot \cdot$ (ii) Let N= 0 for catical value Subs to 3 -: 35 = + T $- V_{k}T = S_{m}^{*} \left(\frac{k}{3} \left(x - \frac{3}{k} \right) \right) - S_{m}^{-1} \left(- 1 \right)$ 2. T= 12. ニルT = sin (音(x-是))+ 芝 Subo ito 2 - . T = 20 J3 -- sin (JET- =) = = = (x-=) -> 2053 = 1202 ·· ×= = = + = = == (KT-=) 5) $= \frac{3}{k} \left(\frac{2}{2} \left(\frac{2}{2} + \frac{1}{2} + 1 \right) \right)$ シャー 小学 き (25)4

् इन

$$f(SC = Trial | Masks = Ext 2$$

$$6 (a) (i)$$

$$LHS = (1 + cond) + i sid$$

$$= 2 cos = + i 2 si \le cons =$$

$$= 2 cos = + i 2 si \le cons =$$

$$= 2 cos = (cos = + i si = 2)$$

$$= 2 cos = (cos = + i si = 2)$$

$$= 1 + cos = 2 cos = 1$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = straj + i = i$$

$$i = 2 cos = 1 = cos = 1 = i$$

$$i = 2 cos = 1 = i$$

$$i = 2 cos = 1 = cos = 1 = i$$

$$i = 2 cos = 1 = i$$

$$i = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 = 2 cos = 1$$

$$i = 1 = 1 =$$

2008 Solutions (6
Alas
$$y = r \pm 0$$

 $i dy = d r \pm 0 \cdot dx$
 $i y = r + 0 \cdot 0$
 $i y = w (d r + 0 \cdot dx) + r + 0 \cdot 0$
 $= -r \pm 0 \cdot w + r + 0 \cdot 0$
 $forwards the centre
 $N = -x + 0 - y + 0$
 $= r (20 - y + 0)$
 $= r (20 - y)$
 $= r - x + 0$
 $=$$

(7 HSC Trial Marks Ert HSC Trial Maths Ext 2 2008 Solutions **4** 7(1) 7(a)(1) 1 (2) = 42 -122 +102 -2 (i) (Cont) . Now x -154x = 12x + 10x - 2 Complex not are conjugates of () can other as all the coeffer are not 41 - 4 + + 10x Oping and the sphinderial she (ii) Root are Iri, 1-i, d, B Let 4x - 8x+ 2 = 0 _[[צ Now (2-1+i) x-(1-i) = (2-1)-i) (2-1)+i) ·· 2x - 42 +1 = 0 = (2-15-2-·. z = 4 = 516-8 NOV= 2+ry Ar == x == 2x + 1 + 1 =2=2.52 : V s lim 5 200. sin tack 2-2x+2) x - 423+5+ =1=== - stating at 1, 1 + 252 = Sanzinde P"xi = 12x - 24+ +10 Now P"(1)=-2 < 0 ... = 1 motif. Solving 22-22 -1=0 & p"(+ + 5)=4>0 - mit.p. = 2 + 5 = 4 + - 2 + 5 + 0 - 2 4 · + = 2 = Jara & 1 (- 15)=4>0=. mit.p. = = [=] - 0 by Oabove (1++55,-24) (1-55,-14) - 1 4) (b)(1) LHS= (Fa)] ~ ~ Fa) - Au · / (+15,-24) (-+5,-4) = F(4) - F RHS = [-F(-+)] from the shorter &, & shown $= -F_{\Theta} + F_{\Theta} \left(1 \right)$ are 2 real values. Let a= 17, fe) = x with , f(-x)= (E-y) = (E-y) to only 2, 2 mot be uncel . as PEU i of degree 4 2 (3) 10(1) # -- Sx con 2mdx = S (+-+) in 2(+-x) de (i) for his integer crefts, weff = Jor color-24 July - Ja cola - 24 July of it is 1 & constant time is -2 = frimzede - friede de -product of rational roots is -2 - 2. f x con 2x dx = T f con 2x da - test x= 0,1, -1, 2, -2 with = [[[]] " 10)=-2,10)=10,10=2,10=2,10=2,10=70 - none are zero in no intranil roots (1) $: \int_{0}^{\pi} x \cos 2x \, dx = 0 \int (2)$

, ,