St George Girls' High School

and a second second

Trial Higher School Certificate Examination

2000

Mathematics

4 Unit

Time Allowed: Three hours (*Plus 5 minutes reading time*)

Directions to Candidates

- All questions may be attempted.
- All necessary working must be shown.
- Marks may be deducted for careless or poorly presented work.
- Begin each question on a new page.
- A list of standard integrals is included at the end of this paper.
- The mark allocated for each question is listed at the side of the question.

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Question 1 - (15 Marks)

X a) For the two complex numbers

$$z_1 = (1+i)^2$$
 and $z_2 = \sqrt{2} \left[\cos\left(\frac{-5\pi}{6}\right) + i \sin\left(\frac{-5\pi}{6}\right) \right]$

(i) express z_1 in the modulus – argument form.

(ii) express in the (a+ib) form, where a and b are real numbers:

 $z_2, \overline{z}_2, iz_1$

(iii) find (x, y) such that $(z_2)^6 = x + iy$

b) Determine the complex square roots of $2 - 2\sqrt{3}i$. Express your answer in the form a + ib.

Find, in simplest form, the quadratic equation whose roots are 2-i and $(2-i)^{-1}$

Page 2

Marks

2

3

2

Question 2 – (15 Marks)

Find the indefinite integrals a)

(i)
$$\int \frac{2x}{(x+4)(x+3)} dx$$
 2

(ii)
$$\int x^3 e^{x^4 + 1} dx$$

(iii)
$$\int \frac{dx}{\sqrt{8x-4x^2}}$$
 2

Evaluate **b**)

(

ť

(i)
$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx$$

(ii) Show that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$, and, hence, show that

$$\int_{0}^{\frac{\pi}{2}} \frac{\sin^{4} x}{\sin^{4} x + \cos^{4} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos^{4} x}{\sin^{4} x + \cos^{4} x} dx$$
3

Hence, evaluate each integral

c) (i) If
$$U_n = \int_0^{\frac{\pi}{2}} \cos^n \theta \, d\theta$$
, prove that $U_n = \frac{n-1}{n} U_{n-2}$, for $n \ge 2$ 3

(ii) Hence, evaluate
$$\int_0^{\frac{\pi}{2}} \cos^9 \theta \ d\theta$$

3

Question 3 – (15 Marks)

- a) If one of the roots of $P(x) = x^3 x^2 6x + 18 = 0$ is $2 \sqrt{2}i$, find the other two roots. 3
- b) If α , β and γ are the roots of the equation $x^3 3x^2 + 6x + 7 = 0$, find
 - (i) the polynomial equation whose roots are α^2 , β^2 , γ^2
 - (ii) $\alpha^3 + \beta^3 + \gamma^3$
- c) The roots of the equation $t^3 + qt r = 0$ are *a*, *b* and *c*. If $S_n = a^n + b^n + c^n$, where *n* is a positive integer, prove that: $S_{n+3} = rS_n - qS_{n+1}$
- d) The region bounded by $y = x^4$, $0 \le x \le 2$, and the *x* axis is rotated about the line x = 3. Use the method of "cylindrical shells" to find the volume generated. (Leave the answer in terms of π).

Page 4

3

3

Question 4 – (15 Marks)

a) If β is a complex root of $z^5 = 1$. (i) Show that the roots are of the form 1, β , β^2 , β^3 , β^4 . (ii) Find the value of $1 + \beta + \beta^2 + \beta^3 + \beta^4$. (iii) Show that $\beta^{-1} = \beta^4$ and $\beta^{-2} = \beta^3$. (iv) Hence find the quadratic equation with roots of $\beta + \beta^{-1}$ and $\beta^2 + \beta^{-2}$. (v) Deduce that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$

What is the maximum value of |z| if $|z+1+2i| \le 1$?

c) If $|z_1 - z_2| = |z_1 + z_2|$, show that arg $z_2 - \arg z_1 = \frac{\pi}{2}$.

d) Evaluate
$$\int_0^{\frac{2}{3}} \sqrt{4-9u^2} du$$

3

2

3

2

Marks

Question 5 – (15 Marks)

Find the limiting sum of the series
$$\frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3} + \dots$$

b) P and Q are the points t_1 and t_2 on the rectangular hyperbola $xy = c^2$.

- (i) Show that the gradient of PQ is $\frac{-1}{t_1 t_2}$.
- (ii) Hence, or otherwise, prove that if PQ subtends a right angle at a third point R on the hyperbola, then the tangent at R is perpendicular to PQ.

c) (i) By expanding
$$\cos(2\theta + \theta)$$
, show that $\cos^3 \theta - \frac{3}{4}\cos \theta = \frac{1}{4}\cos 3\theta$.

(ii) By making the substitution $x = m \cos \theta$ for a suitable value of *m*, and using the result in (i), find the roots of:

 $27x^3 - 9x - \sqrt{3} = 0$

Express them in the form $m\cos\theta$.

(iii) Hence, prove that

$$\cos\frac{\pi}{18} \cdot \cos\frac{3\pi}{18} \cdot \cos\frac{5\pi}{18} \cdot \cos\frac{7\pi}{18} = \frac{3}{16}$$

Page 6

3

1

4

2

4

St George Girls' High School Trial Higher School Certificate – Mathematics 4 Unit - 2000

Question 6 – (15 Marks)

The hyperbola *H* has Cartesian equation $\frac{x^2}{4} - \frac{y^2}{7} = 1$.

a) Write down its eccentricity, the coordinates of its foci S and S^1 , the equations of the directrices and the equations of the asymptotes.

- b) Sketch the curve and include all details of part (a).
- c) *P* is an arbitrary point $(2 \sec \theta, \sqrt{7} \tan \theta)$. Show that *P* lies on *H* and prove that the tangent to *H* at *P* has equation $\frac{x \sec \theta}{2} \frac{y \tan \theta}{\sqrt{7}} = 1$.
- d) This tangent cuts the asymptotes in L and M.
 - α) Prove that LP = PM and

(

β) Prove the area of $\triangle OLM$ is independent of the position of P on H. (O is the origin).

Page 7

2

4

4

Question 7 – (15 Marks)

- A
- a) Sketch the following graphs, indicating their essential features. (Draw on separate graphs).
 - (i) $y = \sqrt{\ln x}$

(ii)
$$y = \tan^{-1}(\tan x)$$
 for $\frac{-3\pi}{2} \le x \le \frac{3\pi}{2}$

(iii) $|y| = \sin x$ for $0 \le x \le 3\pi$

(iv)
$$y = \frac{x-1}{x^2-4}$$

100

The base of a solid is the circle $x^2 + y^2 = 6x$. Every plane section perpendicular to the x – axis is a rectangle whose height is one half of the distance of the plane section from the origin. Find the volume of the solid.

2

2

2

3

Question 8 – (cont'd)

(

(

- (i) Show that the projectile is above the x axis for a total of $\frac{2V \sin \alpha}{g}$ seconds. 1
- (ii) Show that the horizontal range of the projectile is $\frac{2V^2 \sin \alpha \cos \alpha}{g}$ metres. 1
- (iii) At the instant the projectile is fired, the target T is d metres from O and it is moving away at a constant speed of u m/s.

Suppose that the projectile hits the target when fired at an angle of elevation α .

Show that:

$$u = V \cos \alpha - \frac{gd}{2V \sin \alpha}$$

In parts (iv) and (v), assume that $gd = \frac{V^2}{2\sqrt{3}}$.

- (iv) By using (iii) and the graph of part (a), show that if $u > \frac{V}{\sqrt{3}}$ the target cannot be hit by the projectile, no matter at what angle of elevation α the projectile is fired.
- (v) Suppose $u < \frac{V}{\sqrt{3}}$. Show that the target can be hit when it is at precisely two distances from *O*.

3

2

The following list of standard integrals may be used:

-

•

(

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq 1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln (x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln (x + \sqrt{x^2 + a^2}).$$

Note:
$$\ln x = -\log_e x$$
, $x > 0$.

• ,

* ~ .

(6) let
$$a + ib = \sqrt{2 - 2\sqrt{3}i}$$

squaring
 $\Rightarrow a^2 - b^2 + 2abi = 2 - 2\sqrt{3}i$
 $\Rightarrow a^2 - b^2 = 2$ (2)
 $ab = -\sqrt{3}$ (2)
 $from (2) b = -\frac{\sqrt{3}}{a}$ such $i(2)$
 $\therefore a^2 - \frac{3}{a^2} = 2$
 $a^4 - 2a^2 - 3 = 2$
 $(a^2 - 3)(a^2 + 1) = 0$
 $a^2 = 3$
 $a = \sqrt{3}, -\sqrt{3}$
 $b = -1, 1$

$$= \int_{0}^{T} \frac{\sin^{2} x + \cos^{4} x}{\sin^{4} x + \cos^{4} x} dx$$

$$= \int_{0}^{T} 1 dx$$

$$= \frac{\pi}{2}$$
and since the two integrals are of equal value, each integrals is equal to $\frac{\pi}{4}$.
(c) (i) $U_{N} = \int_{0}^{T} \cos^{n-1} \theta d\theta$

$$= \int_{0}^{T} \frac{\cos^{n-1} \theta}{\sqrt{2}} \frac{\cos \theta}{\sqrt{2}} d\theta$$

$$= \left[\sin^{n-1} \theta \cos^{n-1} \theta d\theta - \int_{0}^{T} \sin^{n-1} \theta d\theta$$

$$= (n-1) \int_{0}^{T} \sin^{n-1} \theta d\theta = (n-1) \int_{0}^{T} (1-\cos^{2} \theta) \cdot \cos^{n-1} \theta d\theta$$

$$= (n-1) \int_{0}^{T} (1-\cos^{2} \theta) \cdot \cos^{n-1} \theta d\theta$$

$$= (n-1) [U_{n-1} - U_{n}]$$

$$U_{N} = (n-1) U_{n-1} - (n-1) U_{N}$$

$$U_{N} (1+n-1) = (n-1) U_{n-1}$$

$$= (n-1) U_{n-1} - n \geq 1$$

 $(ii) \int \cos^{9} \Theta \, d\Theta =$ Ug

 $=\frac{8}{9}\times U_7$ $=\frac{8}{9}\times\frac{6}{7}\times U_5$ $=\frac{8}{9}\times\frac{6}{7}\times\frac{4}{5}\times\frac{1}{3}$ $=\frac{8}{9}\times\frac{6}{7}\times\frac{4}{5}\times\frac{2}{3}U_{1}$ $=\frac{128}{315} \times \int_{-\infty}^{\infty} \cos \theta \,d\theta$ = 128 × [ain 0] 7.

 $=\frac{128}{315}$

2:
(c) Sum of roots =
$$2-i + \frac{1}{2-i}$$

 $= 2-i + \frac{2+i}{5}$
 $= \frac{12}{5} - \frac{4}{5}i$
Product θ roots = $2-i \times \frac{1}{2-i}$
 $= 1$
 \therefore Duradvatic equation is
 $\tilde{x} - (\frac{12}{5} - \frac{4}{5}i) + 1 = 0$
 $\tilde{x} - (12 - 4i) + 5 = 0$

2_.

QUESTION 2

(a) (i) $\int \frac{2x}{(x+4)(x+3)} dx$

 $\int \frac{dx}{\sqrt{8x-4x^2}} = \int \frac{dx}{2\sqrt{1-(x-1)^2}}$

- - dial (re-1) - C.

$$WESTION 3:$$
(a) $P(x) = x^{3} - x - 6z + 18$

Mince $co - affr of F(x)$ are real
$$x = 2 - \sqrt{2}i \quad a \quad \beta = 0 \implies = 2 + \sqrt{2}i \quad a \quad lao \quad a \quad jeno$$

$$\therefore x^{2} - \left[2 - \sqrt{2}i + 2 \pm \sqrt{2}i\right]x + (2 - \sqrt{2}i)(2 + \sqrt{2}i) \quad in \quad a \quad factor \quad of \quad P(x)$$

$$\therefore x^{2} - 4x + 6 \quad is \quad a \quad factor$$

$$\therefore P(x) = (x^{2} - 4x + 6)(x + 3)$$
(:) $Other roots \quad ane \quad 2 + \sqrt{2}i, -3$
(b) $P(x) = x^{3} - 3x + 6x + 7$
(i) $y = x^{2} \implies x = \sqrt{y}$

$$\therefore P(\sqrt{x}) = 0$$

$$\implies (\sqrt{x})^{3} - 3(\sqrt{x})^{2} + 6\sqrt{x} + 7 = 0$$

$$x\sqrt{x} - 3x + 6\sqrt{x} + 7 = 0$$

$$\sqrt{x}(x + 6] = 3x - 7$$

x(x+6) $x^{3} + 12x + 36x = 9x - 42x + 49$ ie $x^{3} + 3x^{2} + 78x - 49 = 0$ (1)

(ii) since x, b, t are roots of P(x) =0 $\lambda^{3} - 3\lambda^{2} + 6\lambda + 7 = 0$ $\beta^3 - 3\beta^2 + 6\beta + 7 = 0$ y3 - 3y2 + 68 + 7 =0 $zdding \Rightarrow Zd^3 - 3Zd^2 + 6Zd + 21 = 0$ $\Sigma \chi^{3} = 3(-3) - 6(3) - 21$ Zh from () = -48

(c)
$$t^{2} + qt - t = 0$$

 $a, b, c + oots$
 $\Rightarrow a^{3} + qa - t = 0$
 $b^{3} + qb - t = 0$
 $c^{3} + qc - t = 0$
 $a^{3} + b^{3} + c^{3} = -q(a+b+c) + 3t$
 $= 3t$

$$Jken S_{n+3} = a + b^{n+3} + c^{n+3} + c^{n+3}$$

$$= a^{n} a^{3} + b^{n} b^{3} + c^{n} c^{3}$$

$$= a^{n} (t - qa) + b^{n} (t - qb) + c^{n} (t - qc)$$

$$= t (a^{n} + b^{n} + c^{n}) - q (a^{n+1} + b^{n+1} + c^{n+1})$$

$$= t S_{n} - q S_{n+1}$$

QUESTION 4: (a) $w^3 = 1$ and $1 + w^2 = 0$ Then $\frac{a + bw + cw}{c + aw + bw} = \frac{a + \frac{b}{w} + \frac{c}{w}}{c + \frac{a}{w} + \frac{b}{w}}$ $C + \frac{\alpha}{\omega} + \frac{\beta}{\omega}$ = aw + b + cwcw + a + bw \sim $= \frac{\omega^2(\alpha + bw + cw^2)}{\alpha + bw + av^2} \quad since w^2 = 1$ - w² $z^{5} = 1$ $= 1 \operatorname{cis} \left(0 + 2k\pi\right)$ k integer $\therefore g = 1 \cos \frac{2k\pi}{5}$ i la sur di $k=0 \implies 3 = 1$ $k=1 \implies 3 = \cos \frac{2\pi}{5} = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$: A Cirly $k \geq 3$ $z = cis \frac{4\pi}{5} = -cos \frac{\pi}{5} + i pin \frac{\pi}{5}$ t Arc C $k=3 \implies 3 = cis \frac{6\pi}{5} = -cos \frac{\pi}{5} - isin \frac{\pi}{5}$ $k=4 \Rightarrow j = cis \frac{\partial \pi}{5} = cos \frac{\partial \pi}{5} - i sin \frac{\partial \pi}{5}$ $\mathcal{L} \beta = \operatorname{cis} \frac{2\pi}{5}, \beta' = \operatorname{cis} \left(-\frac{2\pi}{5}\right)$ $= \cos \frac{2\pi}{5} - i \sin \frac{2\pi}{5} = \beta^{+}$ $= 2\cos \frac{2\pi}{5}$ $\beta + \beta^{-1} = 2\cos \frac{2\pi}{5}$ and $\beta^2 = \cos \frac{4\pi}{5} = -\cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5}$ $\beta^{-1} = cir(-\frac{4\pi}{3}) = -cir \frac{\pi}{3} - ir \frac{4\pi}{3}$

 $-B + \beta^{-1} = -2cos \frac{\pi}{5}$ _____ (2) > scupt the : Quadratic equation $3^{-} (2\cos \frac{2\pi}{5} - 2\cos \frac{\pi}{5}) = 4\cos \frac{\pi}{5} = 0$ now $\beta^5 = 1$ () s⁵-1 =0 $(\beta - i)(\beta^4 + \beta^3 + \beta^7 + \beta + i) = 0$ $\hat{\mathcal{D}}$. $\beta, 1 \rightarrow \beta^{4} + \beta^{3} + \beta^{4} + \beta + 1 = 0$ - sum of mil $\beta + \beta^{2} + \beta^{3} + \beta^{4} = -1$ If nosts are \$+\$', \$"+\$" then quadratic is $\vec{x} = (\beta + \beta' + \beta' + \beta'') = (\beta + \beta'')(\beta' + \beta'') = 0$ $(1) \vec{s} - (\vec{p} + \vec{\beta}^{+} + \vec{p}^{+} + \vec{p}^{3})\vec{s} + (\vec{p}^{3} + \vec{p}^{+} + \vec{p}^{+}) = 0 \quad (1)$ \dot{i} \dot{j} + \dot{j} - l = 0_____ 4 Companing 3 and 4 v E $\frac{2}{1+1} \int \frac{2}{1+1} \int \frac{2}{5} \int \frac{2}{5} = -\frac{1}{2}$ Q.E. $(k)^{(h)} | 3 + 1 + 2i | \leq 1$ $a^{\prime} = a^{\prime} + 1^{\prime}$ $a^{\prime} = \sqrt{5}$

maximum value of 13/ is 15 + 1 -1 -1 -1 -1 -1 -2 -2 -2

QUESTION 5: $(a) \frac{1}{5} + \frac{2}{5^{7}} + \frac{3}{5^{3}}$ $= \frac{1}{5} + \left(\frac{1}{5^{4}} + \frac{1}{5^{4}}\right) + \left(\frac{1}{5^{4}} + \frac{1}{5^{4}} + \frac{1}{5^{4}}\right) + \left(\frac{1}{5^{4}} + \frac{1}{5^{4}} + \frac{1}{5^{4}}\right)$ $=\left(\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\cdots\right)+\left(\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}+\cdots\right)$ $+\left(\frac{1}{5^3}+\frac{1}{5^4}+\frac{1}{5^5}+\cdots\right)+\left(\frac{1}{5^4}+\frac{1}{5^5}+\cdots\right)+\cdots$ $= \frac{5}{5} + \frac{1}{5} + \frac{5}{5} + \frac{1}{5} + \frac{$,11 $= \frac{1}{4} + \frac{1}{20} + \frac{1}{100} + \cdots$ the common ratio clearly being 5 $= \frac{\frac{4}{4}}{\frac{4}{5}}$ 5-16 18) (i) $m = \frac{c}{t_r} - \frac{c}{t_i} + \left(\frac{t_i t_r}{t_i t_r}\right)$ $\int p(c\bar{c}_{i}, \frac{c}{\bar{c}_{i}})$ $(c_{\nu}, \frac{c}{\delta_{\nu}})$ $= \frac{C(t, - t_{r})}{Ct, t_{r}(t_{r} - t_{r})}$ $\mathbb{R}\left(\mathcal{OC}_{3}, \frac{\varphi}{\xi_{3}}\right)$ = $\frac{1}{t_{x}}$ $-\frac{1}{t_{1}t_{3}} \times \frac{-1}{t_{1}t_{2}} = -1$ (ii) PRLOR => $\therefore t_1 t_2 t_3 =$

e nog verstanden af being an effektiven an effektiven af her being being af an effektiven af her being being b

now
$$xy = c^{T}$$

 $\Rightarrow y = c^{T}x^{-1}$
 $y' = -c^{T}x^{-T}$
 $at R(ct_{3}, \frac{c}{t_{3}})$ $y' = \frac{-c^{T}}{c^{T}t_{3}^{T}}$
 $ie m = -\frac{1}{t_{3}^{T}}$

Then
$$m \times m_{2} = -\frac{i}{t_{3}} \times \frac{-i}{t_{1}t_{2}}$$

$$= \frac{i}{t_{1}t_{2}t_{3}}$$
$$= -1 \text{ from } 0 - -2$$

(c) (i)
$$\cos 3\theta = \cos (2\theta + \theta)$$

$$= \cos 2\theta \cos \theta - \sin 4\theta \sin \theta$$

$$= (2\cos^{2}\theta - 1)\cos \theta - 2\sin \theta \cos \theta \sin \theta$$

$$= 2\cos^{3}\theta - \cos \theta - 2\cos \theta (1 - \cos \theta)$$

$$= 4\cos^{3}\theta - 3\cos \theta$$

$$\Rightarrow \cos^{3}\theta - \frac{3}{4}\cos\theta = \frac{1}{4}\cos^{3}\theta$$

$$= \frac{1}{4}\cos^{3}\theta$$

$$= \frac{1}{4}\cos^{3}\theta - \frac{1}{27x^{2}} - 9z - \sqrt{3} = 0$$

$$= 0$$

$$= 27n^{3}\cos^{3}\theta - 9m\cos\theta - \sqrt{3} = 0$$

$$= \frac{\sqrt{3}}{27m^{3}}$$

$$= \frac{\sqrt{3}}{27m^{3}}$$

Comparing with
$$O, \frac{1}{3m} = \frac{3}{4}$$

ie $m = \frac{4}{9}$ m = q: $m = \frac{2}{3}$ will suffice 2 then becomes $\cos^3 \Theta - \frac{3}{4} \cos \Theta = \frac{\sqrt{3}}{27 \times \frac{8}{37}}$ $=\frac{\sqrt{3}}{8}$ $\implies \frac{1}{4} \cos^3 \theta = \frac{\sqrt{3}}{8}$ $\therefore \text{ cor } 36 = \frac{\sqrt{3}}{7}$ $3\theta = 2\pi\pi \pm \frac{\pi}{6}$ = $3\theta = \pm \frac{\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{23\pi}{6}, \frac{25\pi}{6}, \cdots$ $ie 0 = \pm \frac{1}{18}, \frac{11\pi}{18}, \frac{13\pi}{18}, \frac{23\pi}{18}, \frac{25\pi}{18}, \frac{5\pi}{18}, \frac{5\pi}{18$ The 3 solutions of 27 x - 9x - V3 = 0 mill be $\frac{2}{3}\cos\frac{\pi}{18}, \frac{2}{3}\cos\frac{\pi}{18}, \frac{2}{3}\cos\frac{\pi}{18}, \frac{2}{3}\cos\frac{2\pi}{18}, \frac{2}{3}\cos\frac{2\pi}{18}, \frac{2}{3}\cos\frac{2\pi}{18}, \frac{2}{18}, \frac{2\pi}{18}, \frac{2\pi}{18}$ $=\frac{2}{3}\cos\frac{\pi}{8}, -\frac{2}{3}\cos\frac{\pi}{8}, -\frac{2}{3}\cos\frac{5\pi}{8}, -\frac{2}{3}\cos\frac{5\pi}{8}, -\frac{2}{3}\cos\frac{5\pi}{8}, -\frac{2}{3}\cos\frac{\pi}{8}, -\frac{2}{3$ $\frac{2}{3}\cos\frac{\pi}{18}, -\frac{2}{3}\cos\frac{\pi}{18}, -\frac{2}{3}\cos\frac{\pi}{18}.$ Product of roots $= \frac{2}{3} \cos \frac{\pi}{8} - \frac{2}{3} \cos \frac{\pi}{8} - \frac{-2}{3} \cos \frac{5\pi}{8} = \frac{\sqrt{3}}{27}$ $\frac{1}{27} \quad \frac{1}{18} \quad \frac{1}{18} \quad \frac{5\pi}{18} \quad \frac{5\pi}{18} \quad \frac{1}{18} \quad \frac{1}{27}$ $\cos \frac{\pi}{18} \cos \frac{2\pi}{18} \cos \frac{\pi}{18} = \sqrt{3}$

(b) (i) finze coose de = J Ain K. COT K. COT K dr m= min du = cos x dx $= \int u^{\prime} (1-u^{2}) du$ $= \int (u^2 - u^4) du$ $= \left[\frac{n}{3} - \frac{n}{5}\right]_{0}^{\prime}$ $= \frac{1}{3} - \frac{1}{3}$ $=\frac{2}{15}$ (ii) Consider J & (a-n) dn let m = a - x du = -dx $= \int^{o} f(u) \cdot - du$ $=\int_{0}^{a}f(n)\,dn$ $= \int_{a}^{a} f(x) dx$ $\int \frac{dm}{dm} \frac{dm}{k} \frac{dk}{k} = \int \frac{dm}{dm} \frac{dm}{(\frac{\pi}{k} - k)} \frac{dm}$ $= \int_{0}^{\pi} \frac{\cos^{4}x}{\cos^{4}x} dx$ Then frink du + frink du

 $: \cos \frac{\pi}{8} \cdot \cos \frac{3\pi}{18} \cdot \cos \frac{5\pi}{18} \cdot \cos \frac{7\pi}{18} = \frac{\sqrt{3}}{8} \cdot \cos \frac{3\pi}{18}$ $=\frac{\sqrt{3}}{8}\cdot\frac{\sqrt{3}}{\sqrt{2}}$ = 376

(

 $\frac{\chi}{4} - \frac{\chi}{4} = 1$ $\Rightarrow \alpha = 2$ 6=17 $b^2 = a^2 \left(e^2 - i \right)$ a) 7 = 4 (e-1) $e^{2} - 1 = \frac{7}{4}$ $e^{t} = \frac{d}{dt}$ $ie = \frac{\sqrt{u}}{2}$ $e = \frac{\sqrt{11}}{2}$

Fociat (± ae, o) ie (± VII, o) $\chi = \pm \frac{\alpha}{c}$: Directrices are $= \pm \frac{2}{\binom{\sqrt{n}}{\sqrt{2}}}$ ± . $= \pm \frac{4}{\sqrt{11}} \circ R \pm \frac{4\sqrt{11}}{11}$ asymptotes are y = + bx 10 $=\pm \sqrt{7x}$

(c) P is $(2 \sec \theta, \sqrt{7} \tan \theta)$ Then $\frac{\chi^2}{4} - \frac{\chi}{7} = \frac{4 \sec^2 \theta}{4} - \frac{7 \tan^2 \theta}{7}$ $= \sec^2 \theta - \tan^2 \theta$ = 1

- P lier on H.

 $\frac{\tilde{x}}{4} - \frac{\tilde{y}}{4} = 1$

differentiating w.r.t. x $\implies \frac{\kappa}{2} - \frac{2\pi x'}{7} = 0$ ne $\frac{2\pi x'}{7} = \frac{x}{7}$

 $y' = \frac{7\chi}{4\gamma}$

at P: 7 = 14 acco 4 17 tand

(d) Then the mid-point of LM is (2 sec O, J7 tan O) which is P $\therefore LP = MP.$ *↓P* m Equation LO is $y = \frac{x\sqrt{7}}{2}$ is $x\sqrt{7} - 2y = 0$ I distance from M to LO is d = 217 (sec 0 - tan 0) + 217 (sec 0 - tan 0) VII 4 V7 (sec 0 - tan 0) | Distance OL = V 4 (sec 0 + tan 0) + 7 (sec 0 + tan 0)2 = / 11 sec 0 + 22 sec 0 tan 0 + 11 tan 0 = VII see0 + tan 0 $DOLM = \frac{1}{2} \cdot oL \cdot d$ = \$. JTI (sec0 + tan0). 417 (sec0 - tan0) 217 mits (ie independent & 0)

•

 $= \int \frac{\pi}{3 + 3 \sin \theta} \sqrt{9 - 9 \sin \theta} \cdot 3 \cos \theta \, d\theta$ $-\frac{\pi}{2}$

$$= 54 \int_{0}^{T} \cos^{2} \theta \, d\theta$$

 $=\frac{54}{2}\int_{0}^{\frac{\pi}{2}}\left(1+\cos 2\theta\right)d\theta$ = 27 [0 + 1 mi 20]

= 27[=-0]

 $(=\frac{27\pi}{5})$

- Volume is 27T mits?

$$= -\frac{1}{2} + \frac{\sqrt{3}}{\sqrt{3}}$$

= 0

as $\theta \rightarrow 0$ $f(\theta) \rightarrow$ $f(\underline{\Psi}) = -\frac{1}{4\sqrt{3}}$

 $f(\overline{\overline{z}}) = \frac{\sqrt{3}}{2} - \frac{1}{2\sqrt{3}}$ 13

max tuning point at $(\frac{\pi}{5}, \frac{\sqrt{3}}{3})$ since f''(0) < 0

$$z \text{ intercept at } y = 0$$

$$ie \ cos \theta - \frac{1}{4\sqrt{3} \sin \theta} = 0$$

$$ie \ 4\sqrt{3} \sin \theta \cos \theta = 1$$

$$2\sqrt{3} \ \sin 2\theta = 1$$

$$\sin 2\theta = \frac{1}{\sqrt{3}}$$

$$2\theta = 0.29, 2.85$$

$$\theta \doteq 0.14, 1.4$$

(b) (i) x = V t cos d $y = - \frac{1}{2}gt + V t p in d$ $y = 0 \Rightarrow -\frac{1}{2}gt + V t p in d = 0$ $-\frac{1}{2}t(gt - \frac{2Vp in d}{g}) = 0$ $\therefore t = \frac{2Vp in d}{g}$ i. $t = \frac{2Vp in d}{g}$ (i) Range is x = V t cos d = V cos d. $\frac{2Vp in d}{g}$ $= \frac{2V^2 p in d cos d}{g}$

