

Set:

Year 12 Mathematics - Extension 2 Trial Examination 2009

General Instructions

- * Reading time 5 minutes
- * Working time 3 hours
- * Write using black or blue pen
- * Board-approved calculators may be used
- * All necessary working should be shown in every question
- * A table of standard integrals is attached on the final page

Note: Any time you have remaining should be spent revising your answers.

Total marks - 120

- * Attempt Questions 1 8
- * All questions are of equal value
- * Start each question in a new writing booklet
- * Write your examination number on the front cover of each booklet to be handed in
- * If you do not attempt a question, submit a blank booklet with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

Total marks - 120

Attempt Questions 1 - 8

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet

Marks

- (a) Find the indefinite integrals:
 - (i) $\int \sec^4 x \ dx$

2

(ii) $\int \sqrt{1-x^2} \ dx$

4

- (b) Consider the definite integral $I_n = \int_0^2 \frac{x^n}{x^3 + 1} dx$.
 - (i) Show that $I_2 = \frac{2}{3} \log_e 3$.

2

(ii) Using your knowledge of factorisation and <u>without</u> evaluating more than one integral, show that

$$I_2 - I_1 + I_0 = \log_e 3$$

2

(iii) Using a similar approach to that used in (ii), show that

$$I_1 + I_0 = \frac{\pi}{\sqrt{3}} \,.$$

3

(iv) Using the above results or otherwise find the exact value of I_0 .

(a) Make neat sketches of the following, showing all intercepts and asymptotes. There is no need to use calculus.

(i)
$$y = x^2(x-2)(x-3)$$

(ii)
$$y = \frac{1}{x^2(x-2)(x-3)}$$

(iii)
$$y = \frac{x^2}{(x-2)(x-3)}$$

(iv)
$$y = x\sqrt{(x-2)(x-3)}$$

(v)
$$y = x^2 |x-2|(x-3)$$

2

- (b) Consider the equation $e^{2x} = k\sqrt{x}$.
 - (i) Explain why this equation has no solutions when $k \le 0$.

1

(ii) Find the value of k for which the equation has exactly one real solution.

Question 3 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Given z = 1 - 2i is a complex root of the quadratic equation $z^2 + (1+i)z + k = 0$, find the other root and the value of k.

3

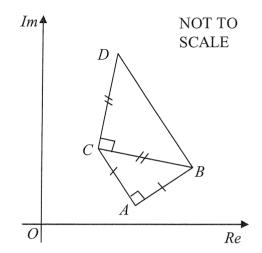
(b) Find all complex numbers z = a + bi, where a and b are real such that $|z|^2 - iz = 16 - 2i$.

3

- (c) Consider all complex numbers z such that $\arg\left(\frac{z-1}{z-i}\right) = \frac{\pi}{4}$
 - (i) Make a neat sketch of the locus of z showing important features.

2

(ii) Determine the exact maximum value of |z|.


1

(iii) Determine (in radians correct to 3 significant figures) the maximum value of arg(z+1).

3

Question 3 continues on page 5

(d)

In the diagram, the points A, B, C and D represent the complex numbers z_1 , z_2 , z_3 and z_4 respectively. Both $\triangle ABC$ and $\triangle BCD$ are right angled isosceles triangles as shown.

(i) Show that the complex number z_3 can be written as

$$z_3 = (1-i)z_1 + iz_2$$
.

1

(ii) Hence express the complex number z_4 in terms of z_1 and z_2 , giving your answer in simplest form.

2

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet

Marks

2

- (a) Use Mathematical Induction to prove De Moivre's Theorem, ie $\left(\cos\theta + i\sin\theta\right)^n = \cos n\theta + i\sin n\theta \quad \text{for all positive integers } n.$
- (b) The equation $x^3 + 3px 1 = 0$, where p is real, has roots α , β and γ .
 - (i) Show that the monic cubic equation, with coefficients in terms of p, whose roots are α^2 , β^2 and γ^2 is $y^3 + 6py^2 + 9p^2y 1 = 0.$
 - (ii) Hence or otherwise obtain the monic cubic equation, with coefficients in terms of p, whose roots are $\frac{\beta \gamma}{\alpha}$, $\frac{\gamma \alpha}{\beta}$ and $\frac{\alpha \beta}{\gamma}$.
- (c) NOT TO SCALE D A E C

The figure shows a cyclic quadrilateral ABCD with diagonals AC and BD.

E is a point on AC such that $\angle ABE = \angle DBC$.

Make a neat copy of the diagram in your answer booklet.

(i) Prove that $\triangle ABE \parallel \triangle DBC$.

2

(ii) Prove that $\triangle ABD \parallel \triangle EBC$.

2

(iii) Hence prove Ptolemy's Theorem, which is:

$$AB.DC + AD.BC = AC.BD$$

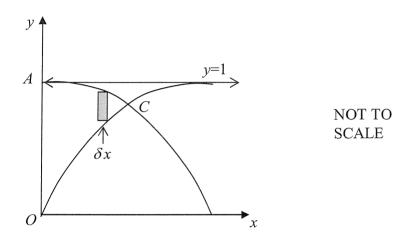
- (a) Determine the eccentricity of the ellipse with equation $\frac{x^2}{16} + \frac{y^2}{25} = 1$ and then make a neat sketch of the curve, clearly showing the coordinates of the foci and the equations of the directrices.
- 4

- (b) A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$. The line through P perpendicular to the x-axis meets an asymptote at Q and the normal at P meets the x-axis at N.
 - (i) Make a neat sketch illustrating the information above.
 - (ii) Show that the equation of the normal at *P* is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2.$
 - (iii) Show that QN is perpendicular to the asymptote. 2
- (c) $P\left(p,\frac{1}{p}\right)$ and $Q\left(q,\frac{1}{q}\right)$ are two variable points on the rectangular hyperbola xy=1 such that the chord PQ passes through the point $A\left(0,2\right)$. M is the midpoint of PQ.
 - (i) Show that PQ has equation x + pqy (p+q) = 0 and hence deduce that p+q=2pq.
 - (ii) You may assume that the tangent to xy = 1 at the point (1,1) passes through A. Determine the locus of M, being sure to state any restrictions on the domain.

(a) The base of a solid is the region enclosed by the circle $x^2 + y^2 = 4$. Any cross sections of the solid formed by a plane perpendicular to the *x*-axis are equilateral triangles. Find the exact volume of the solid.

4

(b) (i) Make a neat sketch of the region enclosed between the curve $y = (x-3)^2$ and the line 3x + y - 9 = 0. Be sure to mark in the points of intersection.


2

(ii) The shaded region in (i) is rotated about the line x = 3. Use the method of cylindrical shells to find the exact volume of the solid generated.

3

Question 6 continues on page 9

(c) The diagram below shows part of the graphs of $y = \cos x$ and $y = \sin x$. The graph of $y = \cos x$ meets the y-axis at A, and C is the first point of intersection of the two graphs to the right of the y-axis. The region OAC is to be rotated about the line y = 1.

- (i) Write down the coordinates of the point C.
- 1
- (ii) The shaded strip of width δx shown in the diagram is rotated about the line y=1. Show that the volume δV of the resulting slice is given by

$$\delta V = \pi (2\cos x - 2\sin x - \cos 2x) \delta x.$$

(iii) Hence find the exact volume of the solid formed when the region OAC is rotated about the line y = 1.

End of Question 6

- (a) (i) Prove that $\tan^{-1}(n+1) \tan^{-1}(n) = \cot^{-1}(1+n+n^2)$
 - (ii) Hence find the sum of the finite series

$$\cot^{-1}(3) + \cot^{-1}(7) + \cot^{-1}(13) + \dots + \cot^{-1}(1+n+n^2)$$

Give your answer in simplest form.

2

(b) You are given that for the complex number $z = \cos \theta + i \sin \theta$ and for positive integers n, the following results are true:

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 and $z^n - \frac{1}{z^n} = 2i\sin n\theta$

(i) Expand
$$\left(z + \frac{1}{z}\right)^4 + \left(z - \frac{1}{z}\right)^4$$
 and hence show that $4\cos^4\theta + 4\sin^4\theta = \cos 4\theta + 3$

3

2

(ii) By letting $x = \cos \theta$, show that the equation $8x^4 + 8(1 - x^2)^2 = 7 \text{ has roots } x = \pm \cos \frac{\pi}{12}, \pm \cos \frac{5\pi}{12}.$

(iii) Deduce that
$$\cos \frac{\pi}{12} \cos \frac{5\pi}{12} = \frac{1}{4}$$
 and $\cos \frac{\pi}{12} + \cos \frac{5\pi}{12} = \sqrt{\frac{3}{2}}$.

(iv) Hence or otherwise express $\cos \frac{\pi}{12}$ in surd form.

(a) Six letters are chosen from the word AUSTRALIA. These six letters are then placed alongside one another to form a six letter arrangement. Find the number of distinct six letter arrangements which are possible, considering all choices.

4

(b) It is given that for three positive real numbers a, b and c,

$$\frac{a+b+c}{3} \ge \sqrt[3]{abc}$$

If we also know that a+b+c=1, prove that

(i)
$$\frac{1}{abc} \ge 27$$

(ii)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$$

(iii)
$$(1-a)(1-b)(1-c) \ge 8abc$$
 2

(c) Let
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \ dx$$
.

(i) Show that
$$I_n = \left(\frac{n-1}{n}\right)I_{n-2}$$
 for $n \ge 2$.

(ii) Hence show that
$$\int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{\pi (2n)!}{2^{2n+1} (n!)^{2}}$$
 3

END OF EXAM

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0 \quad \text{if} \quad n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

$$= \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x, x > 0$

Qaxi) I = sectndn = (sec2n(i+th2n)dn = tax + 3 ta3 x + c

(1) I = [Ji-n' dn Let n=sind dn=6019 da = / 1-526 619 do = 1 cos 28 do = 2 S(1+Cos29) do

= 20 + 4 sin 20 + C = 250 n + 22 Jin2 + C

(b) $I_n = \int_0^2 \frac{n^n}{x^3 + 1} dn$ (i) $I_2 = \int_0^2 \frac{n^2}{n^3 + 1} dn$

= (\frac{1}{3} loge (n3+1)] = 1 (hoge 9 - hoge 1)

= $\frac{2}{3}$ lage 3

(i) $I_2 - I_1 + \overline{I}_0 = \int_{-\infty}^{\infty} \frac{n^2 - n + 1}{n^3 + 1} dn$

= f x+1 dn = [loge(n+1)]2

= lige 3

(111) I,+I. = 1 2+1 dn $= \int_0^2 \frac{1}{n^2 n + 1} dn$ $= \int_{0}^{2} \frac{1}{\frac{2}{3} + (n - \frac{1}{2})^{2}} dn \quad (V) \quad y$

= 3 [th-1(2n-1)] ==== (th: 13 - th: (5))

= 元(3+元)

(iv) $T_0 = \frac{1}{2} \left[I_1 + I_0 + \overline{I}_2 - \overline{I}_1 + \overline{I}_0 - \widehat{I}_2 \right]$ = # + thoge 3 2

(2)(a) y=n2 (n-2)(n-3)

y= n2(n-2)(n-3)

n) y

 $y = \frac{n^2}{(n-2)(n-3)}$

2 (iv) y= n J(n-2)(n-3)

y=n2 (n-2) (n-3)

(6) e2x = 65n

= \frac{1}{\sqrt{3}} + loge 3 - \frac{2}{3}loge 3 \((1) \) e 2n > 0 for all n , In > 0 so if kso, en + ksn.

For one real solhin y=e ad y= kun herve one part of int ad shere a common target. , y= KJn

y'= 2e2n =) 2ksn= 流

4ルニーコルニ中 =) e= KJE

=) K= 2JE

2 (3)(a) 32+(1+i)3+k=0 One root 1-2i Let Mr lee of d+1-21=-1-i =) d=-2+i 1

: k= (1-2i)(-2+i)

= -2+1+41+2

2 (b) 3/2-13=16-21, 3=a+61 a2+62-ai+6=16-21

=) a2+62+6=16 ad a=2 1. 22+62+6=16

62+6-12=0

(6+4)(6-3)=0

6=-4 or 3

7 = 2+31° or 2-41°

(6(a)] -2/22+y2=4 (11) V = lin & [22011 - 2min - con 2m] sn = 11 / (2 wsn - 2 sun - cos2n) dn = 17 [25un + 2com - 25m2n] \$ $\Delta V = \frac{1}{2} \times 2y \times \sqrt{3}y \times \Delta x \qquad \frac{3y}{3} = \frac{1}{3}$ = 1 (12+52-12- (0+2-0)] = = = (452-5) abic units. $= \sqrt{3}(4-n^2)\Delta n$ V= lim & 53(4-22) 12 (1)(a)(1) Let x = ta-1(n+1), B=ta-1n $= 253\int^{2} (4-n^{2}) dn$ $=253\left[4n-\frac{1}{3}n^{3}\right]_{0}^{2}$ > tad= n+1, tap= n Now ten (d-β) = tand - taβ
1+ tend taβ = 253 (8 - 23) = 32.53 abic wit $= \frac{1+(n+1)n}{n+1-n}$ (b)(b) 93 x : lot (A-B) = 1+n+n2 .: «-B = Cot- (1+n+n2)2 .. thi (n+1) - thin = cot (1+n+n2) (ii) Lot (3) + Lot (7) + .. + Lot (1+n+n) (1) $\Delta V = 2\pi (3-x)(-3n+9-(n-3)^2)\Delta_{2}$ = $2\pi(3-n)(3n-n^2) dn$ $= 2\pi \left(9x - 6x^2 + x^3\right) dx$ V= Im \$ 217 (9n-6n2+n3) sn (4) (1) $(3+\frac{2}{5})^4 + (3-\frac{2}{5})^4$ $= 2\pi \int_{0}^{3} (9n-6n^2+n^3) dn$ = 34+432+6+ 42+ 12+ +34-432 = 21 (922-223+424) = 27 abic vib. 3 +6-32+34 $=2(3^{4}+\frac{1}{2^{4}})+12$ (c)(n c in (4, 1/2) : (2600)4+(2x500) =46040+12 (11) DV = 17 [(1-sinn)2-(1-65m)2] Ax : 166040 + 165040 = 46040 +12 = TT[1-25mn+522n-(1-260in +6052n)] An 46040 + 45440 = 6040 + 3 (11) $8n^4 + 8(1-n^2)^2 = 7$ = T (2632 - 25in - (652-52) Let n= coso 86040+8(1-6020)2=7 = TT 2wsn-2sin-Cos2n] An 86040 + 85m 0=7

2009 =) 2 (6540+3)=7 =) Cos40 = 1 · 40= 3, 57 3 3 3 · 豆豆豆 ". Solution x = 65 17, 60 12, 60 12, 60 12 ie x = ± 60 12, ± 60 517 (III) $8x^4 + 8(1-x^2)^2 = 7$ $8n^4 + 8 - 16n^2 + 8n^4 = 7$ 16x + 16n2 + 1 = 0 16mt - 16m + 1 = 0 (n2=m) her roots cos 2 12, cos 25 : cos2 12 cos2 51 = 16 1. Cos 12 605 51 = 4 605 17 >0 ((() 1 + () 1) = () 2 1 + () 5 1 12 + 2605 II COS II $= (th^{-1}2 - th^{-1}1) + (th^{-1}3 + th^{-1}2) + ...$ $= (th^{-1}2 - th^{-1}1) + (th^{-1}3 + th^{-1}2) + ...$ $= \frac{3}{16} + 2 \times \frac{1}{4}$ $= \frac{3}{16} + 2$ (V) Cos in and cos in are solution to the equation: ル2- 13ル+4=0 u 4n2-256n+1=0 $n = 2\sqrt{6} \pm \sqrt{24 - 4 \times 4 \times 1}$ 2×4 = 256 ± 252 = 16 + 52 : 605 T = J6+52 , 65 T2 > 60 T2

(Tive c)	TRIAL FOLUTIONS	2909	·
(8) a) AUSTRALIA	(e) In= Strin'n dn		
No. of words = No will diff letters +			
No with 2 A's +	(1) $In = \int_{0}^{\frac{\pi}{2}} \sin^{n-1} x \cdot \sin x dx$	eringan an annur i norman aid feinin annur aid geallannan. Bheirs an de d'the faith-eire e To bheir ann aid de de chair	оди, и от подава и от в потова для инщегнення на денення в силе то в денення в силе то в денення до денення д
No will 3 A's	Let u= sin^1n v	= SLON	ranga mininto (ngajiyyariy yy minishina matadifi mininto 10 (10 ku/m) yi fi mininto ay ingamay) ayay
= 7c6×6! + 6c4×6! + 6c3×6!	u'=(n-1)sin^-2 win V	=-65x	ere ere ere er er er er er er er er er e
= 5040 + 5400 + 2400	In=[-sin-1 coin] + (n-1) 5in 2		
= 12840 4	10 10		
	= 0-0 + (n-1) \(\int_{\text{Sin}}^{\text{A-2}} \) \((1-\text{Sin}^{\text{A-2}})	iù ² n)dn	
(6) a+6+c > 3 Tak, a+6+c=1	= (n-1)[In-2-In]		
a>0,6>0,c>0			endelskalandelse 2000 CC et op in literajoranja oranja oranja oranja oranja oranja oranja oranja oranja oranja
(1) a+b+c > 3 labe	: [1+(n-1)] In = (n-1) I	N-2	and allowed a control to be included the control of
	n In = (n-1) In-2		agricularis del 1 de 200 de la composição de 200 de 20
3 2 Jube	$I_n = \left(\frac{n-1}{n}\right) I_{n-1}$	3	ugi FEB esperantian in Principal men international at 4 M NAMENTAL and 40 M NAMENTAL and a set principal and a
7 7 000		Americanists of the second of	polycom former are somewhat of this we had for his final indicate the color of the foliation between the color of the colo
> 27 5 atre	$(11) \int_{0}^{2\pi} \sin^{2n} dn = I_{2n}$		
abr "11	$=\frac{2n-1}{2n}\cdot \mathbb{J}_{2n-2}$		
$(1) \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \rightarrow 3 $	$= \frac{(2n-1)(2n-3)}{2n(2n-2)} I_{2n-4}$		
: \ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} > 3 \times \sqrt{3} \taker	$= \frac{(2n-1)(2n-3)(2n-5)3\times 1}{2n(2n-2)(2n-4)4\times 2}$	- I ₀	
> 3 x ³ √27	200 (4150)(4151)-412		
>, 3×3	= 2n(2n-1)(2n-2)(2n-3)+3×2 [2n(2n-2)(2n-4)4×2]	ZI.	
39 2	[2n(2n-2)(2n-4)442]		aalkaansteeriikseen oli tiide meistele väitele mõhen toi mitteen tiite võitti vaitiiti ja toi kaistele siinkanteen saaste
(111) From (11)	(21)!		an compression from the first of the first and the first state of the first of the
	$\frac{(2n)!}{(2^n)^2 \left[n(n-1)(n-2)\cdots 2x\right]}$]2 -0	
bc + ac + ab > 9 abc	(2n)!		
: ab + be+ ac >, gabe	$= \frac{(2n)!}{2^{2n}(n!)^2} \int_{0}^{\frac{\pi}{2}}$	· cen	
Now (1-a)(1-b)(1-c)	$-\frac{(2n)!}{2^{2n}(n!)^2} [n]^{\frac{\pi}{2}}$		
= (1-a-b+ab)(1-c)	22n (n!)2 Los		
=1-a-b+ab-c+ac+bc-a	$\frac{dz}{dz} = \frac{(2n)!}{2^{2n}(n!)^2} = \frac{\pi}{2}$		
=1- (a+b+c) + (ab + bz +ac)-			
=(ab+bc+ac) -abc	$= \pi (2n)!$	3	
>, Gabe -abe from	22n+1 (n!)2	3	
7, 8abr 2		is the state of th	