## St George Girls' High School

## Trial Higher School Certificate Examination

## 2000



# Mathematics 

## 4 Unit

Time Allowed: Three hours
(Plus 5 minutes reading time)

## Directions to Candidates

- All questions may be attempted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly presented work.
- Begin each question on a new page.
- A list of standard integrals is included at the end of this paper.
- The mark allocated for each question is listed at the side of the question.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.
a) For the two complex numbers

$$
z_{1}=(1+i)^{2} \text { and } z_{2}=\sqrt{2}\left[\cos \left(\frac{-5 \pi}{6}\right)+i \sin \left(\frac{-5 \pi}{6}\right)\right]
$$

(i) express $z_{1}$ in the modulus -- argument form.
(ii) express in the $(a+i b)$ form, where $a$ and $b$ are real numbers:

$$
z_{2}, \quad \bar{z}_{2}, i z_{1}
$$

(iii) find $(x, y)$ such that $\left(z_{2}\right)^{6}=x+i y$
b) Determine the complex square roots of $2-2 \sqrt{3} i$. Express your answer in the form $a+i b$.


Find, in simplest form, the quadratic equation whose roots are $2-i$ and $(2-i)^{-1}$

## Question 2-(15 Marks)

a) Find the indefinite integrals
(i) $\int \frac{2 x}{(x+4)(x+3)} d x$
(ii) $\int x^{3} e^{x^{4}+1} d x$
(iii) $\int \frac{d x}{\sqrt{8 x-4 x^{2}}}$
b) Evaluate
(i) $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{3} x d x$
(ii) Show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$, and, hence, show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x \tag{3}
\end{equation*}
$$

Hence, evaluate each integral
c) (i) If $U_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta \quad d \theta$, prove that $U_{n}=\frac{n-1}{n} U_{n-2}$, for $n \geq 2$
(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{9} \theta d \theta$
a) If one of the roots of $P(x)=x^{3}-x^{2}-6 x+18=0$ is $2-\sqrt{2} i$, find the other two roots.
b) If $\alpha, \beta$ and $\gamma$ are the roots of the equation $x^{3}-3 x^{2}+6 x+7=0$, find
(i) the polynomial equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$
(ii) $\alpha^{3}+\beta^{3}+\gamma^{3}$
c) The roots of the equation $t^{3}+q t-r=0$ are $a, b$ and $c$. If $S_{n}=a^{n}+b^{n}+c^{n}$,
where $n$ is a positive integer, prove that:

$$
S_{n+3}=r S_{n}-q S_{n+1}
$$

d) The region bounded by $y=x^{4}, 0 \leq x \leq 2$, and the $x$-axis is rotated about the line $x=3$. Use the method of "cylindrical shells" to find the volume generated. (Leave the answer in terms of $\pi$ ).

## Question 4 - (15 Marks)

a) If $\beta$ is a complex root of $\mathrm{z}^{5}=1$.
(i) Show that the roots are of the form $1, \beta, \beta^{2}, \beta^{3}, \beta^{4}$.
(ii) Find the value of $1+\beta+\beta^{2}+\beta^{3}+\beta^{4}$.
(iii) Show that $\beta^{-1}=\beta^{4}$ and $\beta^{-2}=\beta^{3}$.
(iv) Hence find the quadratic equation with roots of $\beta+\beta^{-1}$ and $\beta^{2}+\beta^{-2}$.
(v) Deduce that

$$
\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}
$$

b) What is the maximum value of $|z|$ if $|z+1+2 i| \leq 1$ ?
c) If $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{2}\right|$, show that arg $\quad z_{2}-\arg \quad z_{1}=\frac{\pi}{2}$.
d) Evaluate $\int_{0}^{\frac{2}{3}} \sqrt{4-9 u^{2}} d u$

Question 5 - (15 Marks)
a) Find the limiting sum of the series $\frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}}+\ldots$.
b) $\quad P$ and $Q$ are the points $t_{1}$ and $t_{2}$ on the rectangular hyperbola $x y=c^{2}$.
(i) Show that the gradient of $P Q$ is $\frac{-1}{t_{1} t_{2}}$.
(ii) Hence, or otherwise, prove that if $P Q$ subtends a right angle at a third point $R$ on the hyperbola, then the tangent at $R$ is perpendicular to $P Q$.
c) (i) By expanding $\cos (2 \theta+\theta)$, show that $\cos ^{3} \theta-\frac{3}{4} \cos \theta=\frac{1}{4} \cos 3 \theta$.
(ii) By making the substitution $x=m \cos \theta$ for a suitable value of $m$, and using the result in (i), find the roots of:

$$
27 x^{3}-9 x-\sqrt{3}=0
$$

Express them in the form $m \cos \theta$.
(iii) Hence, prove that

$$
\cos \frac{\pi}{18} \cdot \cos \frac{3 \pi}{18} \cdot \cos \frac{5 \pi}{18} \cdot \cos \frac{7 \pi}{18}=\frac{3}{16}
$$

Question 6-(15 Marks)
The hyperbola $H$ has Cartesian equation $\frac{x^{2}}{4}-\frac{y^{2}}{7}=1$.
a) Write down its eccentricity, the coordinates of its foci $S$ and $S^{1}$, the equations of the directrices and the equations of the asymptotes.
b) Sketch the curve and include all details of part (a).
c) $P$ is an arbitrary point $(2 \sec \theta, \sqrt{7} \tan \theta)$. Show that $P$ lies on $H$ and prove that the tangent to $H$ at $P$ has equation $\frac{x \sec \theta}{2}-\frac{y \tan \theta}{\sqrt{7}}=1$.
d) This tangent cuts the asymptotes in $L$ and $M$.
$\alpha$ ) Prove that $L P=P M$ and
$\beta$ ) Prove the area of $\triangle O L M$ is independent of the position of $P$ on $H$. ( $O$ is the origin).

## Question 7 - (15 Marks)

a) Sketch the following graphs, indicating their essential features.
(Draw on separate graphs).
(i) $y=\sqrt{\ln x}$
(ii) $y=\tan ^{-1}(\tan x)$ for $\frac{-3 \pi}{2} \leq x \leq \frac{3 \pi}{2}$
(iii) $|y|=\sin x$ for $0 \leq x \leq 3 \pi$
(iv) $y=\frac{x-1}{x^{2}-4}$

b) The base of a solid is the circle $x^{2}+y^{2}=6 x$. Every plane section perpendicular to the $x$-axis is a rectangle whose height is one half of the distance of the plane section from the origin. Find the volume of the solid.

## Question 8 - (cont'd)

(i) Show that the projectile is above the $x$-axis for a total of $\frac{2 V \sin \alpha}{g}$ seconds.
(ii) Show that the horizontal range of the projectile is $\frac{2 V^{2} \sin \alpha \cos \alpha}{g}$ metres.
(iii) At the instant the projectile is fired, the target $T$ is $d$ metres from $O$ and it is moving away at a constant speed of $u \mathrm{~m} / \mathrm{s}$.

Suppose that the projectile hits the target when fired at an angle of elevation $\alpha$.

Show that:
$u=V \cos \alpha-\frac{g d}{2 V \sin \alpha}$
In parts (iv) and (v), assume that $g d=\frac{V^{2}}{2 \sqrt{3}}$.
(iv) By using (iii) and the graph of part (a), show that if $u>\frac{V}{\sqrt{3}}$ the target cannot be hit by the projectile, no matter at what angle of elevation $\alpha$ the projectile is fired.
(v) Suppose $u<\frac{V}{\sqrt{3}}$. Show that the target can be hit when it is at precisely two distances from $O$.

The following list of standard integrals may be used:

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq 1 ; x \neq 0, \quad \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, \quad x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad \cdots a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) . \\
& \text { Note: } \ln x \quad \log _{0} x, x>0
\end{aligned}
$$

TRIAL HSC
$\angle$ UNIT COURSE
SOLUTIONS.

QUESTION 1:
(a)
(i)

$$
\begin{aligned}
z_{1} & =(1+i)^{2} \\
& =1+2 i+i^{2} \\
& =2 i \\
& =2 \operatorname{cis} \frac{\pi}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
z_{2} & =\sqrt{2}\left[-\frac{\sqrt{3}}{2}-\frac{1}{2} i\right] \\
& =-\frac{\sqrt{6}}{2}-\frac{\sqrt{2}}{2} i \\
\bar{z}_{2} & =-\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2} i \\
i z_{1} & =i \cdot 2 i \\
& =-2
\end{aligned}
$$

(iii)

$$
\begin{aligned}
z_{2} & =\sqrt{2}\left[\operatorname{cis}\left(-\frac{5 \pi}{6}\right)\right] \\
3_{2}^{6} & =8[\operatorname{cis}(-5 \pi)] \\
& =8 \operatorname{cis} \pi \\
& =-8
\end{aligned}
$$

(b)

$$
\text { let } a+i b=\sqrt{2-2 \sqrt{3} i}
$$

oquaning

$$
\begin{gather*}
\Rightarrow a^{2}-b^{2}+2 a b i=2-2 \sqrt{3} i \\
\Rightarrow a^{2}-b^{2}=2 \\
a b=-\sqrt{3} \tag{2}
\end{gather*}
$$

Grow (2) $b=-\frac{\sqrt{3}}{a} b \div$ (1)

$$
\begin{aligned}
\therefore a^{2}-\frac{3}{a^{2}} & =2 \\
a^{4}-2 a^{2}-3 & =0 \\
\left(a^{2}-3\right)\left(a^{2}+1\right) & =0 \\
a^{2} & =3 \\
a & =\sqrt{3},-\sqrt{3} \\
b & =-1,1
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x+\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x \\
& =\int_{0}^{\frac{\pi}{2}} 1 d x \\
& =\frac{\pi}{2}
\end{aligned}
$$

and since the two integrals ave of equal value, each integrals is equal to $\frac{\pi}{4}$.
(c) (i)
$U_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta$

$$
=\int_{0}^{\pi} \underbrace{\cos ^{n-1} \theta}_{v} \cdot \underbrace{\cos \theta}_{d x} d \theta
$$

$$
=\left[\sin \theta \cdot \cos ^{n-1} \theta\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\pi} \sin \theta \cdot(n-1) \cos ^{n-2} \theta \cdot-\sin d
$$

$$
=(n-1) \int_{0}^{\pi / 2} \sin ^{2} \theta \cdot \cos ^{n-2} \theta d \theta
$$

$$
=(n-1) \int_{0}^{\frac{\pi}{2}}\left(1-\cos ^{2} \theta\right) \cdot \cos ^{n-2} \theta d \theta
$$

$$
=(n-1)\left[U_{n-2}-U_{n}\right]
$$

$$
\begin{aligned}
U_{n} & =(n-1) U_{n-2}-(n-1) U_{n} \\
U_{n}(1+n-1) & =(n-1) U_{n-2} \\
\therefore U_{n} & =\left(\frac{n-1}{n}\right) U_{n-2} \quad n \geqslant 2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{9} \theta d \theta & =U_{9} \\
& =\frac{8}{9} \times U_{7} \\
& =\frac{8}{9} \times \frac{6}{7} \times U_{5} \\
& =\frac{8}{9} \times \frac{6}{7} \times \frac{4}{3} \times U_{3} \\
& =\frac{8}{9} \times \frac{6}{7} \times \frac{4}{5} \times \frac{2}{3} U_{1} \\
& =\frac{128}{315} \times \int_{0}^{\pi} \cos \theta 2 \theta \\
& =\frac{128}{315} \times[\cos \theta]_{0}^{7 /} \\
& =\frac{128}{315}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Dum of rats } & =2-i+\frac{1}{2-i} \\
& =2-i+\frac{2+i}{5} \\
& =\frac{12}{5}-\frac{4}{5} i
\end{aligned}
$$

Product of mats $=2-i \times \frac{1}{2-i}$

$$
=1
$$

$\therefore$ Qunadratic equiatiai is

$$
\begin{aligned}
& x^{2}-\left(\frac{12}{5}-\frac{4}{5} i\right)+1=0 \\
& \text { ie } 5 x^{2}-(12-4 i)+5=0
\end{aligned}
$$

(d)

$\left|z_{1}+z_{n}\right|=\left|z_{1}-z_{v}\right| \Rightarrow$ diagonars of panallelganem are equal
$\Rightarrow$ Mogram is a equare or rectargle

$$
\Rightarrow \hat{A O B}=\frac{\pi}{2}
$$

$$
\therefore \arg 82-\arg 31=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \text { (e) } \int_{0}^{\frac{2}{3}} \sqrt{4-9 u^{2}} d x \\
& \text { let } 3 u=2 \sin \theta \\
& 3 \mathrm{~cm}=2 \cos \theta \operatorname{de} \theta \\
& =\int_{0}^{\frac{\pi}{2}} \sqrt{4-4 \sin ^{2} \theta} \cdot \frac{2}{3} \cos \theta d \theta \\
& =\frac{4}{3} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& \cos ^{2} \theta=2 \cos ^{2} \theta-1 \\
& =\frac{4}{3} \cdot \frac{1}{2} \cdot \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =\frac{2}{3}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi} \\
& =\frac{2}{3}\left[\frac{\pi}{2}-0\right] \\
& =\frac{\pi}{3} \\
& \therefore I=3 \int_{0}^{2 / 3} \sqrt{\left(\frac{2}{3}\right)^{2}} \operatorname{ch}^{2} d_{n} \\
& =3 \times \frac{1}{4} \pi r^{2} \\
& =3 / 4 \cdot \frac{4}{a_{1}} \\
& =\frac{\pi}{3}
\end{aligned}
$$

QUESTION 2
(a) (i) $\int \frac{2 x}{(x+4)(x+3)} d x$
$\operatorname{let} \frac{2 x}{(x+4)(x+3)}=\frac{a}{x+4}+\frac{b}{x+3}$
ie $2 x=a(x+3)+b(x+4)$

$$
\begin{aligned}
& x=-3 \Rightarrow-6=b \\
& x=-4 \Rightarrow-8=-4 \\
& \therefore a=8 \\
& \therefore \frac{2 x}{(x+4)(x+3)}=\frac{8}{x+4}-\frac{6}{x+3} \\
& \therefore \int \frac{2 x}{(x+4)(x+3)} d x=8 \ln |x+4|-6 \ln |x+3|+c
\end{aligned}
$$

$$
\begin{array}{ll}
\text { (ii) } \int x^{3} e^{x^{4}+1} d x & \begin{array}{l}
u=e^{x^{4}+1} \\
d u=4 x^{3} e^{x^{4}+1} d x
\end{array} \\
=\frac{1}{4} \int 4 x^{3} e^{x^{4}+1} d x & \\
=\frac{1}{4} \int e^{\mu} d x \\
=\frac{1}{4} \cdot e^{\mu}+c \\
=\frac{1}{4} \cdot e^{x^{4}+1}+c
\end{array}
$$

(iii)

$$
\begin{aligned}
8 x-4 x^{2} & =-4\left(x^{2}-2 x\right) \\
& =-4\left[\left(x^{2}-2 x+1\right)-1\right] \\
& =4-4(x-1)^{2} \\
\int \frac{d x}{\sqrt{8 x-4 x^{2}}} & =\int \frac{d x}{2 \sqrt{1-(x-1)^{2}}} \\
& =1 \sin ^{-1}(x-1)+c
\end{aligned}
$$

WUESTION 3:
(a) $\quad P(x)=x^{3}-x^{2}-6 x+18$
thince co-effs of $P(x)$ are xeal
$x=2-\sqrt{2} i$ a zeno $\Rightarrow \quad=2+\sqrt{2} i$ also a zero

$$
\therefore x^{2}-[2-\sqrt{2} i+2+\sqrt{2} i] x+(2-\sqrt{2} i)(2+\sqrt{2} i) \text { is a }
$$ factor of $p(x)$

ie $x^{2}-4 x+6$ is a factor

$$
\therefore P(x)=\left(x^{2}-4 x+6\right)(x+3)
$$

( Other roots are $2+\sqrt{2} i,-3$
(b) $P(x)=x^{3}-3 x^{2}+6 x+7$
(i)

$$
\begin{aligned}
& y=x^{2} \Rightarrow x=\sqrt{y} \\
& \therefore P(\sqrt{x})=0
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow(\sqrt{x})^{3}-3(\sqrt{x})^{2}+6 \sqrt{x}+7 & =0 \\
x \sqrt{x}-3 x+6 \sqrt{x}+7 & =0 \\
\sqrt{x}(x+6) & =3 x-7 \\
x(x+6)^{2} & =(3 x-7)^{2} \\
x^{3}+12 x^{2}+36 x & =9 x^{2}-42 x+49 \tag{1}
\end{align*}
$$

ie $x^{3}+3 x^{2}+78 x-49=0$
(ii) Hince $\alpha, \beta, \gamma$ are tasto of $P(x)=0$

$$
\begin{aligned}
& \alpha^{3}-3 \alpha^{2}+6 \alpha+7=0 \\
& \beta^{3}-3 \beta^{2}+6 \beta+7=0 \\
& \gamma^{3}-3 \gamma^{2}+6 \gamma+7=0
\end{aligned}
$$

$$
\text { xdding } \Rightarrow \sum \alpha^{3}-3 \sum \alpha^{2}+6 \sum \alpha+21=0
$$

$$
\begin{align*}
\sum \alpha^{3} & =3(-3)-6(3)-21  \tag{2}\\
& =-48
\end{align*}
$$

(c) $t^{2}+q t-x=0$
$a, b, c$-os

$$
\Rightarrow \begin{aligned}
a^{3}+q a-r & =0 \\
b^{3}+q b-r & =0 \\
c^{3}+q c-r & =0
\end{aligned}
$$

addining $\Rightarrow a^{3}+b^{3}+c^{3}=-q(a+b+c)+2 r$

$$
=3 x
$$

Jen

$$
\begin{aligned}
S_{n+3} & =a^{n+3}+b^{n+3}+c^{n+3} \\
& =a^{n} \cdot a^{3}+b^{2} \cdot b^{3}+c^{n} \cdot c^{3} \\
& =a^{n}(x-q a)+b^{n}(2-q b)+c^{n}(+-q c) \\
& =+\left(a^{n}+b^{n}+c^{2}\right)-q\left(a^{n+1}+b^{n+1}+c^{n+1}\right) \\
& =+S_{n}-q S_{n+1}
\end{aligned}
$$

(d)


$x=3$
volume of dell is $\delta r=2 \pi r(3-x) y \delta x$
$\therefore$ volume of calid is $V=\lim _{\delta x \rightarrow 0} \sum_{x=0}^{2} 2 \pi(3-x) y \delta x$

$$
\begin{aligned}
& =2 \pi \int_{0}^{2}(3-x) \cdot x^{4} d x \\
& =2 \pi\left[\frac{3 x^{5}}{5}-\frac{x^{6}}{6}\right]_{0}^{2} \\
& =2 \pi\left[\frac{96}{5}-\frac{64}{6}-0\right] \\
& =\frac{256 \pi}{15} \text { umit }^{3}
\end{aligned}
$$

QUESTION 4:
(a) $\omega^{3}=1$ and $1+w+w^{2}=0$

$$
\text { When } \begin{aligned}
\frac{a+b w+c w^{2}}{c+a w+b+w^{2}} & =\frac{a+\frac{b}{w^{2}}+\frac{c}{w}}{c+\frac{a}{4 w^{2}}+\frac{b}{w}} \\
& =\frac{a w^{2}+b+c w}{c w^{2}+a+b w} \\
& =\frac{\omega^{2}\left(a+b w+c w^{2}\right)}{a+b w+a w^{2}} \quad \text { since } w^{3}=1
\end{aligned}
$$

$$
=\omega^{2}
$$

$(b)(2)$

$$
\begin{aligned}
z^{5} & =1 \\
& =1 \operatorname{sis}(0+0 \\
\therefore z & =1 \sin \frac{\text { dater }}{5}
\end{aligned}
$$

$$
=1 \operatorname{cis}(0+2 k \pi) \quad \text { ह integer }
$$

$$
\begin{aligned}
& k=0 \Rightarrow z=1 \\
& k=1 \Rightarrow z=\sin \frac{2 \pi}{5}=\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}
\end{aligned}
$$

$k 2 \Rightarrow z=\operatorname{cis} \frac{4 \pi}{5}=-\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}$

$$
\begin{aligned}
& k=3 \Rightarrow z=\operatorname{cis} \frac{6 \pi}{5}=-\cos \frac{\pi}{5}-i \sin \frac{\pi}{5} \\
& k=4 \Rightarrow z=\operatorname{cis} \frac{8 \pi}{5}=\cos \frac{2 \pi}{5}-i \sin \frac{2 \pi}{5}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { If } \beta=\operatorname{cis} \frac{2 \pi}{5}, \beta^{-1} & =\operatorname{cis}\left(\frac{-2 \pi}{5}\right) \\
& =\cos \frac{2 \pi}{5}-=\sin \frac{2 \pi}{5}=\beta^{4} \\
\therefore+\beta^{-1} & =2 \cos \frac{2 \pi}{5}
\end{aligned}
$$

and $\beta^{2}=\operatorname{cis} \frac{4 \pi}{5}=-\cos \frac{4 \pi}{5}+i \sin \frac{4 \pi}{5}$

$$
\beta^{-2}=\operatorname{cis}\left(-\frac{4 \pi}{3}\right)=-\cos \frac{\pi}{5}-i \sin \frac{4 \pi}{5}
$$

$$
\begin{equation*}
\therefore \quad \beta^{2}+\beta^{-2}=-2 \cos \frac{\pi}{5} \tag{2}
\end{equation*}
$$

$\therefore$ Onadrathe equationn $O$ incipt the

$$
\begin{equation*}
\therefore \text { is } z^{2}-\left(2 \cos \frac{2 \pi}{5}-2 \cos \frac{\pi}{5}\right) z-4 \cos \frac{\pi}{5} \cos \frac{2 \pi}{5}=0 \tag{3}
\end{equation*}
$$

now $\beta^{5}=1$

$$
\begin{aligned}
& \Rightarrow \beta^{5}-1=0 \\
& (\beta-1)\left(\beta^{4}+\beta^{3}+\beta^{2}+\beta+1\right)=0
\end{aligned}
$$

$\beta, 1 \Rightarrow \beta^{4}+\beta^{3}+\beta^{2}+\beta+1=0$

$$
\therefore \beta+\beta^{2}+\beta^{3}+\beta^{4}=-1
$$

If roots ave $\beta+\beta^{-1}, \beta^{2}+\beta^{-2}$ then quaderatici is

$$
z^{2}-\left(\beta+\beta^{-1}+\beta^{2}+\beta^{-2}\right) z+\left(\beta+\beta^{-1}\right)\left(\beta^{2}+\beta^{-2}\right)=0
$$

$$
z^{2}-\left(\beta+\beta^{4}+\beta^{2}+\beta^{3}\right) z+\left(\beta^{3}+\beta^{4}+\beta+\beta^{2}\right)=0
$$

ie $z^{2}+z-1=0$

QUESTION 5:

$$
\begin{aligned}
& \frac{1}{5}+\frac{2}{5^{2}}+\frac{3}{5^{3}} \\
&= \frac{1}{5}+\left(\frac{1}{5^{2}}+\frac{1}{5^{2}}\right)+\left(\frac{1}{5^{3}}+\frac{1}{5^{5}}+\frac{1}{5^{3}}\right)+\left(\frac{1}{5^{4}}+\frac{1}{5^{4}}+\frac{1}{5^{4}}+\frac{4}{5^{4}}\right), \\
&=\left(\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\cdots\right)+\left(\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}+\cdots\right) \\
&+\left(\frac{1}{5^{3}}+\frac{1}{5^{4}}+\frac{1}{5^{5}}+\cdots\right)+\left(\frac{1}{5^{4}}+\frac{1}{5^{5}}+\cdots\right)+\cdots \\
&=\frac{\frac{1}{5}}{\frac{4}{5}}+\frac{\frac{1}{5^{4}}}{\frac{4}{5}}+\frac{\frac{1}{5^{3}}}{\frac{4}{5}}+\cdots
\end{aligned}
$$

$$
=\frac{1}{4}+\frac{1}{20}+\frac{1}{100}+\cdots
$$

the common ratio clearly benin $\frac{1}{5}$

$$
=\frac{\frac{1}{4}}{\frac{4}{5}}
$$

$$
=\frac{5}{16}
$$

(b)

(i)

$$
\begin{aligned}
m_{p_{Q}} & =\frac{\frac{c}{t_{2}}-\frac{c}{t_{1}}}{t_{2}-c t_{1}} \times\left(\frac{t_{1} t_{-}}{t_{1} t_{2}}\right) \\
& =\frac{c\left(t_{1}-t_{v}\right)}{c t_{1} t_{2}\left(t_{2}-t_{1}\right)} \\
& =-\frac{1}{t_{1} t_{2}}
\end{aligned}
$$

(ii) $P R \perp Q R \Rightarrow-\frac{1}{t_{1} t_{3}} \times \frac{-1}{t_{2} t_{3}}=-1$

$$
\therefore \quad t_{1} t_{2} t_{3}^{2}=-1
$$

now $x y=c^{2}$

$$
\begin{aligned}
\Rightarrow y & =c^{2} x^{-1} \\
y^{\prime} & =-c^{2} x^{-2}
\end{aligned}
$$

$$
a t r\left(c t_{3}, \frac{c}{t_{3}}\right) \quad y^{\prime}=\frac{-c^{2}}{c^{2} t_{3}^{2}}
$$

ie $m=-\frac{1}{t_{3}^{3}}$

Thens

$$
\begin{aligned}
m_{p a} & =-\frac{1}{t_{3}^{2}} \times \frac{-1}{t_{1} t_{2}} \\
& =\frac{1}{t_{1} t_{2} t_{3}^{2}} \\
& =-1 \text { fromen }
\end{aligned}
$$

$\therefore$ Tangent at $R$ mant be $1 P Q$.
(c) (i)

$$
\text { (i) } \begin{align*}
\cos 3 \theta & =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \cdot \sin \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =4 \cos ^{3} \theta-3 \cos \theta \\
\Rightarrow \cos ^{3} \theta-\frac{3}{4} \cos \theta & =\frac{1}{4} \cos 3 \theta
\end{align*}
$$

(i) $\operatorname{let} x=\cos \theta \sin 27 x^{3}-9 x-\sqrt{3}=0$

$$
\text { ie } 27 m^{3} \cos ^{3} \theta-9 m \cos \theta-\sqrt{3}=0
$$

$$
\begin{equation*}
\therefore \cos ^{3} \theta-\frac{1}{3 m^{2}} \cos \theta \quad=\frac{\sqrt{3}}{27 m^{3}} \tag{2}
\end{equation*}
$$

(c), $\frac{1}{3 x^{2}}=\frac{3}{4}$
ie $\quad m^{2}=\frac{4}{9}$
$\therefore m=\frac{2}{3}$ mill songeice
(2) then becomes

$$
\begin{aligned}
\cos ^{3} \theta-\frac{3}{4} \cos \theta & =\frac{\sqrt{3}}{27 \times \frac{8}{27}} \\
& =\frac{\sqrt{3}}{8} \\
\Rightarrow \quad \frac{1}{4} \cos 3 \theta & =\frac{\sqrt{3}}{8} \\
\therefore \cos 3 \theta & =\frac{\sqrt{3}}{2} \\
3 \theta & =2 n \pi \pm \frac{\pi}{6} \\
\therefore 3 \theta & = \pm \frac{\pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6}, \frac{25 \pi}{6}, \ldots \\
i e & = \pm \frac{\pi}{18}, \frac{11 \pi}{18}, \frac{13 \pi}{18}, \frac{23 \pi}{18}, \frac{25 \pi}{18}, \ldots
\end{aligned}
$$

The 3 solutions of

$$
27 x^{3}-9 x-\sqrt{3}=0 \text { mill be }
$$

$\frac{2}{3} \cos \frac{\pi}{18}, \frac{2}{3} \cos \frac{11 \pi}{18}, \frac{2}{3} \cos \frac{13 \pi}{18}, \frac{2}{3} \cos \frac{23 \pi}{18}, \frac{2}{3} \cos \frac{25 \pi}{18}, \ldots$ $=\frac{2}{3} \cos \frac{\pi}{18},-\frac{2}{3} \cos \frac{7 \pi}{18},-\frac{2}{3} \cos \frac{5 \pi}{18},-\frac{2}{3} \cos \frac{5 \pi}{18},-\frac{2}{3} \cos \frac{7 \pi}{18}, \ldots$ $i \operatorname{li} \frac{2}{3} \cos \frac{\pi}{18},-\frac{2}{3} \cos \frac{7 \pi}{18},-\frac{2}{3} \cos \frac{\pi \pi}{18}$.

Product of roots

$$
\Longrightarrow \frac{2}{3} \cos \frac{\pi}{18} \cdot-\frac{2}{3} \cos \frac{\pi}{18} \cdot-\frac{2}{3} \cos \frac{5 \pi}{18}=\frac{\sqrt{3}}{27}
$$

ie $\frac{8}{27} \cos \frac{\pi}{18} \cdot \cos \frac{5 \pi}{18} \cdot \cos \frac{\pi}{18}=\frac{\sqrt{3}}{27}$
$\cos \frac{\pi}{10} \cdot \cos \frac{2 \pi}{10} \cdot \cos \frac{7 \pi}{3}=\sqrt{3}$
(b)
(ii) Consider $\int_{0}^{a} f(a-x) d x$

$$
\operatorname{let} u=a-x
$$

$$
d u=-d x
$$

$$
\begin{aligned}
& =\int_{a}^{0} f(u) \cdot-d u \\
& =\int_{0}^{a} f(u) d u \\
& =\int_{0}^{a} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x & =\int_{0}^{\pi / 2} \frac{\sin ^{4}\left(\frac{\pi}{2}-x\right)}{\sin ^{4}\left(\frac{\pi}{2}-x\right)+\cos ^{4}\left(\frac{\pi}{2}-x\right)} \\
& =\int_{0}^{\pi} \frac{\cos ^{4} x}{\cos ^{4} x+\sin ^{4} x} d x
\end{aligned}
$$

then $\int_{0}^{\operatorname{sen}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x+\int_{0}^{\pi / 2} \frac{\cos ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$

$$
\begin{aligned}
& \text { (i) } \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{3} x d x \\
& =\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cdot \cos ^{2} x \cdot \cos x d x \\
& \mu=\sin x \\
& d u=\cos x d x \\
& =\int_{0}^{1} \mu^{2}\left(1-\mu^{2}\right) d u \\
& =\int_{0}^{1}\left(\mu^{2}-\mu^{4}\right) d u \\
& =\left[\frac{\mu^{3}}{3}-\frac{\mu^{5}}{5}\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{5} \\
& =\frac{2}{15} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\therefore \cos \frac{\pi}{18} \cdot \cos \frac{3 \pi}{18} \cdot \cos \frac{5 \pi}{18} \cdot \cos \frac{7 \pi}{18} & =\frac{\sqrt{3}}{8} \cdot \cos \frac{3 \pi}{18} \\
& =\frac{\sqrt{3}}{8} \cdot \frac{\sqrt{3}}{2} \\
& =\frac{3}{16}
\end{aligned}
$$

QUESTION 6:

$$
\begin{aligned}
\frac{x^{2}}{4}-\frac{y^{2}}{7}=1 \quad \Rightarrow \quad a & =2 \\
b & =\sqrt{7} \\
b^{2} & =a^{2}\left(e^{2}-1\right) \\
7 & =4\left(e^{2}-1\right) \\
e^{2}-1 & =\frac{7}{4} \\
e^{2} & =\frac{11}{4} \\
\therefore e & =\frac{\sqrt[V]{11}}{2}
\end{aligned}
$$

(a)

$$
e=\frac{\sqrt{11}}{2}
$$

Foci at $( \pm \infty, 0)$ ie $( \pm \sqrt{11}, 0)$
$\therefore$ Driectinices are $x= \pm \frac{a}{e}$

$$
\begin{aligned}
& = \pm \frac{2}{\left(\frac{v_{11}}{2}\right)} \\
& = \pm \frac{4}{\sqrt{11}} O R \pm \frac{4 \sqrt{11}}{11}
\end{aligned}
$$

asymptotes are $y= \pm \frac{b x}{4}$

$$
= \pm \frac{\sqrt{7} x}{2}
$$

(b)

(c) $P$ is $(2 \sec \theta, \sqrt{7} \tan \theta)$

$$
\text { Then } \frac{x^{2}}{4}-y^{2}=\frac{4 \sec ^{2} \theta}{4}-\frac{7 \tan ^{2} \theta}{7}
$$

$$
=\sec ^{2} \theta-\tan ^{2} \theta
$$

$$
=1
$$

$\therefore$ P hier on H.

$$
\frac{x^{2}}{4}-\frac{y^{2}}{5}=1
$$

differentiatingw.t.t. $x$

$$
\begin{aligned}
\Rightarrow \quad \frac{x}{2}-\frac{2 y x^{\prime}}{7} & =0 \\
\dot{\mu} \frac{2 y y^{\prime}}{7} & =\frac{x}{2} \\
y^{\prime} & =\frac{7 x}{4 y}
\end{aligned}
$$

at $p$ :

$$
\begin{aligned}
y^{\prime} & =\frac{14 \sec \theta}{4 \sqrt{7} \tan \theta} \\
& =\frac{\sqrt{7} \sec \theta}{2 \tan \theta}
\end{aligned}
$$

Toingent at $P$ is

$$
y-\sqrt{7} \tan \theta=\frac{\sqrt{7} \sec \theta}{2 \tan \theta}(x-2 \sec \theta)
$$

ie $2 \tan \theta \cdot y-2 \sqrt{7} \tan ^{2} \theta=\sqrt{7} \sec \theta \cdot x-2 \sqrt{7} \sec ^{2} \theta$
ie $x \sqrt{7} \sec \theta-2 y \tan \theta=2 \sqrt{7}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)$

$$
=2 \sqrt{7}
$$

$$
\begin{equation*}
\therefore \frac{x \sec \theta}{2}-\frac{y \tan \theta}{\sqrt{7}}=1 \tag{1}
\end{equation*}
$$

( $\Rightarrow$ soluing 0 with $y=\frac{x \sqrt{7}}{2}$

$$
\begin{aligned}
\Rightarrow \frac{x \sec \theta}{2}-\frac{x \sqrt{7}}{2 \sqrt{7}} \tan \theta & =1 \\
\operatorname{se\sqrt {7}(\operatorname {sec}\theta -\operatorname {tan}\theta )} & =2 \sqrt{7} \\
\Rightarrow x & =\frac{2}{\sec \theta \tan \theta} \\
& =\frac{2\left(\sec \theta+\tan ^{2} \theta\right)}{\sec ^{2} \theta-\tan ^{2} \theta} \\
& =2(\sec \theta+\tan \theta)
\end{aligned}
$$

$i \operatorname{ie}<i \operatorname{los}(2(\sec \theta+\tan \theta), \sqrt{7}(\sec \theta+\tan \theta)$,
Solving (1) with y $=-\frac{x \sqrt{7}}{2}$

$$
\begin{aligned}
\Rightarrow \frac{x \sec \theta}{2}+\frac{x \sqrt{7}}{2 \sqrt{7}} \tan \theta & =1 \\
x \sqrt{7}(\sec \theta+\tan \theta) & =2 \sqrt{7} \\
\therefore x & =\frac{2}{\sec \theta+\tan \theta} \\
& =2(\sec \theta-\tan \theta)
\end{aligned}
$$

$M$ is $(\operatorname{lan} A-\tan A)-\sqrt{7}(\sec B-\tan \theta \mid$
(a) Then the mid-ponit of $\angle M$ is $(2 \sec \theta, \sqrt{7} \tan \theta)$
which is $P$

$$
\therefore \quad \angle P=M P .
$$


iquation $\angle O$ is $y=\frac{x \sqrt{7}}{2}$ ie $x \sqrt{7}-2 y=0$
1 distance fromer $M$ to $L O$ is

$$
\begin{aligned}
d & =\frac{|2 \sqrt{7}(\sec \theta-\tan \theta)+2 \sqrt{7}(\sec \theta-\tan \theta)|}{\sqrt{11}} \\
& =\frac{|4 \sqrt{7}(\sec \theta-\tan \theta)|}{\sqrt{11}}
\end{aligned}
$$

$$
\text { Discance } \begin{aligned}
O L & =\sqrt{4(\sec \theta+\tan \theta)^{2}+7(\sec \theta+\tan \theta)^{2}} \\
& =\sqrt{11 \sec ^{2} \theta+22 \sec \theta \tan \theta+11 \tan ^{2} \theta} \\
& =\sqrt{11}|\sec \theta+\tan \theta|
\end{aligned}
$$

anea $\triangle O L M=\frac{1}{2} \cdot o l \cdot d$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \sqrt{\pi 1}(\sec \theta+\tan \theta) \cdot \frac{4 \sqrt{7}}{-\sqrt{7}}(\sec \theta-\tan \theta) \\
& =2 \sqrt{7} \text { units }(r e \text { indenendent } \operatorname{R} \theta)
\end{aligned}
$$

QUESTION 7
(a)

(ii) $y=\tan ^{-1}(\tan x)$ for $-\frac{3 \pi}{2} \leq x \leq \frac{3 \pi}{2}$ $\frac{d y}{d x}=\frac{1}{1+\tan ^{2} x} \cdot \sec ^{2} x$
$=1$ for all $x$

(iii)


$$
|y|=\sin x \Rightarrow \sin x \geqslant 0
$$

(iv) $y=\frac{x-1}{x^{2}-4}$

- $x$ intercypt at $(1,0)$
- $y$ mitercypt at $\left(0, \frac{1}{4}\right)$
- vert.arymot $x=t 2$
- Lami acymp at $y=0$.
- $\lim _{x \rightarrow 2^{+}} \frac{x-1}{x^{2}-4}+\infty$

(b)

$$
\begin{gathered}
x^{2}+y^{2}=6 x \\
\Rightarrow x^{2}-6 x+y^{2}=0 \\
(x-3)^{2}+y^{2}=9
\end{gathered}
$$

$\therefore$ Centre is $(3,0)$ madion is 3 .

vohme of thice ahown is

$$
\delta v=2 y \cdot \frac{x}{2} \cdot \delta x
$$

$=x y$ dx where $y=\sqrt{6 x-x^{2}}$
$\therefore$ Volume of solic is

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{6} x y d x \\
& =\int_{0}^{6} x \sqrt{6 x-x^{2}} d x \\
& =\int_{0}^{6} x \sqrt{9-(x-3)^{2}} d x
\end{aligned} \begin{aligned}
6 x-x^{2} & =-1\left(x^{2}-6 x\right. \\
& =-1(x-3)^{2}-1 \\
& =9-(x-3)^{\prime}
\end{aligned}
$$

$\operatorname{let} x-3=3 \sin \theta$

$$
=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(3+3 \sin \theta) \cdot \sqrt{9-9 \sin ^{2} \theta} \cdot 3 \cos \theta d \theta
$$

$$
\begin{aligned}
& =\int_{-\frac{\pi}{2}}^{\pi}(27 \cos ^{2} \theta+27 \underbrace{\pi}_{\sin \theta \cos 2} \theta) d \theta \\
& =54 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \quad \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& =\frac{54}{2} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =27\left[\theta+\frac{1}{2} \cos 2 \theta\right] \\
& =27\left[\frac{\pi}{2}-0\right] \\
& =\frac{27 \pi}{2}
\end{aligned}
$$

$\therefore$ Volune is $\frac{27 \pi}{2}$ minits.

QUESTION 8:
(a)

$$
f(\theta)=\cos \theta-\frac{1}{4 \sqrt{3} \sin \theta}
$$

(i) $f^{\prime}(\theta)=-\sin \theta-\left[\frac{-1.4 \sqrt{3} \cos \theta}{(4 \sqrt{3})^{2} \sin ^{2} \theta}\right]$

$$
=-\sin \theta+\frac{\cos \theta}{4 \sqrt{3} \sin ^{2} \theta}
$$

$$
\begin{aligned}
\therefore f^{\prime}\left(\frac{\pi}{6}\right) & =-\frac{1}{2}+\frac{\frac{\sqrt{3}}{2}}{4 \sqrt{3} \cdot \frac{1}{4}} \\
& =-\frac{1}{2}+\frac{\frac{\sqrt{3}}{2}}{\sqrt{3}} \\
& =0
\end{aligned}
$$

(ii)

as $\theta \rightarrow 0 \quad f(\theta) \rightarrow-\infty$

$$
\begin{aligned}
f\left(\frac{\pi}{7}\right) & =-\frac{1}{4 \sqrt{3}} \\
f\left(\frac{\pi}{6}\right) & =\frac{\sqrt{3}}{2}-\frac{1}{2 \sqrt{3}} \\
& =\sqrt{3}
\end{aligned}
$$

Shase.tumion point at $\left(\frac{\pi}{6}, \frac{\sqrt{3}}{3}\right)$ since $f^{\prime \prime}(\theta)<0$ $x$ intercept at $y=0$
ie $\cos \theta-\frac{1}{4 \sqrt{3} \sin \theta}=0$

$$
\text { i } \begin{aligned}
4 \sqrt{3} \sin \theta \cos \theta & =1 \\
2 \sqrt{3} \sin 2 \theta & =1 \\
\sin 2 \theta & =\frac{1}{2 \sqrt{3}} \\
2 \theta & =0.29,2.85 \\
\theta & \div 0.14,1.4
\end{aligned}
$$

(b) (i)

$$
\begin{array}{r}
\text { (i) } \begin{aligned}
& x=v t \cos \alpha \\
& y=-\frac{2}{2} \theta t^{2}+v t \sin \alpha-(2) \\
& y=0 \Rightarrow-\frac{1}{2} g t^{2}+v t \sin \alpha=0 \\
&-\frac{1}{2} t(g t-\alpha v \sin \alpha)=0 \\
& \therefore t=\frac{2 v \sin \alpha}{g}
\end{aligned}
\end{array}
$$

$\therefore$ thies guannal at $\frac{2 V \operatorname{cin} \alpha}{\theta} s$.
(ii) Ramage is $r=V t \cos \alpha$

$$
=r \cos \alpha \cdot \frac{2 V \sin \alpha}{g}
$$

$=\frac{2 V^{2} \sin \alpha \cos \alpha}{g} m$
(iii) Positsoin of target is given by

$$
\begin{equation*}
x=d+w t \tag{3}
\end{equation*}
$$

When projicticte hits the targat we have $t=\frac{2 v a i n \alpha}{g}$
and $\left.x=2 N^{2} \sin \alpha \cos \alpha \quad\right\} \sin \sin$ (3)

$$
\begin{align*}
\therefore \frac{2 V^{2} \sin \alpha \cos \alpha}{\theta} & =\alpha+\mu \cdot\left(\frac{2 V \sin \alpha}{g}\right) \\
\text { ie } u \cdot \frac{2 V \sin \alpha}{g} & =\frac{2 V^{2} \sin \alpha \cos \alpha}{g}-\alpha \\
\Rightarrow u & =V \cos \alpha-\frac{g \alpha}{2 V \sin \alpha} \tag{4}
\end{align*}
$$

iv) Were now assume that $g d=\frac{v^{2}}{2 \sqrt{3}}$

Then (4) becomes

$$
\begin{aligned}
& \mu=V \cos \alpha-\frac{V^{2}}{4 V \cdot \sqrt{3} \sin \alpha} \\
&=V\left[\cos \alpha-\frac{1}{4 \sqrt{3} \sin \alpha}\right] \text { in the sane } \\
& \text { in paste ( } \alpha \text { ) }
\end{aligned}
$$

ie $\frac{\mu}{V}=\cos \alpha-\frac{1}{4 \sqrt{3} \sin \alpha}$
now if $\mu>\frac{V}{\sqrt{3}}$
ie $\frac{\mu}{V}>\frac{1}{\sqrt{3}}$
ie $\frac{u}{v}>\frac{\sqrt{3}}{3}$
and from the graph in past (a) we wee hat no $\alpha$ gives a value of $\frac{\mu}{V}$ bijou than $\frac{\sqrt{3}}{3}$.
(v) of $u<\frac{v}{\sqrt{3}}$
ie $\frac{\mu}{V}<\frac{1}{\sqrt{3}}$ we see from the graph that two or give a solutisi ( $u, V,>_{0}$ )

