\qquad

St George Girls High School

Trial Higher School Certificate Examination

2017

 Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Section I	$/ 10$
Section II	
Question 11	$/ 15$
Question 12	$/ 15$
Question 13	$/ 15$
Question 14	$/ 15$
Question 15	$/ 15$
Question 16	$/ 15$
Total	$/ \mathbf{1 0 0}$

Total Marks - 100

Section I

Pages 2-6
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section
- Answer on the multiple choice answer sheet provided at the back of this paper

Section II

Pages 7-12

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

Section I

1. What is the value of $\frac{10}{i|z|}$, if $z=-1+i$?
(A) $-5 i \sqrt{2}$
(B) $2-5 i$
(C) $5 i \sqrt{2}$
(D) $2+5 i$
2. Which of the following are the coordinates of the foci of $9 x^{2}-36 y^{2}=324$?
(A) $(\pm \sqrt{5}, 0)$
(B) $(0, \pm \sqrt{5})$
(C) $(\pm 3 \sqrt{5}, 0)$
(D) $(0, \pm 3 \sqrt{5})$
3. Consider the region bounded by the y-axis, the line $y=4$ and the curve $y=x^{2}$.

If this region is rotated about the line $y=4$, which expression gives the volume of the solid of revolution?
(A) $\quad V=\pi \int_{0}^{4} x^{2} d y$
(B) $\quad V=2 \pi \int_{0}^{2}(4-y) x d y$
(C) $\quad V=\pi \int_{0}^{2}(4-y)^{2} d x$
(D) $\quad V=\pi \int_{0}^{4}(4-y)^{2} d x$

Section I (cont'd)

4. $\int_{0}^{2} \frac{x^{2}}{\sqrt{x^{3}+1}} d x$
(A) $\frac{1}{9}$
(B) $\frac{1}{3}$
(C) $\frac{4}{3}$
(D) 9
5. For the hyperbola $(y+1)^{2}-x^{2}=1$, find an expression for $\frac{d^{2} y}{d x^{2}}$.
(A) $\frac{x}{(y+1)^{3}}$
(B) $\frac{1}{(y+1)^{3}}$
(C) $\frac{x}{y+1}$
(D) $\frac{1}{y+1}$
6. The polynomial $P(x)=4 x^{3}+16 x^{2}+11 x-10$ has roots α, β and $\alpha+\beta$. What is the value of $\alpha \beta$?
(A) $\frac{5}{2}$
(B) $-\frac{5}{2}$
(C) $\frac{5}{4}$
(D) $-\frac{5}{4}$

Section I (cont'd)

7. The diagram below shows the graph of the function $y=f(x)$

Which of the following is the graph of $y=\frac{1}{f(x)}$?
(A)

(B)

(C)

(D)

Section I (cont'd)

8. The diagram shows the graph of $y=P^{\prime \prime}(x)$ which is the second derivative of a polynomial $P(x)$.

Which of the following expressions could be $P(x)$?
(A) $\quad(x+2)^{2}(x-1)$
(B) $(x+2)^{4}(x-1)$
(C) $(x-2)^{4}(x-1)$
(D) $(x-2)^{4}(x+1)$
9. In the Argand diagram the point \mathbf{P} represents the complex number z. When this number is divided by $5 i$ it gives a new complex number.

Which one of the points on the diagram above represents the new complex number?
(A) Q
(B) $\quad R$
(C) S
(D) T
10. The sides of a triangle are the first three terms of an arithmetic progression with the first term 1 and the common difference d. What is the largest set of possible values of d.
(A) $-1<d<1$
(B) $-\frac{1}{2}<d<1$
(C) $-\frac{1}{3}<d<1$
(D) $-\frac{1}{4}<d<1$

End of Section

Section II

90 marks
Attempt Questions 11 - 16
Allow about 2 hours 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
(a) For the complex number $z=\sqrt{2}+\sqrt{2} i$
(i) Express z in modulus-argument form 2
(ii) Find z^{12}.
(b) Evaluate $\int_{\frac{1}{2}}^{2} \frac{1}{2 x^{2}-2 x+1} d x$ to 4 significant figures.
(c) Find the square root of $1+2 \sqrt{2} i$.
(d) Reduce the polynomial $x^{6}-9 x^{3}+8$ to irreducible factors over the:
(i) real field 2
(ii) complex field

Question 12 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Use the substitution $t=\tan \frac{\theta}{2}$ to find $\int \frac{1}{1+\cos \theta+\sin \theta} d \theta$.
(b) $\quad P(a \sec \theta, \tan \theta)$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-y^{2}=1, a>1$, with eccentricity e and asymptotes L_{1} and $L_{2} . M$ and N are the feet of the perpendiculars from P to L_{1} and L_{2} respectively.
Show that $P M . P N=\frac{1}{e^{2}}$.
(c) Use integration by parts to find $\int x \sec ^{2} x d x$.
(d) The area between the curve $y=3 x-x^{2}$ and $y=x$, between $x=1$ and $x=2$ is rotated about the y-axis. Using the method of cylindrical shells, find the volume of the solid of revolution formed.
(e) (i) Given that $\sin x$ can be written as $\sin (2 x-x)$ show that

$$
\sin x+\sin 3 x=2 \sin 2 x \cos x
$$

(ii) Hence or otherwise find the general solutions of $\sin x+\sin 2 x+\sin 3 x=0$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) The roots of $x^{3}+x^{2}+1=0$ are α, β and γ. Find the cubic equation whose roots are

$$
\frac{1}{1-\alpha}, \frac{1}{1-\beta}, \frac{1}{1-\gamma}
$$

Express your answer in the form $a x^{3}+b x^{2}+c x+d=0$.
(b) (i) On the same Argand diagram carefully sketch the region where $|z-1| \leq|z-3|$ and $|z-2| \leq 1$ hold simultaneously.
(ii) Find the greatest possible value for $|z|$ and $\arg z$.
(c) The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersect the x-axis at the points A and B .

The point $\mathrm{P}\left(x_{1}, y_{1}\right)$ lies on the ellipse. The tangent at P intersects the vertical line passing through B at the point Q as shown in the diagram.

(i) Show that the equation of tangent at P is $\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1$
(ii) Show that the coordinates of Q are $\left(a, \frac{b^{2}}{y_{1}}\left(1-\frac{x_{1}}{a}\right)\right)$
(iii) Show that AP is parallel to OQ

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) A sketch of the function $f(x)$ is shown below.

Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts.
(i) $y=|f(x)|$
(ii) $y=[f(x)]^{2}$
(iii) $\quad y=\ln f(x)$
(b) The point $P\left(c t, \frac{c}{t}\right)$ lies on the rectangular hyperbola $x y=c^{2}$.
(i) Find the equation of the tangent to the hyperbola at the point P.
(ii) The tangent at P cuts the x-axis at A and the y-axis at B . Show that the area of the triangle AOB is independent of t.
(c) Find the values of the real numbers p and q given that

$$
\begin{equation*}
x^{3}+2 x^{2}-15 x-36=(x+p)^{2}(x+q) \tag{2}
\end{equation*}
$$

(d) The region shown below is bounded by the lines $x=1, y=1, y=-1$ and the curve $x=-y^{2}$. The region is rotated through 360° about the line $\boldsymbol{x}=2$ to form a solid. Calculate the volume of the solid using the method of slicing?

End of Question14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) A particular solid has as its base the region bounded by the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ and the line $x=4$.

Cross-sections perpendicular to this base and the x-axis are equilateral triangles. Find the volume of this solid.
(b) Let $\mathrm{I}_{\mathrm{n}}=\int_{1}^{4}(\sqrt{\mathrm{x}}-1)^{\mathrm{n}} \mathrm{dx}$, where $n=0,1,2$.
(i) Show that $(n+2) \mathrm{I}_{n}=8-n \mathrm{I}_{n-1}$.
(ii) Evaluate I_{4}.
(c) (i) Use the results $z+\bar{z}=2 \operatorname{Re}(z)$ and $|z|^{2}=z \bar{z}$ for the complex numbers z to show that $|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}=2 \operatorname{Re}(\alpha \bar{\beta})$.

(ii) The diagram shows the angle θ between the complex numbers α and β.

Prove that

$$
|\alpha||\beta| \cos \theta=\operatorname{Re}(\alpha \bar{\beta})
$$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Let $F(x)=e^{x^{2}}$ for all $x \geq 0$.
(i) Find $F^{-1}(x)$, the inverse function of $F(x)$
(ii) State its domain and range of $F^{-1}(x)$.
(iii) On the same set of axes, sketch $F^{-1}(x)$ and $F(x)$ indicate the region represented by

$$
\int_{0}^{1} F(x) d x \text { and } \int_{1}^{e} F^{-1}(x) d x
$$

(iv) Evaluate $\int_{0}^{1} F(x) d x+\int_{1}^{e} F^{-1}(x) d x$.
(b) The cubic equation $x^{3}+k x+1=0$, where k is a constant, has roots α, β and γ. For each positive integer n,

$$
S_{n}=\alpha^{n}+\beta^{n}+\gamma^{n} .
$$

(i) State the value of S_{1}.
(ii) Express S_{2} in terms of k.
(iii) Show that for all values of n,

$$
S_{n+3}+k S_{n+1}+S_{n}=0
$$

(iv) Hence or otherwise express $\alpha^{5}+\beta^{5}+\gamma^{5}$ in terms of k.

End of Examination

Ext 2 Trial 2017
Solutions

$$
\text { 1. } \begin{aligned}
\frac{10}{i / 3 \mid} & =\frac{10}{i \sqrt{1+1}} \\
& =\frac{10}{i \sqrt{2}} \times \frac{i \sqrt{2}}{i \sqrt{2}} \\
& =\frac{10 \sqrt{2}+}{-2} \\
& =-5 \sqrt{2} i
\end{aligned}
$$

2.

$$
\begin{aligned}
& 9 x^{2}-36 y^{2}=324 \\
& \frac{x^{2}}{36}-\frac{y^{2}}{9}=1 \\
& b^{2}=a^{2}\left(e^{2}-1\right) \\
& \frac{9}{36}=e^{2}-1 \\
& e^{2}=\frac{5}{4} \quad a=6 \\
& e=\frac{\sqrt{5}}{2} \quad a
\end{aligned}
$$

For $(\pm a e, 0)=\left(\pm 6 \times \frac{\sqrt{5}}{2}, 0\right)$

$$
\begin{array}{ll}
=\left(-0 \times \frac{3}{2}, 0\right) & C
\end{array}
$$

3. Using Disc Method
$4 \int_{0}^{2} \frac{x^{2}}{\sqrt{x^{3}+1}} d x=\frac{1}{3} \int_{0}^{2} \frac{3 x^{2}}{\sqrt{x^{3}+1}} d x$

$$
\begin{aligned}
& =\frac{1}{3} \int_{1}^{a} \frac{d u}{\sqrt{u}} \frac{\begin{array}{l}
u=x^{3}+1 \\
d u \\
d x=3 x^{2}
\end{array}}{\substack{x=2,4 \\
x=0, u=1}} \\
& =\frac{1}{3} \cdot{ }^{2}\left[u^{4}\right]_{9}^{a} \quad c \\
& =4 / 3 \quad
\end{aligned}
$$

5.

$$
\begin{align*}
(y+1)^{2}-x^{2} & =1 \\
2(y+1) \frac{d y}{d x} & -2 x=0 \\
\frac{d y}{d x} & =\frac{x}{y+1} \\
\frac{d^{2} y}{d x^{2}} & =\frac{y+1-x y^{\prime}}{(y+1)^{2}} \\
& =\frac{y+1-\frac{x^{2}}{y+1}}{(y+1)^{2}} \\
& =\frac{(y+1)^{2}-x^{2}}{(y+1)^{3}} \\
& =\frac{1}{(y+1)^{3}} \tag{B}
\end{align*}
$$

G. $\quad P(x)=4 x^{3}+16 x^{2}+11 x-10$
$\sum \alpha: \alpha+\beta+\alpha+\beta=-\frac{16}{4}$

$$
\begin{aligned}
2(\alpha+\beta) & =-4 \\
\alpha+\beta & =-2
\end{aligned}
$$

$\sum_{0 \times \beta}:$

$$
\begin{array}{r}
\alpha \beta+\alpha(\alpha+\beta)+\beta(\alpha+\beta)=\frac{11}{4} \\
\alpha \beta+(\alpha+\beta)^{2}=\frac{11}{4} \\
\alpha \beta+(-2)^{2}=11 / 4 \\
\alpha \beta=11 \\
=-57_{4}^{4}
\end{array}
$$

7. D
8. Second dirwative has double root ataz-2. So the original function shill have a root of multiplicity 4 at $x=-2$
9. A division of 57 is equivalent to a multaplicator of $\frac{1}{5 i} \times \frac{5 i}{i}=\frac{1}{-5}$ Multiply y P by $\frac{i}{-5}$ means
10.

Sides of triangle

$$
1,1+d, 1+2 d
$$

Now

$$
\begin{aligned}
1+d+1 & <1+2 d \\
2+d & <1+2 d \\
1 & <d
\end{aligned}
$$

or

$$
\begin{gathered}
1+1+2 d<1+d \\
2+2 d<1+d \\
d<-1
\end{gathered}
$$

ar

$$
\begin{aligned}
1+d+i+2 d & <1 \\
2+3 d & <1 \\
3 d & <-1 \\
d & <-1 / 3 \\
\therefore-1 / 3 & <d<1
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION ||

b)

$$
\begin{aligned}
\int_{\frac{1}{2}}^{2} \frac{1}{2 x^{2}-2 x+1} d x & =\frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{1}{x^{2}-x+\frac{1}{2}} d x \\
& =\frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{1}{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}} d x \\
& =\frac{1}{2}\left[\frac{1}{1 / 2} \tan ^{-1} \frac{\left(x-\frac{1}{2}\right)}{1 / 2}\right]_{\frac{1}{2}}^{2} \\
& =\frac{1}{2}\left[2 \tan ^{-1}(2 x-1)\right]_{\frac{1}{2}}^{2} \\
& =\tan ^{-1} 3-\tan ^{-1} 0 \\
& =1.249045 \ldots \\
& \doteq 1.249
\end{aligned}
$$

c) Let $x+i y$ be the square root of $1+2 \sqrt{2 i}$

$$
\begin{array}{ll}
\therefore(x+i y)^{2}=1+2 \sqrt{2} i & x, y \in \mathbb{R} \\
x^{2}-y^{2}+2 i x y=1+2 \sqrt{2} i &
\end{array}
$$

Equating coefficients,

$$
\begin{aligned}
x^{2}-y^{2}=1 \quad 2 x y & =2 \sqrt{2} \\
x y & =\sqrt{2} \\
y & =\frac{\sqrt{2}}{x}
\end{aligned}
$$

Note that trigonometric calculus is performed in radians.
The equivalent in degrees (71.57) was awarded $3 \frac{1}{2}$

MATHEMATICS EXTENSION 2 - QUESTION ||
sub $y=\frac{\sqrt{2}}{x}$ into $x^{2}-y^{2}=1$:

$$
\begin{gathered}
x^{2}-\frac{2}{x^{2}}=1 \\
x^{4}-2=x^{2} \\
x^{4}-x^{2}-2=0 \\
\left(x^{2}-2\right)\left(x^{2}+1\right)=0 \\
(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}+1\right)=0 \\
\therefore x= \pm \sqrt{2} \\
\therefore y= \pm 1
\end{gathered}
$$

\therefore the square rood of $1+2 \sqrt{2} i$ is $\pm(\sqrt{2}+i)$
ie. $\sqrt{2}+i$ and $-\sqrt{2}-i$
d) i

$$
\begin{aligned}
i x^{6}-9 x^{3}+8 & =\left(x^{3}\right)^{2}-9 x^{3}+8 \\
& =\left(x^{3}-1\right)\left(x^{3}-8\right) \\
& =(x-1)\left(x^{2}+x+1\right)(x-2)\left(x^{2}+2 x+4\right) \quad 1,1
\end{aligned}
$$

$$
\begin{aligned}
& \text { irreducible over R }
\end{aligned}
$$

ii For $x^{2}+x+1$,

$$
\begin{aligned}
x & =\frac{-1 \pm \sqrt{3} i}{2} \\
& =-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
\end{aligned}
$$

for $x^{2}+2 x+4$,

$$
\begin{aligned}
x & =\frac{-2 \pm 2 \sqrt{3} i}{2} \\
& =-1 \pm \sqrt{3} i
\end{aligned}
$$

$$
\begin{aligned}
\therefore x^{6}-9 x^{3}+8 & =(x-1)\left(x-\left[-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i\right]\right)(x-2)(x-[-1 \pm \sqrt{3} i]) \\
& =(x-1)\left(x+\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)\left(x+\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)(x-2)(x+1+\sqrt{3} i)(x+1-\sqrt{3} i) \quad 1,1
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION

12a)
$t=\tan \frac{\theta}{2}$
$\frac{d t}{d \theta}=\frac{1}{2} \sec ^{2} \theta$
$\frac{d t}{d \theta}=1 / 2\left(t^{2}+1\right)$

$$
d \theta=\frac{2 d t}{t^{2}+1}
$$

$\int \frac{1}{1+\cos \theta+\sin \theta} d \theta$
$=\int \frac{1 t^{2}}{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \frac{2}{1+t^{2}} d t$
$=\int \frac{2}{\left(1+t^{2}\right)+\left(1-t^{2}\right)+2 c t}$
$=\int \frac{2}{2+2 t}$
$=\int \frac{2+2 d t}{1+t}$
$=\ln \mid 1+t) \mid+c$
$=\ln \left|1+\tan \frac{\theta}{2}\right|+c$

$$
\text { \& } y= \pm \frac{x}{a}
$$

$$
L_{1}: a \cdot y=x \quad L_{1}+y=-x
$$

$$
\text { ie. } x-a y=0 \quad \text { ie } x+a y=0
$$

Using perpendicular formula for distance of PM and PN

$$
\begin{aligned}
P M & =\left\lvert\, \frac{a x+2 y+c}{\sqrt{a^{2}+b^{2}}}\right. \\
& =\left|\frac{a \cdot \sec -\tan \theta}{\sqrt{1+a^{2}}}\right| \\
P N & =\left|\frac{a \cdot \sec \theta+a \cdot \tan \theta}{\sqrt{1+a^{2}}}\right| \\
P M \times P N & =\left|\frac{a(\sec \theta \cdot \tan \theta) \times a(\sec \theta+\tan \theta)}{\sqrt{1+a^{2}}}\right| \\
& =\frac{a^{2}}{1+a}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION
SUGGESTED SOLUTIONS
12b) COat PM $\times P N=\frac{a^{2}}{1+a^{2}} \times 1$

$$
=\frac{a^{2}}{a^{2} e^{2}}
$$

$$
\begin{array}{rl}
=\frac{a^{2}}{1+a^{2}} & b a+b^{2} \\
b=a^{2}\left(e^{2}-1\right) & 1=a^{2}\left(e^{2}-1\right) \\
1 & 1=a^{2} e^{2}-a^{2} \\
1+a^{2} & =a^{2} e^{2}
\end{array}
$$

$$
\therefore P M \times P N=\frac{1}{e^{2}} L^{\cdots} \quad e^{2}=a
$$

12c) $\int x \cdot \sec ^{2} x d x \quad u=x \quad d v=\sec ^{2} x$

$$
=u v-\int v \cdot d u \quad \quad d u=1 \quad v=\tan x
$$

$$
=x \cdot \tan x-\int \tan x d x
$$

$$
=x \cdot \tan x-\int \frac{\sin x}{\cos x} d x
$$

$$
=x \cdot \tan x+\int \frac{-\sin x}{\cos x} d x
$$

$$
=x \cdot \tan x+\ln |\cos x|+c
$$

(Id)

$$
y=3 x-x^{2}
$$

$$
\begin{gathered}
y=x \\
x=3 x-x^{2} \\
x^{2}+x-3 x=0 \\
x^{2}-2 x=0 \\
x(x-2)=0 \\
x=0 \circ 2
\end{gathered}
$$

$$
A=2 \pi x \cdot \delta x
$$

$$
=2 \pi x(2 x-\vec{x}) \cdot \delta x
$$

$$
V=\lim _{8 x \rightarrow 0} 2 \pi x\left(2 x-x^{2}\right) \cdot \delta x
$$

$$
y_{1}=3 x-x^{2}
$$

$$
\delta V=2 \pi x y \cdot \delta x
$$

$$
y_{2}=x
$$

$$
=\lim _{x \rightarrow 0} 2 \pi\left(2 x^{2}-x^{3}\right)
$$

$$
y_{1}-y_{2}=3 x-x^{2}-x
$$

$$
\begin{aligned}
& \quad \\
&= 2 \pi \int 02 \\
& \int
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi]\left[2 x-2 / 2 x^{3}-x^{4}+c\right]_{1}^{2} \\
& =2 \pi^{[}[10
\end{aligned}
$$

$$
=\frac{11 \pi}{6} \text { ar units }
$$

MATHEMATICS EXTENSION 2 - QUESTION

MATHEMATICS EXTENSION 2 - QUESTION 13
SUGGESTED SOLUTIONS

MARKS MARKERS COMMENTS
a) Let

$$
\begin{aligned}
x & =\frac{1}{1-\alpha} \\
1-\alpha & =\frac{1}{x} \\
\alpha & =1-\frac{1}{x} \\
& =\frac{x-1}{x}
\end{aligned}
$$

\therefore cubic is

$$
\begin{gathered}
\left(\frac{x-1}{x}\right)^{3}+\left(\frac{x-1}{x}\right)^{2}+1=0 \\
\frac{x^{3}-3 x^{2}+3 x-1}{x^{3}}+\frac{x^{2}-2 x+1}{x^{2}}+1=0 \\
x^{3}-3 x^{2}+3 x-1+x^{3}-2 x^{2}+x+x^{3}=0 \\
3 x^{3}-5 x^{2}+4 x-1=0
\end{gathered}
$$

b) i

for $x=2$
for $(x-2)^{2}+y^{2}=1$
for correct region

MATHEMATICS EXTENSION 2 - QUESTION 13
b) ii $\frac{\sqrt{2+21^{2}}}{\operatorname{Max}|2| \text { occurs at }(2,1)[\text { on }(2,-1)]}$

$$
\begin{aligned}
|z| & =\sqrt{2^{2}+1^{2}} \\
& =\sqrt{5}
\end{aligned}
$$

Max arg occurs when tangent is perpendicular to radius

c) 1

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \frac{d}{d x}\left[\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right]=\frac{d}{d x}(1) \\
& \frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=\frac{-2 x / a^{2}}{2 y / b^{2}} \\
& =\frac{-x b^{2}}{y a^{2}}
\end{aligned}
$$

At $P\left(x_{1}, y_{1}\right), \frac{d y}{d x}=\frac{x, b^{2}}{y, a^{2}}$

MARKS
MARKER'S COMMENTS
Best responses came from students who redrew the relevant diagrams.

Note that if your answer to b) i was incorrect, it was difficult to demonstrate the required skills for part ii

Very few stuclents correctly answered this port.

1 correct differatiation

MATHEMATICS EXTENSION 2 - QUESTION 13

$$
\begin{gathered}
\text { sUgGested solutions } \\
\text { Equation of tongan through }\left(x_{1}, y_{1}\right) \text { : } \\
y-y_{1}=\frac{-x, b^{2}}{y_{1} a^{2}}\left(x-x_{1}\right) \\
y y_{1} a^{2}-y_{1}^{2} a^{2}=-x x_{1} b^{2}+x_{1}^{2} b^{2} \\
x x, b^{2}+y y_{1} a^{2}=x_{1}^{2} b^{2}+y_{1}^{2} a^{2} \\
\frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}} \\
=1
\end{gathered}
$$

[Because $\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=1$, as $P\left(x_{1}, y_{1}\right)$ lies on the ellipse $\frac{x^{2}}{a}+\frac{y^{2}}{b}=1$

$$
\therefore \frac{x x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}}=1
$$

correct substitution and algebra
c) Ii The coordinates of B are $(a, 0)$
$\therefore Q$ lies on the live $x=9$
Sub $x=a$ into equation of dougat

$$
\begin{aligned}
\frac{a x_{1}}{a^{2}}+\frac{y y_{1}}{b^{2}} & =1 \\
\frac{x_{1}}{a}+\frac{y y_{1}}{b^{2}} & =1 \\
\frac{y y_{1}}{b^{2}} & =1-\frac{x_{1}}{a}
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 13

MATHEMATICS EXTENSION 2 - QUESTION

b)

b) $P\left(c t, \frac{c}{e}\right)$
i)

$$
\text { e) } \begin{aligned}
x y & =c \\
y & =c \cdot x^{-1} \\
\frac{\partial y}{d x} & =-c \cdot x^{-2} \\
& =\frac{-c}{x^{2}}
\end{aligned}
$$

gree at $P\left(C t_{1} s_{t}\right)=\frac{-c}{c^{2}-x^{2}}=\frac{-1}{t^{2}}$

$$
\begin{aligned}
& y-\frac{c}{t}=-\frac{1}{t}(x-c t) \\
& \left.x^{2}(y-c / t)=-x-c t\right) \\
& t^{2} y-\epsilon t=-x+c t \\
& x+t^{2} y-2 c t=0
\end{aligned}
$$

MARKS	MARKER's COMMENTS
2	
2	
2	

MATHEMATICS EXTENSION 2 -QUESTION

$$
\text { Area } \triangle A O B=\frac{1}{2} \times 2 c t \times \frac{2 c}{t}
$$

$$
=2 c^{2}
$$

\therefore Area is independent oft.
14c)

$$
\therefore p=3, q=-4
$$

$$
\begin{aligned}
& x^{3}+2 x^{2}-15 x-36=(x+p)^{2} \cdot(x+q) \\
& -p \text { is a root of multiplicity } 2 \\
& f(x)=x^{3}+2 x^{2}-15 x-36 \\
& f^{\prime}(x)=3 x^{2}+4 x-15 \\
& -p \text { is a root of } f^{\prime}(0)=0 \text { of multiplicity } 1 \\
& 3 x^{2}+4 x-15=0 \\
& (3 x-5)(x+3)=0 \\
& x=\frac{5}{3} \text { or } x=-3 \\
& f(\sqrt[5]{5})=\left(\frac{5}{3}\right)^{3}+2 \times(5 / 3)^{2}-15 \times 5 / 3-36 \neq 0 \\
& f(3)=(-3)^{3}+2 x(-3)^{2}-15 x-3-36=0 \\
& \therefore \quad p=3 \\
& \text { Let } x=0, \quad-36=p^{2}-q \\
& -36=q \cdot q \\
& q=-4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 14bii) } \\
& \text { phi) } \\
& \text { At } \\
& \text { A, } \begin{aligned}
y=0 \Rightarrow x+t^{2} y-2 c t & =0 \\
x+0-2 c t & =0
\end{aligned} \\
& \therefore x=2 c t \\
& A \text { is }(2 c t, 0) \\
& \text { At } B, x=0 \Rightarrow t^{2} y=2 c t \\
& y=\frac{2 c t}{t^{2}} \\
& y=\frac{2 c}{t} \\
& B \text { is }\left(0, \frac{2 c}{t}\right)
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION

$r=$ inner radius $=1$
$R=$ outer radius $=|x|+2=y^{2}+2$
Area of slice $=\pi\left(R^{2}-r^{2}\right)$

$$
=\pi\left(\left(y^{2}+2\right)^{2}-1^{2}\right)
$$

$$
=\pi\left(y^{4}+4 y^{2}+4-1\right)
$$

$$
=\pi\left(y^{4}+4 y^{2}+3\right)
$$

$$
\begin{aligned}
V & =\lim _{y \rightarrow 0} \sum_{y=-1}^{1} \pi\left(y^{4}+4 y^{2}+3\right) \cdot \delta y \\
& =2 \pi \int_{0}^{1}\left(y^{4}+4 y^{2}+3\right) d y \\
& =2 \pi\left[\frac{y^{5}}{5}+\frac{4 y^{3}}{3}+3 y+c\right]_{0}^{1} 0 \\
& \left.=2 \pi\left[1 / 5+4 / 3+r^{3}+c\right)-(0+c)\right]^{1} \\
& =2 \pi \times \frac{68}{15} \\
& =\frac{136}{15} 11 \quad \text { cu units. }
\end{aligned}
$$

MARKS	MARKERS COMMENTS
1	
1	
1	

MATHEMATICS EXTENSION 2 - QUESTION

Take $P(x, y)$ on the curve, $y>0$
Area of cross -section

$$
\begin{aligned}
A(x) & =\frac{1}{2} a b \cdot \sin C \\
& =\frac{1}{2} 2 y \cdot 2 y \cdot \sin 60^{\circ} \\
& =2 y^{2} \times \frac{\sqrt{3}}{2} \\
A(x) & =\sqrt{3} \cdot y^{2} \\
\dot{V} & =\sqrt{3} \cdot y^{2} \cdot f x \\
V & =\lim _{g x \rightarrow 0} \sqrt{3} \cdot y^{2} \cdot \delta x
\end{aligned}
$$

Now $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$

$$
\begin{aligned}
& \frac{x^{2}}{4}+1=\frac{y^{2}}{5} \\
& y^{2}=5\left(\frac{x^{2}}{4}-1\right)
\end{aligned}
$$

So $V=\lim _{8 x \rightarrow 0}^{4} \sum_{3}^{4} \cdot 5\left(\frac{x^{2}}{4}-1\right) 8 x$

$$
\begin{aligned}
& =5 \sqrt{3} \int_{2}^{4}\left(\frac{x^{2}}{4}-1\right) d x \\
& =5 \sqrt{3}\left[\frac{x^{2}}{12}-x+c\right]_{2}^{4} \\
& =5 \sqrt{3}\left[\frac{64}{12}-4-(8 / 2-2)\right] \\
& =5 \sqrt{3} \times \frac{8}{3} \\
& =\frac{40 \sqrt{3}}{3} \text { units }
\end{aligned}
$$

15b) $I_{n}=\int_{1}^{4}(\sqrt{x}-1)^{n} d x, n=0,1,2, \cdots$
i)

$$
\begin{aligned}
u & =\left(x^{\frac{1}{2}}-1\right)^{n} \quad d v=1 \\
d u & =n\left(x^{\frac{1}{2}-1}\right)^{n-1} \times \frac{1}{1} x^{-1 / 2} \quad v=x \\
& =\frac{n\left(x^{1 / 2}-1\right)^{n-1}}{2 \sqrt{x}} \\
I_{n}=u & S^{2} d u
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION

$$
\begin{aligned}
& \quad \text { SUGGESTED SOLUTIONS } \\
& I_{n} \\
& =\left[x(\sqrt{x}-1)^{n}+2\right]_{1}^{4}-\int x \cdot \frac{n}{2}\left(\frac{\sqrt{x}-1)}{\sqrt{x}} d x\right. \\
& =[4 \times(2-1)-0]-\frac{n}{2} \int \sqrt{x}(\sqrt{x}-1)^{n-1} d x \\
& =4-\frac{n}{2} \int((\sqrt{x}-1)+1)(\sqrt{x}-1)^{n-1} d x \\
& =4-\frac{n}{2} \int\left((\sqrt{x}-1)(\sqrt{x}-1)^{n-1}+1 \times(\sqrt{x}-1)^{n-1}\right) d x \\
& \left.\left.=4-\frac{n}{2} \int(\sqrt{x}-1)^{n} d x+\int \sqrt{x}-1\right)^{n-1}\right] d x \\
& =4-\frac{n}{2} \int(\sqrt{x}-1)^{n}-\frac{n}{2} \int(\sqrt{x}-1)^{n-1} d x \\
& I_{n}=4-\frac{n}{2} I_{n}-\frac{n}{2} I_{n-1} \\
& 2 \cdot I_{n}=8-n \cdot I_{n}-n \cdot I_{n-1} \\
& \therefore(n+2) \cdot I_{n}=8-n \cdot I_{n-1}
\end{aligned}
$$

(is) iii) Put $n=2,4 I_{2}=8-2 \cdot I_{1}$

$$
I_{2}=2-\frac{1}{2} I_{1}
$$

$$
\begin{aligned}
I_{2} & =2-\frac{1}{2} \int_{1}^{4}\left(x^{\frac{1}{2}}-1\right) \\
& =2-1 / 2\left[\frac{2 / 3}{3} x^{3}-x+c\right]_{1}^{4} \\
& =2-\frac{1}{2}\left[\left(\frac{2}{3} \times 0^{3 / 2}-4\right)-\left(\frac{2}{3}-1\right)\right] \\
& =2-\frac{5}{6} \\
& =7 / 6
\end{aligned}
$$

$$
\text { Put n=3, } \begin{aligned}
\quad I & =8-3 \cdot I_{2} \\
5 \cdot I_{3} & =8-3 \times 7 / 6 \\
I_{3} & =9 / 10
\end{aligned}
$$

Put $n=4,6 \cdot I_{4}=8-4 \cdot I_{3}$

$$
=8-4 \times 9
$$

$$
\begin{aligned}
I_{4} & =\frac{1}{6} \times \frac{22}{5} \\
\therefore I_{4} & =1115
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION

LDc)
$i)$
$z+\bar{\xi}=2 \operatorname{Re}(z),\|z\|=z \bar{z}$
$\operatorname{Prove}\|\alpha\|^{2}+\|\beta\|^{2}-\|\alpha-\beta\|^{2}=2 \operatorname{Re}(\alpha \bar{\beta})$

$$
\begin{aligned}
& \text { Prove }|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}=\alpha R_{e}(\alpha \bar{\beta}) \\
& \begin{aligned}
L H S & =\alpha \cdot \bar{\alpha}+\beta \bar{\beta}-(\alpha-\beta)(\bar{\alpha} \beta) \\
& =\alpha \cdot \bar{\alpha}+\beta \bar{\beta}-(\alpha-\beta)(\bar{\beta}-\bar{\beta}) \\
& =\alpha \cdot \bar{\alpha}+\beta \bar{\beta}-(\alpha \bar{\alpha}-\alpha \bar{\beta}-\beta-+\beta \bar{\beta}) \\
= & \alpha \cdot \bar{\beta}+\beta \sqrt{\beta}-\alpha \bar{z}+\alpha \bar{\beta}+\beta \bar{\alpha}-\beta \bar{\beta} \\
= & \alpha \bar{\beta}+\bar{\alpha} \beta \\
= & \alpha \bar{\beta}+\bar{\alpha} \bar{\beta} \\
= & 2 \operatorname{Re}(\alpha \bar{\beta})
\end{aligned}
\end{aligned}
$$

$-$
ii) $A B=(\alpha-\beta)$

Using cosine rule

$$
\begin{array}{r}
\cos \theta=\frac{|\alpha|^{2}+|\beta|^{2}-|\alpha-\beta|^{2}}{2 \cdot|\alpha| \cdot|\beta|} \\
\cos \theta=\frac{2 \operatorname{Re}(\alpha \bar{\beta})}{2 \cdot(\alpha|\cdot| \beta \mid} \\
\cos \theta=\frac{\operatorname{Re}(\alpha \bar{\beta})}{|<1 \cdot| \beta \mid} \\
|X||\beta| \cdot \cos \theta=\operatorname{Re}(\alpha \bar{\beta})
\end{array}
$$

MATHEMATICS EXTENSION 2 - QUESTION 16

SUGGESTED SOLUTIONS
a) i $\quad F(x)=e^{x^{2}}, x \geqslant 0$
$\operatorname{let} y=e^{x^{2}}$
For inverse,

$$
\begin{aligned}
& x=e^{y^{2}}, \quad y \geqslant 0 \\
& \ln x=y^{2}, \quad(\because y \geqslant 0) \\
& y=\sqrt{\ln x} \quad\left(\begin{array}{l}
\end{array},\right.
\end{aligned}
$$

ii

$$
\begin{gathered}
\ln x \geqslant 0 \\
\therefore x \geqslant 1
\end{gathered}
$$

\therefore domain: all real $x, x \geqslant 1$ rage: all real $y, y \geqslant 0$
iii

$$
\begin{aligned}
& \int_{0}^{1} F(x) d x \quad \int_{1}^{e} F^{-1}(x) d x \\
& \text { iv) } \text { Area }_{C}=\text { Area }_{B} \text { by symatry } A \\
& \begin{aligned}
\therefore \int_{0}^{1} F(x) d x+\int_{1}^{e} F^{-1}(x) d x & =\text { area of restage } \\
& =e x 1
\end{aligned} \\
& =e \text { units }^{2}
\end{aligned}
$$

Errors of sign were worth $\frac{1}{2}$ mark

1 No half marks
1 were awarded.
Note that if you got port i wrong, it was difficult to demonstrate the skills for pant ii

1 for curves 1 for regions Cor one correctcurve and its region = 1 mark)

1	
	\square
1	\square

MATHEMATICS EXTENSION 2 - QUESTION 16

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
b) i_{1}	$=\alpha^{\prime}+\beta^{\prime}+\gamma^{\prime}$		The answer to
	$=\frac{-b}{9}$		this question is
	$=\frac{9}{1}$		a value, not
	$=0$	1	an expression.
ii S_{2}	$=\alpha^{2}+\beta^{2}+r^{2}$		
	$=(\alpha+\beta+r)^{2}-2(\alpha \beta+\alpha r+\beta r)$	1	
	$=\frac{-b}{9}-2\left(\frac{c}{a}\right)$		
	$=0-2 k$		
	$=-2 k$		

iii $L H S=S_{n+3}+k S_{n+1}+S_{n}$
$=\alpha^{n+3}+\beta^{n+3}+\gamma^{n+3}+k\left(\alpha^{n+1}+\beta^{n+1}+r^{n+1}\right)+\alpha^{n}+\beta^{n}+r^{n} \mid 1$
$=\alpha^{n+3}+k \alpha^{n-1}+\alpha^{n}$
$+\beta^{n+3}+k \beta^{n+1}+\beta^{n}+\gamma^{n+3}+k \gamma^{n+1}+\gamma^{n}$
$=\alpha^{n}\left(\alpha^{3}+k \alpha+1\right)+\beta^{n}\left(\beta^{3}+k \beta+1\right)+\gamma^{n}\left(r^{n}+k r+1\right) 1$

$$
=\alpha^{n}(0)+\beta^{n}(0)+\gamma^{n}(0)
$$

$$
\begin{aligned}
& =0 \quad(\because \alpha, \beta, \text { and } r \text { are roots }) \\
& =\text { RMS }
\end{aligned}
$$

Note that α being a root does not imply that α^{n} is also a root.
when $n=2$

$$
\begin{aligned}
& S_{5}+k S_{3}+S_{2}=0 \\
& S_{5}=-k S_{3}-S_{2} \\
&=-k(-3)--2 k \\
& \therefore S_{5}=5 k \\
& \therefore \alpha^{5}+\beta^{5}+r^{5}=5 k
\end{aligned}
$$

