

## SHORE

## 2008

## Trial HSC Examination

## Mathematics Extension 2

## General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question


## DO NOT REMOVE THIS PAPER FROM

 THE EXAMINATION ROOM
## Total marks - 120

- Attempt Questions 1 - 8
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

Blank Page

## Total Marks - 120

Attempt Questions 1 - 8
All Questions are of equal value

Begin each question on a NEW BOOKLET, writing your name and question number at the top of the page. Extra booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet
(a) Find $\int\left(e^{x}+e^{-x}\right)^{2} d x$
(b) Find $\int \frac{2 x^{2}-2 x+1}{(x-2)\left(x^{2}+1\right)} d x$
(c) Use the substitution $t=\tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\sin x} d x$.
(d) Let $I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x ; n=1,2,3, \ldots$
(i) Show that $I_{n+1}=\frac{2 n-1}{2 n} I_{n}+\frac{1}{n \cdot 2^{n+1}} ; n=1,2,3, \ldots$
(ii) Hence evaluate $\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{3}} d x$.
(a) $\quad z_{1}=1+i$ and $z_{2}=\sqrt{3}-i$.
(i) Find $\frac{z_{1}}{z_{2}}$ in the form $a+i b$ where $a$ and $b$ are real.
(ii) Write $z_{1}$ and $z_{2}$ in modulus - argument form.
(iii) By equating equivalent expressions for $\frac{z_{1}}{z_{2}}$, write $\cos \frac{5 \pi}{12}$ as a surd.
(iv) Explain why there is no positive integer $n$ such $z_{1} z_{2}^{n}$ is real.
(b)


The points $O A B C$ are the vertices of a rectangle on the Argand diagram with $|O A|=2|O C|$. If $O C$ represents the complex number $p+i q$, write down the complex numbers represented by:
(i) $\overrightarrow{O A}$
(ii) $\overrightarrow{O B}$
(iii) $\overrightarrow{B C}$
(iv) $\overrightarrow{A C}$
(c) (i) If $z=\cos \theta+i \sin \theta$, explain why $z^{n}+z^{-n}=2 \cos n \theta$ and $z^{n}-z^{-n}=2 i \sin n \theta$ for positive integers $n$.
(ii) By considering the Binomial expansions of $\left(z+z^{-1}\right)^{3}$ and $\left(z-z^{-1}\right)^{3}$, show that $4\left(\cos ^{3} \theta+\sin ^{3} \theta\right)=(\cos 3 \theta-\sin 3 \theta)+3(\cos \theta+\sin \theta)$.
(a)


The diagram shows the graph of $f(x)=2 e^{-x}-1$. On separate diagrams sketch the following graphs, showing the intercepts on the axes and the equations of any asymptotes:
(i) $\quad y=|f(x)|$.

1
(ii) $\quad y=\{f(x)\}^{2}$.

1
(iii) $y=\frac{1}{f(x)}$.
(iv) $y=\ln \{\mathrm{f}(\mathrm{x})\}$.
(b) Consider the curve $y^{2}=x^{4}(4+x)$
(i) Sketch the curve.
(ii) Find the area of the loop of the curve from $x=-4$ to $x=0$.
(c) The roots of $x^{3}-3 x^{2}-2 x+4=0$ are $\alpha, \beta$ and $\gamma . \quad$ Answer the following without finding the actual values of $\alpha, \beta$ and $\gamma$.
(i) Find a cubic equation whose roots are $\alpha^{2}, \beta^{2}$ and $\gamma^{2}$.
(ii) Hence or otherwise find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(iii) Determine the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(a) Given $|z+i| \leq 2$ and $0 \leq \arg (z+1) \leq \frac{\pi}{4}$. Sketch the region in an Argand diagram which contains the point $P$ representing $z$.
(b) Consider the five $5^{\text {th }}$ roots of unity.
$\begin{array}{ll}\text { (i) Solve } z^{5}-1=0 \text { over the complex field giving your answers } & \mathbf{3} \\ \text { in modulus-argument form. }\end{array}$
(ii) Hence express $z^{5}-1$ as the product of real linear and quadratic factors.
(iii) Write down the complex roots of $z^{4}+z^{3}+z^{2}+z+1=0$ giving your answers in modulus-argument form.
(iv) Hence prove that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$.
(c) If $x>0$ and $y>0$ prove that $\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$.

## Question 5 Use a SEPARATE writing booklet

(a) A mass of 3 kg is attached to the vertex of a cone of vertical angle $60^{\circ}$ by an elastic string of length 1 metre. The mass is moving in a horizontal circle on the curved, frictionless surface of the cone. Acceleration due to gravity is $10 \mathrm{~m} \mathrm{~s}^{-2}$.
$\mathrm{T}=$ Tension in string
$\mathrm{N}=$ Normal reaction of the cone surface on the mass.


> Not to Scale
(i) If the mass is moving at a speed of $1 \mathrm{~m} \mathrm{~s}^{-1}$, by resolving forces vertically and horizontally find the values of T and N .
(ii) What is the maximum speed of the particle for it to just remain on the cone's surface and what will be the string's tension at this time?
(b) A mass of 1 kg is allowed to fall under gravity from rest at the surface of a medium in which the retardation on the mass is proportional to the distance fallen $(x)$. In other words, the net force for this motion is $g-k x$ Newtons with the downward direction as positive.
(i) Show that it falls $\frac{2 g}{k}$ metres before it becomes stationary.
(ii) Show that the displacement equation in terms of $t$ is given by:

$$
x=\frac{g}{k}\left(\sin \left(\frac{2 \sqrt{k} t-\pi}{2}\right)+1\right)
$$

## Question 6 Use a SEPARATE writing booklet

(a) Consider the complex number $z$ which satisfies $|z|=1$.
(i) Using double angle trigonometric identities show that:

$$
1+\cos \alpha+i \sin \alpha \equiv 2 \cos \frac{1}{2} \alpha\left(\cos \frac{1}{2} \alpha+i \sin \frac{1}{2} \alpha\right)
$$

(ii) If $z=\cos \theta+i \sin \theta,-\pi<\theta \leq \pi$, write $1+z^{2}$ in terms
of $\cos \theta$ and $\sin \theta$. Hence deduce that if in an Argand diagram, points $A$ and $B$ represent $z$ and $1+z^{2}$ respectively, then $A, B$ and $O$ are collinear, where $O$ is the origin. State the values of $\theta$ such that $B$ lies on the interval $O A$.
(b) A solid shape has as its base the parabola $y=x^{2}$ in the $X Y$ plane.

Sections taken perpendicular to the axis of the parabola (i.e. perpendicular to the y-axis) are equilateral triangles. Using the method of slicing determine the volume of the solid, if the length of the axis of the parabola is 16 cm .
(c) With $\theta$ increasing, the point $P$ given by $(r \cos \theta, r \sin \theta)$ is moving in a circular motion $x=r \cos \theta$ and $y=r \sin \theta$ prove that the Normal acceleration of $P$ towards $O$ is $r \omega^{2}$ where $\omega$ is the rate of change of $\theta$ with respect to time.
(a) Consider the polynomial $P(x)=x^{4}-4 x^{3}+5 x^{2}-2 x-2$.
(i) Show that the curve $y=P(x)$ has a maximum turning point at $(1,-2)$ and minimum turning points at $x=1 \pm \frac{1}{2} \sqrt{2}$. Hence deduce from a sketch of the curve that the equation $P(x)=0$ has two real roots and two non-real roots.
(ii) Explain why the real roots cannot be rational. What do you know about the nature of the non-real roots?
(iii) Given that $1+i$ is a root of the equation $P(x)=0$, factor $P(x)$ into two quadratic factors with rational coefficients. Hence find the $x$-intercepts of the curve $y=P(x)$ and show them on your graph.
(b) (i) Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.

Hence show $\int_{0}^{\pi} x \cos 2 x d x=0$.
(ii)


The area bounded by the curve $y=\sin ^{2} x$ and the $x$-axis
between $x=0$ and $x=\pi$ is rotated through one revolution about the $y$-axis. By taking the limiting sum of the volumes of cylindrical shells, show that the volume of the solid of revolution is given by $V=2 \pi \int_{0}^{\pi} x \sin ^{2} x d x$. Hence by using your answer in part (i) or otherwise find the volume of this solid.
(a) A particle of mass $M$ is projected vertically upward under gravity with speed $U$ in a medium in which the resistance is $M k$ times the speed, here $k$ is a positive constant. If the particle reaches its greatest height $H$ in time $T$, show that $U=g T+k H$. (You may assume that the net force is given by $-M g-M k v$ with upward direction positive.)
(b) $\quad P(a \cos \theta, b \sin \theta)$ is a point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 . P Q$ is a diameter of the ellipse. The tangent to the ellipse at $P$ meets the vertical through $Q$ at $R$ and the $Y$-axis at $V . O$ is the origin.
(i) Prove that the tangent at $P$ has equation $\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1$.
(ii) Show that the area of $\triangle P Q R=4$ times the area of $\triangle P O V$.
(iii) Show that the area of $\triangle P Q R$ is $\frac{2 a b}{|\tan \theta|}$ square units.
(c) $\quad P\left(t, \frac{1}{t}\right)$ is a variable point on the rectangular hyperbola $x y=1 . M$ is the foot of the perpendicular from the origin to the tangent to the hyperbola at $P$.

(i) Show that the tangent to the hyperbola at $P$ has equation $x+t^{2} y=2 t$.
(ii) Find the equation of $O M$.
(iii) Show that the locus of $M$ as $P$ varies
has equation $x^{2}+y^{2}=2 \sqrt{x y}$.

## End of Paper

## STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, \quad a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, \quad a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin n^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{\mathrm{x}^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
\int \frac{1}{\sqrt{\mathrm{x}^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
\text { NOTE : } \ln x=\log { }_{e} x, \\
& x>0
\end{array}
$$

HSCTial Maths Ext 22008 Solitions Shore School 1
I(a) $I=\int\left(e^{2 x}+2+e^{-2 /}\right) d x$

$$
=\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c
$$

(2) $V(d) I_{n}=\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} \cdot d(x) \quad\left(\frac{1}{2} s x_{n}\right.$

$$
\text { (b) } \operatorname{let} \frac{2 x^{2}-2 x+1}{(x-2)\left(x^{2}+1\right)}=\frac{c}{x-2}+\frac{b x+c}{x^{2}+1}
$$

For $x \dot{Ð} 2, \frac{5}{5}=a \Rightarrow a=1$
Ahos $2 x^{2}-2 x+1=x^{2}+1+(3 x+0)(x-2)$

$$
=(1+b) x^{2}-2 b x+x+1
$$

$$
\therefore b=1 \leadsto c=0 \text {. }
$$

$$
\therefore I=\int\left(\frac{1}{x-2}+\frac{x}{x^{2}+1}\right) d x
$$

$$
=\ln |x-2|+\frac{1}{2} \ln \left|x^{2}+1\right|+c
$$

OR $\ln \left|(x-2) \sqrt{x^{2}+1}\right|+c /(3)$
$\tan x=\frac{2 t}{1-t^{2}}, \sin ^{2} x=\frac{2 t}{\left.1+t^{\prime}\right)^{\prime}} \cos x=\frac{1 t^{2}}{1+t^{2}}$.

$$
\begin{aligned}
& \therefore I=\int_{0}^{1} \frac{1}{2+\frac{2 t}{1+t^{2}}} \cdot \frac{2}{1+t^{2}} d t . \\
& =\int_{0}^{1} \frac{1}{1+t^{2}+t} d t \\
& =\int_{0}^{1} \frac{1}{t^{2}+t+\frac{1}{x}+\frac{3}{x}} d t \\
& =\int_{0}^{1} \frac{1}{\left(t-\frac{1}{1}\right)^{2}+\left(\frac{(\pi}{2}\right)^{2}} d t \cdot \\
& =\left[\frac{2}{\sqrt{3}}\left(x-1\left[\frac{[ }{4}+\frac{1}{2}\right) \cdot \frac{2}{\sqrt{3}}\right]\right]_{0}^{1} \\
& =\frac{2}{\sqrt{3}}\left(\operatorname{Lan}^{-1} \sqrt{3}-\operatorname{cin}^{-1} \sqrt{5}\right) \\
& =\frac{\pi}{3 \sqrt{3}}(5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) Let } t=\tan \frac{x}{2} \\
& \therefore 2 d t=\sec ^{2} \frac{2 x}{2} d x \\
& =\left(1+\infty-\frac{2}{2}\right) d x \\
& \begin{array}{l}
=\left(1+t^{2}\right) d x+t^{2} / 2 t \\
\frac{2}{1+t^{2}} d t \cdot \frac{6 \pi}{1 t^{2}}
\end{array}
\end{aligned}
$$

HSC Tinal Maiks Ext 2 2005 Sollethons.
$2(a)(i) \frac{z_{1}}{z_{2}}=\frac{1+i}{\sqrt{3}-i} \times \sqrt{3}+i$

$$
\begin{aligned}
& =\frac{\sqrt{3}-1+(1+\sqrt{3}) i}{3+1} \\
& =\frac{\sqrt{3}-1}{4}+\frac{1+\sqrt{3}}{4} c(1)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& f z_{1}=\sqrt{2} \cos \frac{\pi}{x} \\
& \frac{1}{2}=2 \operatorname{cis} \frac{-\pi}{6}(2)
\end{aligned}
$$

$$
\text { (ii) } \frac{z_{1}}{z_{2}}=\frac{\sqrt{2} c_{0} \frac{\pi}{4}}{2 \cos \frac{-\pi}{6}}
$$

$$
=\frac{1}{\sqrt{2}} \text { in } \frac{5 \pi}{12}
$$

Eynats real porto in (i) \& (iii)

$$
\begin{aligned}
& \therefore \frac{1}{\sqrt{2}} \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{4} \\
& \therefore \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& \\
& =\frac{1}{4}(\sqrt{6}-\sqrt{2})(1)
\end{aligned}
$$

$$
\begin{aligned}
i v)_{z_{1}\left(z_{2}\right)^{n}} & =\sqrt{2} i \frac{\pi}{1} \cdot 2^{n} \cdot a \frac{-n \pi}{6} \\
& =\sqrt{2} \cdot 2^{n} \cos \left(\frac{\pi}{4}-\frac{4 m}{6}\right)
\end{aligned}
$$

For $z_{2} z_{2}$ to be real ang in $17 x$, 7 integer
But $\frac{\pi}{4}-\frac{A \pi}{6}=\frac{3-2 n}{12} \pi$
$\therefore 3-2 n$ hos to be muthpte of 12 .
Bet $2 n$ í atworpowen-i-3-2n
ot arago oded
$\therefore$ it un naver be - mitiole op $2(2)$
(1) $(i) \overrightarrow{O A}$ is $2 i(p+i q)=-2 q+2 p i(1)$
(ii) $\overrightarrow{O B} ;-2 \xi+2 p i+p+i q=(p-2 \eta)+(2 p+q) i$ (i)

OR $\quad \overrightarrow{B C}=-\overrightarrow{O A}$

$$
\begin{aligned}
& =-\overrightarrow{O A} \\
& =2 \underline{q-2 p^{i}}
\end{aligned}
$$

(i) $\overrightarrow{A c} \div(p+i q)-(2 q+2 p i)=p+2 q+i(2-2 p)(1)$
(b) (i) Assuaning $\mathrm{fot} \mid=10 \mathrm{Cl}$
$\overrightarrow{\operatorname{Len}}$ (i) $\overrightarrow{O A}=-\varepsilon+i \beta$
(ii) $\overrightarrow{\theta E}=(p-q)+i(p+q)$
(iii) $\overrightarrow{B_{C}}=q-i p$
(iv) $\overrightarrow{A C}=(p)+i(\varepsilon-\beta)$
$\left(3 \frac{1}{2} / 4\right)$

HSCTrial Maths Ext 22008 -oluleoms

(ii)

(ii)

b)
(ii)

$$
\therefore \alpha^{2}+\beta^{2}+\gamma^{2}=-\frac{b}{a}
$$

$$
\begin{equation*}
=13^{a}(1) \tag{1}
\end{equation*}
$$



$$
\text { ii) Area }=2 \int_{-4}^{0} x^{2} \sqrt{4+x} d x
$$

$$
\begin{aligned}
: \text { Ara } & =2 \int_{0}^{4}(\pi-4)^{2} \sqrt{u} d u \\
& =2 \int_{0}^{4} \sqrt{u}\left(u^{2}-8 u+16\right) d u \\
& =2 \int_{0}^{4} u^{3 / 2}-8 u^{3 / 2}+16 u^{1 / 2} d u \\
& =2\left[\frac{2}{1} u^{1 / 2}-8 \cdot \frac{2}{5} u^{5 / 4}+16 \cdot \frac{2}{3} u^{3 / 2} /\right]_{0}^{4} \\
& =\frac{4096}{105} u^{2}(3) \text { or } 39 \frac{1}{105}
\end{aligned}
$$

$$
\left(\begin{array}{rl}
\text { (iii) Now s } & \alpha^{3}-3 \alpha^{2}-2 \alpha+4=0 \\
\beta^{3}-3 \beta^{2}-2 \beta+4=0 \\
& \gamma^{3}-3 \gamma^{2}-2 \gamma+4=0 \\
\therefore \alpha^{3}+\beta^{3}+\gamma^{3} & =3\left(\alpha^{2}+\beta^{2}+\sigma^{2}\right)+2(\alpha+\beta+\gamma)-12 \\
& =3(13)+2(3)-12 \\
& =33(2)
\end{array}\right.
$$

$$
\begin{aligned}
& (c)^{(i)} \text { Let } y=x^{2} \therefore x=\sqrt{y} \\
& \therefore(\sqrt{y})^{3}-3(\sqrt{y})^{2}-2 \sqrt{y}+4=0 \\
& \therefore y-3 y-2 \sqrt{y}+x=0 \\
& \therefore(y-2) \sqrt{y}=3 y-4 \\
& \therefore(x-2)^{2} \cdot y=(3 y-4)^{2} \\
& \therefore y^{3}-4 y^{2}-5 y^{2}+4 y+24 y-16=0 \\
& \therefore y^{3}-13 y^{2}+28 y-16=0
\end{aligned}
$$

$$
\text { Let } u=4+x \therefore x=4-4 x+10
$$

Let $u=4+x \therefore x=u-4$

$$
\operatorname{cet}_{x}=d x+x+x+x^{2}=a^{2}-8 n+16
$$

HSC Thial Mathe Ext 2 2008 Solithons:

(b) (i) Let $z=\operatorname{rai} \theta, z^{5}=1$ But $z^{5}=r^{5} a_{i s} 50$ by de/Rowres 分.

$$
\therefore r=1 * \cos 5 \theta=\sin , \cos 2 \pi, \ldots
$$

$$
\therefore 5 \theta=0,2 \pi, \ldots
$$

$$
\therefore \theta=0, \frac{2 \pi}{3}, \frac{4 \pi}{5}
$$

$$
\therefore z=1, \cos \frac{3 \pi}{5}, \sin \frac{\pi \pi}{5}, \cdots \frac{6 \pi}{5}, \sin \frac{8 \pi}{5}(3)
$$

(ii)

Let $\alpha=\cos \frac{2 \pi}{3} \&$ consines

$$
\begin{aligned}
& (2-\alpha)(2-\bar{\alpha})^{3}=2^{2}-2 R_{e}(x)=+\alpha \bar{\alpha} \\
& \text { Whew }|\alpha|=1 \quad \therefore \alpha \bar{\alpha}=1
\end{aligned}
$$

$$
\therefore\left(2-i \sin ^{2 \pi}\right)\left(z-i\left(\frac{-2 \pi}{5}\right)=z^{2}-2 \cos \frac{2 \pi}{5} 2+1\right.
$$

$$
2\left(2-c^{\prime} \frac{+\pi}{5}\right)\left(2-\alpha^{\prime} \frac{-k}{5}\right)=2^{2}-2 \cos \frac{4 \pi}{5} 2+1
$$

$$
\therefore 2^{5}-1=(2-1)\left(2^{2}-2 \cos ^{2 \pi} 2+1\right)\left(2^{2}-20-\frac{4 \pi}{5}+1\right)
$$

(iii)
ii) Using sum 8 影 $b=-\frac{1}{a}$

$$
\therefore c i s \frac{2 \pi}{5}+\cos ^{-\frac{k}{5}} 5+-\frac{-4 \pi}{5}+\infty-\frac{2 \pi}{5}=-1
$$

Eapatical parto:
$\cos \frac{4 \pi}{5}+\cos \frac{4 \pi}{5}+\cos \frac{-6 \pi}{5}+\cos \frac{-2 \pi}{5}=V$
But $\cos \theta=\cos (-\theta)$

$$
\begin{aligned}
& \therefore \quad 2 \cos \frac{2 \pi}{5}+2 \cos \frac{8 \pi}{5}=-1 \\
& \therefore \cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}(2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \left.2^{2}-1\right)\left(2^{4}+2^{3}+2^{2}+2+1\right)=0 \\
& \therefore 2=18 R z=\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}, c_{5} \frac{-k \pi}{5} \cos \frac{-2 \pi}{5}
\end{aligned}
$$

$$
\begin{aligned}
& z^{5}-1=(2-1)\left(z-\cos ^{2} \frac{2 \pi}{3}\right) \ldots \\
& N_{\text {ow }}=-\operatorname{cin} \frac{8 \pi}{5}=\left(2-\infty\left(-\frac{2 \pi}{3}\right)\right) \\
& =\left(2-\sin \frac{\pi}{5}\right)
\end{aligned}
$$

(c) RTP $\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y} \geqslant 0$

Now $\frac{1}{x}+\frac{1}{y}-\frac{4}{x y}=\frac{x+y}{x y}-\frac{4}{x+y}$

$$
\begin{aligned}
& =\frac{x^{2}+2 x+y^{2}-4 x y}{x y(x+y)} \\
& =\frac{x^{2}-2 x y+y^{2}}{x y(x+y)} \\
& =\frac{(x-y)^{2}}{x y(x y)}
\end{aligned}
$$

Now $x, y>0 \therefore x_{y}>0, x+y>0 \&(x-y)^{2}>0$

$$
\begin{aligned}
& \therefore \quad \frac{1}{x}+\frac{1}{3}-\frac{4}{x+y}>0 \\
& \quad \therefore \frac{1}{x}+\frac{1}{y} \geqslant \frac{4}{x+y}
\end{aligned}
$$

Alternative proof:
Crasiter $(a-6)^{2}>0$

$$
\begin{aligned}
& \therefore a^{2}+b^{2} \geqslant 2 a b \\
& \therefore \quad b+V \geqslant 2 \text { Ware } u=c^{2} \\
& \therefore \frac{1}{x}+\frac{1}{y} \geqslant \frac{2}{\sqrt{x y}} \\
& \text { Rut } x+y \geqslant 2 \sqrt{x y} \\
& \therefore \quad \frac{1}{x+y} \leqslant \frac{1}{2 \sqrt{x y}} \\
& \therefore \frac{2}{x+y} \leqslant \frac{1}{\sqrt{x y}}
\end{aligned}
$$

$\operatorname{From}(A) \frac{1}{x}+\frac{1}{y} \geqslant 2 x \frac{2}{x+y}$

$$
\therefore \quad x^{\prime}+\frac{1}{3} \geqslant \frac{4}{x+y}
$$



HSC TMail Maths Ext 2
2008 Solutions:
5. (a)
(i)


Horizantalls:

$$
\begin{aligned}
& F=T=60^{\circ}-\operatorname{Vas} 30^{\circ} \\
& \therefore \frac{m v^{2}}{r}=\frac{1}{2} T-\frac{\sqrt{3}}{2} N(3
\end{aligned}
$$

But $u=1$ as $r=\frac{1}{2}$

$$
\begin{aligned}
& \therefore 6=\frac{1}{2} T-\frac{\sqrt{3}}{2} N \\
& \therefore 12=T-\sqrt{3} N(1)
\end{aligned}
$$

Verteilly:

$$
\begin{aligned}
& F=T \omega 30^{\circ}+N_{\cos } 60^{\circ}-m g \\
& \therefore O=\frac{\sqrt{3}}{2} T+\frac{1}{2} N-3 \times 10 \\
& \therefore \sqrt{3} T+N=60 \\
& \therefore \quad 3 T+\sqrt{3} N=60 \sqrt{3} 2
\end{aligned}
$$

$$
\operatorname{AdCjO}(2)
$$

$$
4 T=12+60 \sqrt{3}
$$

$$
\therefore T=3+15 \sqrt{3} \doteqdot 28.98
$$

Suls back into 0 :

$$
\begin{aligned}
& 12=3+15 \sqrt{3}-\sqrt{3} N \\
& \therefore N=\frac{15 \sqrt{3}-9}{\sqrt{3}} \\
& \therefore N=15-3 \sqrt{3}
\end{aligned}
$$

(ii) Let $N=0$ oro cpiticilvalue
$\sin b o n t \cdot(3) \therefore \frac{3 v^{2}}{1 / 2}=\frac{1}{2} T$

$$
\therefore T=12 v^{2}
$$

Subto itt (2) $\therefore T=20 \sqrt{3}$

$$
\begin{aligned}
& \therefore 20 \sqrt{3}=12 v^{2} \\
& \therefore v^{2}=\frac{5 \sqrt{3}}{3} \\
& \therefore v=\sqrt{\frac{5 \sqrt{3}}{3}} \otimes\left(\frac{25}{3}\right)^{1 / 4}(4)(1.699
\end{aligned}
$$


posictive
pinc domumorb.

$$
F=m g-k x
$$

$$
\therefore m v \cdot \frac{d v}{d k}=m g-k x
$$

Now $n=1$

$$
\begin{align*}
& \therefore v \frac{d v}{d x}=g-k x \\
& \therefore \int_{0} v d r=\int \\
& 0 \\
&(g-k x) d x \\
& \therefore {\left[\frac{v^{2}}{2}\right]_{0}^{v}=\left[g r-\frac{1}{2} t x^{-}\right]_{0}^{x} } \\
& \therefore \frac{v^{2}}{2}=g x-\frac{1}{2} k x^{2} \\
& \therefore v^{2}=x(2 g-k x)  \tag{2}\\
& \therefore v=x=0 \\
& x=\frac{2 g}{k} \quad \text { (2) }
\end{align*}
$$

(ii) from (i) $v^{2}=x(2 g-k x)$

$$
\therefore \frac{d x}{d t}=\sqrt{2 g z-k x^{2}}, v>0
$$

$\therefore \int d t=\int \frac{1}{\sqrt{2 y^{-k x^{2}}}} d x$.
$\therefore \int_{0}^{\pi} \sqrt{k} d t=\int \frac{1}{\sqrt{-\left(x^{2}-\frac{23}{k} x+\frac{5^{2}}{k^{2}}-\frac{e^{4}}{k^{4}}\right)}}$

$$
=\int_{0}^{x} \frac{d x}{\left(\frac{a}{\left(\frac{a}{k}\right)^{2}-\left(x-\frac{a}{k}\right)^{2}}\right.} .
$$

$$
\therefore[\sqrt{k} t]_{0}^{r}=\left[\sin ^{-1}\left(\frac{\left(x-\frac{s}{k}\right)}{\frac{s}{k}}\right)\right]_{0}^{x} .
$$

$$
\begin{aligned}
& \therefore \sqrt{k} T=\sin ^{-1}\left(\frac{k}{5}\left(x-\frac{8}{k}\right)\right)-\sin ^{-1}(-1) \\
& \therefore \sqrt{k} T=\sin ^{-1}\left(\frac{k}{5}\left(x-\frac{g}{2}\right)\right)+\frac{\pi}{2} .
\end{aligned}
$$

$$
\therefore \sin \left(\sqrt{k} T-\frac{\pi}{2}\right)=\frac{k}{5}\left(x-\frac{5}{2}\right)
$$

$$
\begin{align*}
x & =\frac{3}{k}+\frac{g}{k} \sin \left(\sqrt{k} \gamma-\frac{\pi}{2}\right) \\
& =\frac{9}{k}\left(\sin \left(\frac{2 \pi}{k}+\pi\right)+1\right) ; \tag{5}
\end{align*}
$$

HSC Trial Maths Ext 2
2008 Solutions:
$6(a)^{(i)}$

$$
\begin{aligned}
6 H S & =(1+\cos \alpha)+i \operatorname{si\alpha } \alpha \\
& =2 \cos ^{2} \frac{\alpha}{2}+i 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \\
& =2 \cos \frac{\alpha}{2}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right) \\
& =R H+
\end{aligned}
$$

(ii)

$$
\begin{aligned}
1+z^{2} & =1+\cos 2 \theta \\
& =1+\cos 2 \theta+i=2 \theta \\
& =2 \cos \theta(\cos \theta+i \sin \theta) \operatorname{dran}(i)(1)
\end{aligned}
$$

$$
\therefore 1+z^{2}=\overline{2 \cos \theta \cdot z}
$$

$\therefore O, A, B$ lie on the some strait hie with $2000 \theta$ as the scaler quantity
For B tole on OA, $O<2 \cos \theta<1$

$$
\therefore \quad 0<\cos \theta<\frac{1}{2}
$$

$$
\therefore \frac{\pi}{3}<\theta<\frac{\pi}{2}<-\frac{\pi}{2}<\theta<-\frac{\pi}{3} \text { ( }
$$

(b)


$$
\begin{aligned}
\Delta V & =\left(\frac{1}{2}(2 x)(2 x) \Delta \dot{x}\right) \Delta y \\
& =\sqrt{3} x^{2} \Delta y \\
\therefore V & =\lim _{\Delta y \rightarrow 0} \sqrt{3} x^{2} \Delta y \\
& =\int_{0}^{16} \sqrt{3} x^{2} d y \\
& =\int_{0}^{16} \sqrt{3} y d \\
& =\left[\frac{3 y}{2}\right]_{0}^{16} \\
& =128 \sqrt{3} x^{3}(5)
\end{aligned}
$$

$$
\begin{array}{rl}
\text { (c) } x & x=r \cos \theta \\
\therefore i & =\frac{d}{d \theta} \cdot \cos \theta \cdot \frac{d \theta}{d t} \\
& =-r \sin \theta \cdot \omega \\
\therefore \ddot{x} & =\omega \cdot\left(\frac{\alpha}{d g}-r \sin \theta \cdot \frac{d \alpha}{d t}\right)+r \sin \theta \cdot \dot{\omega} \\
& =\omega \cdot-r \cos \theta \cdot \omega-r \sin \theta \dot{\omega} \\
& =-r\left(\cos \theta \cdot \omega^{2} r \sin \cdot \dot{\omega}\right)
\end{array}
$$

Also $y=r \sin \theta$

$$
\begin{aligned}
& \therefore \frac{d y}{d t}=\frac{d}{d \theta} r=\theta \cdot \frac{d \theta}{d t} \\
& \therefore \dot{y}=r \cos \theta \cdot \omega
\end{aligned}
$$

$$
\therefore \ddot{y}=\omega\left(\frac{\alpha}{1 \theta} r \cos \theta \cdot \frac{d \theta}{d t}\right)+r \cos \theta \cdot \dot{i}
$$

$$
=-r \sin \theta \cdot \omega^{2}+r \cos \theta \dot{\omega}
$$



$$
\begin{aligned}
& N=-\ddot{x} \cos \theta-\ddot{y} \sin \theta \\
&=r\left(\cos ^{2} \theta \omega^{2}+\sin \theta \dot{\omega}+\sin ^{2} \theta \omega^{2}\right. \\
&-r \cos \theta \cdot \dot{\omega}) \\
&=r \omega^{2}\left(s^{2} \theta+\cos ^{2} \theta\right) \\
&=r \omega^{2} a s^{2} \theta+\cos ^{2} \theta \equiv 1 .
\end{aligned}
$$

HSC TinalMaths Ext 2


$$
7(a)(f) P^{\prime}(x)=4 x^{3}-12 x^{2}+10 x-2
$$

$$
N_{\infty} x-154 x^{2}-12 x^{2}+\cos x-2
$$

$$
\frac{4 x^{3}-4 x^{2}}{-2 x^{2}}+10 x
$$

$$
\frac{-2 x}{2 x-2}+2
$$

Let $4 x^{2}-8 x+2=0$

$$
\begin{aligned}
& \therefore 2 x^{2}-42+1=0 \\
& \therefore x=\frac{4 \pm \sqrt{16}-8}{4} \\
& =\frac{2 \pm \sqrt{2}}{2} \\
& =1 \pm \frac{1}{2}
\end{aligned}
$$

Now $P^{\prime \prime}(1)=-2<0 \quad \therefore x=1$ mutip.
\& $p^{\prime \prime}(1+15)=4>0 \therefore$ and $x \cdot p$.


from the shotek $\alpha$, sshown are 2 rea volues.
Ho only 2, 2 mot be umeal.
$a$ P( $x$ : of degrace $4 P(3)$
 of $x^{4}$ is 14 constatt tion is -2
$\therefore$ produnt of rationd rorts ic -2
$\therefore$ test $x=0,1,-1,2,-2$ intif $x$
$P(0)=-2, P(1)=10, P(1)=-2, P(3)=2,(2)=70$
$\therefore$ nome are zero
$\therefore$ now mithand norto (1)
(ii) $(\operatorname{Cos} t)$.

Complex to we cojugntas 1 eanl othan as all the couft are ran
(titio) Root are $10 i, 1-i, \alpha, \beta$

Soluy $x^{2}-2 x-1=0$

$$
\therefore x=\frac{2+\sqrt{a-4}}{2}
$$

$$
=1 \pm \sqrt{2}
$$




$$
=F(t)-F(\theta)
$$

Let $a=\pi, f(x)=x=0-2 x, f(\pi-x)=(\pi-x)<x(n, y)$ $\int_{0}^{2}\left(\int_{0}^{\pi} x \cos 2 x d x=\int_{0}^{\pi}(\pi-x)-2(\pi-x) d x\right.$

$$
\begin{aligned}
& =\int_{\pi}^{\pi} \cos (2 \pi-2 x) d x-\int_{0}^{\pi} x \cos (x-2 x) \\
& =\int_{0}^{\pi} \pi \cos 2 x d x-\int_{0}^{\pi} x \cos 2 x d x \\
\therefore 2 \cdot \int_{0}^{\pi} x \cos 2 x d x & =\pi \int_{0}^{\pi} \cos 2 x d x \\
& =\pi\left[\frac{\sin 2 x}{2}\right]_{0}^{\pi} \\
& =0 \\
\therefore \int_{0}^{\pi} x \cos 2 x d x & =0(2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { RHS }=[F(a-x)]^{a}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nou }(x-d+i)(x-(1-i)=(x-1)-i)(x-1)+i) \\
& =\left(x-s^{2}-i^{2}\right. \\
& \text { 2-0 } x^{2-1} 2 x+1+1 \\
& =x^{2}-2 x+3-2 \\
& 54^{2}-2-2 x-2 \\
& \begin{aligned}
x^{2}-2 x+2 \\
\begin{array}{l}
x^{7}-4 x^{3}+5^{2} \\
44-2 x^{3}+2 x^{2}
\end{array} \\
\end{aligned} \\
& \frac{0 x-2 x^{3}+2 x^{2}}{-2 x^{3}+3 x^{2}}-2 x \\
& \frac{-2 \mu^{3}+-4 x^{2}-4 x}{-x^{2}-2 x-2} \\
& \begin{array}{l}
-x^{2}-2 x-2 \\
-x^{2}+4 x-3
\end{array}
\end{aligned}
$$

HSC Trial Matks Ext 2

$$
\begin{aligned}
& F=-M_{g}-M_{2} \\
& \therefore M \cdot \frac{v d v}{d x}=-M_{s}-M k v \\
& \therefore \int_{g}^{0} \frac{v d v}{0+k v}=\int_{0}^{4}-d x \\
& \therefore \int \frac{g+k-g}{g+4 v} d v=\int_{0}^{4}-k d x \\
& \therefore \int\left(\left(1-\frac{g}{k} \frac{k}{s+k \sigma}\right) k_{0}=[-k x]_{0}^{H}\right. \\
& \therefore\left[v-\frac{g}{k} u b+\langle 0)\right]_{n}^{0}=-k H \\
& \therefore-\frac{5}{k} \ln g-u+\frac{g}{k}\langle(p u(u)=-k H 1(1)
\end{aligned}
$$

Hho M. $\frac{d r}{d t}=-M-M A L$

$$
\begin{aligned}
& \therefore \int_{u}^{0} \frac{k^{2}}{5+k v}=\int_{0}^{T} d t \\
& \therefore[\ln (5+k v)]_{u}^{0}=(-k t]_{0}^{T} \\
& \therefore-4 \mid 5+k u)+L_{S}=-k T \\
& \therefore \sin t+k u)=k T+\operatorname{lng}(2)
\end{aligned}
$$

Subointo (1)

$$
\begin{aligned}
& \therefore-k g-u+\frac{s}{k}(k T+4 / 5)=-k H \\
& -(4) \quad(4)
\end{aligned}
$$


(i) $x=\alpha \cos \theta, y=6 \Delta \theta$
$\therefore \frac{d x}{d \theta}=-a \sin \theta, \frac{g}{d \theta}=b \cos \theta$

$$
\therefore \frac{d y}{d x}=-\frac{b \cos \theta}{a \sin \theta}
$$

$\therefore \operatorname{trg}+\frac{y-b \sin \theta}{x-a \cos \theta}=\frac{-b \cos \theta}{a \cos }$
$\therefore \operatorname{tay} \sin ^{\prime} \theta-a b x^{2} \theta=-b x \cos \theta+a b \cos ^{2} \theta$
$\therefore \quad b x \cos \theta+\operatorname{ag} z=a b\left(s^{\prime 2} \theta+c^{2} \theta\right)$
$\therefore \quad \frac{x \cos \theta}{0}+y \leq i \theta=1 /(2)$

2008 Solutin:
(b) (ii) aren $\triangle P Q R=\frac{1}{2} . P Q . P R$. $\sin \angle Q P R$
\& area $\triangle$ POV $=\frac{1}{2}$. PO.PV $\therefore$ COPV

$$
\therefore R T P \text { PO.PR }=4 P O P V
$$

Now $P Q=2 . P_{0}($ danate $=$ trie $n d)$
\& $P R=2 \mathrm{PV}$ cmats of iterect m panablh
$\therefore P O, P R=4 B O \cdot P V C l$

$\therefore y=\frac{6}{s i} 0 \quad \therefore V\left(0, \frac{6}{=0}\right)$

$$
\begin{aligned}
\therefore \text { area } \triangle \text { POV } & =\left|\frac{1}{2} \times \frac{6}{2 i n} \times \operatorname{acos} 0\right| \operatorname{us}^{x=\frac{1}{2}} \frac{1}{2} h \\
& =\frac{a b}{2(\tan \theta \mid}
\end{aligned}
$$

$$
\therefore \operatorname{arca} \gamma^{\circ} \triangle P Q R=\frac{2 a d}{1+-a y}
$$

$$
\text { (c) }(1) x=+-l_{y}=t^{-1}
$$

(ii) -bore.

$$
\therefore \frac{d y}{d t}=1 \& \frac{d}{d t}=\frac{-1}{t^{2}}
$$

$$
\therefore \frac{d_{t}}{d t}=-\frac{1}{t^{2}}
$$

$$
\therefore x \tan t \frac{y-\frac{1}{t}}{x-t}=-\frac{1}{t^{2}}
$$

$$
\therefore t^{2} y-t=-x+t
$$

$$
\therefore x+t^{2} y=2 t \text { (2) }
$$

$$
\begin{aligned}
& \text { (ii) grad of tyot }=\frac{1}{t^{2}} \\
& \therefore \text { gand of or }=t^{2} \\
& \text { egn } \frac{y-0}{x-0}=t^{2} \\
& \therefore y=t^{2} x
\end{aligned}
$$

(iii) to LieM: Solve $y=x t^{2}$ $y=\frac{-1}{t^{2}}+\frac{z^{2}}{t}$

$$
\begin{aligned}
& \therefore x t^{2}=-\frac{1}{t^{2}} x+\frac{2}{t} \\
& \therefore x t^{4}=-x+2 t \\
& \therefore x=\frac{2 t}{t^{4}+1}
\end{aligned}
$$

Suls $\operatorname{sad}, y=\frac{2 t}{t^{4}+2} x t^{2}$

$$
\therefore M\left(\frac{2 t}{t^{4}+1}, \frac{2 t^{3}}{t^{4}+1}\right)
$$

RTS $x^{2}+y^{2}=2 \sqrt{x_{y}}$
Sulbo $\angle H S=x^{2}+y^{2}$ $-4 t^{2}-4 t^{6}=4 t^{2}(3)$

