St George Girls High School

Trial Higher School Certificate Examination

2019

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided
- In Questions $11-16$, show relevant mathematical reasoning and/or calculations

Section I	$/ 10$
Section II	
Question 11	$/ 15$
Question 12	$/ 15$
Question 13	$/ 15$
Question 14	$/ 15$
Question 15	$/ 15$
Question 16	$/ 15$
Total	$/ \mathbf{1 0 0}$

Section II

Pages 6-11

90 marks

- Attempt Questions 11 - 16
- Allow about 2 hours and 45 minutes for this section
- Begin each question in a new writing booklet

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1. If $z=\frac{3+4 i}{1+2 i}$, the imaginary part of z is:
(A) $\quad-2$
(B) $-\frac{2}{5}$
(C) $-\frac{2}{5} i$
(D) $-2 i$
2. Which graph best represents $y=\left|\log _{e}(x+1)\right|$?
(A)

(B)

(C)

(D)

Section I (cont'd)

3. The equation $2 x^{3}-4 x^{2}-8 x-1=0$ has roots α, β and γ. What is the value of $\alpha^{-3} \beta^{-3} \gamma^{-3}$?
(A) -8
(B) $-\frac{1}{8}$
(C) $\frac{1}{8}$
(D) 8
4. The diagram shows the solution of an equation.

Which of these could be the equation, if z is a point on the circumference of the circle?
(A) $\quad \operatorname{Arg}(z-a)=\operatorname{Arg}(z+a)$
(B) $\quad \operatorname{Arg}(z-a)-\operatorname{Arg}(z+a)=\frac{\pi}{2}$
(C) $\quad \operatorname{Arg}(z+a)-\operatorname{Arg}(z-a)=\frac{\pi}{3}$
(D) $\quad \operatorname{Arg}(z-a)-\operatorname{Arg}(z+a)=\frac{\pi}{3}$

Section I (cont'd)

5. Find $\int \frac{d x}{x^{2}+4 x+9}$.
(A) $\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+c$
(B) $\frac{1}{5} \tan ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+c$
(C) $\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{x}{\sqrt{5}}\right)+c$
(D) $\frac{1}{5} \tan ^{-1}\left(\frac{x}{\sqrt{5}}\right)+c$
6. The polynomial $P(x)=x^{3}-6 x^{2}+9 x+c$ has a double zero. What are the values of c ?
(A) $c=-4$ or $c=-1$
(B) $c=-4$ or $c=0$
(C) $c=4$ or $c=7$
(D) $c=4$ or $c=0$
7. Which of the following is an expression for $\int x e^{-x} d x$?
(A) $-x e^{-x}-e^{-x}+c$
(B) $-x e^{-x}+e^{-x}+c$
(C) $x e^{-x}-e^{-x}+c$
(D) $x e^{-x}+e^{-x}+c$

Section I (cont'd)

8. What is the eccentricity of the ellipse $4 x^{2}+9 y^{2}=16$?
(A) $\frac{13}{3}$
(B) $\frac{\sqrt{5}}{9}$
(C) $\frac{\sqrt{13}}{3}$
(D) $\frac{\sqrt{5}}{3}$
9. The circle $x^{2}+y^{2}=9$ is rotated about the line $x=4$ to form a solid. What is an expression for the volume of the solid using the method of cylindrical shells?
(A) $\quad 2 \pi \int_{0}^{3}(4-x) \sqrt{9-x^{2}} d x$
(B) $\quad 4 \pi \int_{0}^{3}(4-x) \sqrt{9-x^{2}} d x$
(C) $\quad 2 \pi \int_{-3}^{3}(4-x) \sqrt{9-x^{2}} d x$
(D) $\quad 4 \pi \int_{-3}^{3}(4-x) \sqrt{9-x^{2}} d x$
10. A body of mass $m \mathrm{~kg}$ moves in a straight line with initial speed $U \mathrm{~ms}^{-1}$ subject to a resistance of magnitude $m(1+v)$ Newtons when its speed is $v \mathrm{~ms}^{-1}$. What is the time taken in seconds by the body to come to rest?
(A) $\frac{1}{1+U}$
(B) $\sqrt{1+U}$
(C) $\quad \ln (1+U)$
(D) e^{1+U}

Section II

90 marks
Attempt Questions 11 - 16
Allow about 2 hours 45 minutes for this section
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet
a) For $z=3+i$ and $w=2+2 i$, find the values of:
(i) $\arg (w-z)$
(ii) $w+\overline{2 u z}$
b) Use a suitable trigonometric substitution to evaluate the following integral.

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

c) (i) Express $\frac{x}{(x+1)\left(x^{2}+1\right)}$ in the form $\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}$.
(ii) Hence find $\int \frac{x}{(x+1)\left(x^{2}+1\right)} d x$.
d) (i) Find real numbers a and b such that $(a+i b)^{2}=-3+4 i$.
(ii) Hence solve the equation $z^{2}-3 z+(3-i)=0$.

Question 12 (15 marks) Use a SEPARATE writing booklet
Marks
a) A rectangular hyperbola A has the equation $x y=18$.
(i) Show that the equation of the normal N_{1} to A at the point $P(2,9)$ is given by $2 x-9 y+77=0$.
(ii) Find, in general form, an equation of the normal N_{2} to A at the point $Q(9,2)$.
(iii) Find the coordinates of point B where N_{1} and N_{2} intersect.
(iv) Show that the quadrilateral $O P B Q$ is a rhombus.
b) Find all the roots of the equation:

$$
18 x^{3}+3 x^{2}-28 x+12=0
$$

given that two of the roots are equal.
c) The shaded region bounded by the parabolas $y=2 x-x^{2}$ and $y=4 x-2 x^{2}$ between $x=0$ and $x=2$ is as shown in the diagram.

Use the cylindrical shells method to find the volume of the solid formed when the shaded area is rotated about the line $x=2$.
d) On an Argand diagrams, shade in the regions containing all points representing complex numbers z such that:

$$
|z| \leq|z-2| \text { and }-\frac{\pi}{4} \leq \arg z \leq \frac{\pi}{4}
$$

Question 13 (15 marks) Use a SEPARATE writing booklet.
a)

The graph of $y=f(x)$ is shown above. Draw separate one-third page sketches of these functions. Indicate clearly any asymptotes and intercepts with the axes.
(i) $y=f(|x|)$
(ii) $y=\sqrt{f(x)}$
(iii) $y=[f(x)]^{2}$
(iv) $y=f^{-1}(x)$
b) A solid is formed by rotating about the x-axis, the region bounded by the parabola $y^{2}=4 a x$, the x-axis and ordinate $x=a$. Find the volume of this solid using the method of slicing.
c) $\quad I_{n}=\int_{1}^{e}\left(1-\log _{e} x\right)^{n} d x \quad \mathrm{n}=0,1,2, \ldots$
(i) Show that $I_{n}=-1+n I_{n-1} \quad \mathrm{n}=1,2,3, \ldots$
(ii) Hence evaluate $\int_{1}^{e}\left(1-\log _{e} x\right)^{3} d x$.

Question 14 (15 marks) Use a SEPARATE writing booklet.
Marks
a) A particle of mass m falls from rest in a medium where the resistance to motion has magnitude $m k v$ for some positive constant k when the speed is v, and the terminal velocity of the particle is V. The particle falls a distance x in time t, and the acceleration due to gravity is g.
(i) Show that $\ddot{x}=\frac{g}{V}(V-v)$. distance X in this time, show that $V T-X=\frac{V^{2}}{2 g}$.
b) Sketch the graph of $y=x^{2}+\frac{1}{x^{2}}$.
c) Find the equation of the tangent to the curve $x^{2} y+x y^{2}-6=0$ at the point $(1,2)$.
d) The base of a solid is the region bounded by the curves $y=9 x-x^{3}$, $y=-9 x+x^{3}$ between $x=0$ and $x=3$.

Each cross section perpendicular to the x-axis is a semi circle as shown in the diagram.

Find the volume of this solid.

Question 15 (15 marks) Use a SEPARATE writing booklet.
a) $P(a \cos \theta, b \sin \theta)$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad a>b>0$.

The tangent and the normal at P cut the y-axis at A and B respectively, and $S(a e, 0)$ is a focus of the ellipse.
(i) Show that the tangent to the ellipse at P is the following equation.

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

(ii) Show that the normal to the ellipse at P is the following equation.

$$
\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}
$$

(iii) Why is $\angle A S B=90^{\circ}$?
(iv) Deduce that A, P, S and B are concyclic points.
b) A particle is initially at $x=1$ with a velocity of $2 \mathrm{~m} / \mathrm{s}$.

The acceleration of the particle is given by $a=\frac{1}{2}\left(1-\frac{1}{x^{2}}\right)$, where x is the displacement of the particle from 0 .
(i) Prove that $\frac{d x}{d t}=\frac{1+x}{\sqrt{x}}$.
(ii) Find the time taken for the particle to reach $x=3$.

Question 16 (15 marks) Use a SEPARATE writing booklet.
a) In the Argand diagram below, $O P Q$ is a triangle, which is right-angled at Q. The point R is the midpoint of $O P$.

(i) If $\overrightarrow{O P}=z$ and $\overrightarrow{O Q}=w$ show that $\overrightarrow{O R}=\frac{1}{2}(1-k i) w$, where k is a constant, $k>0$.
(ii) Express $\overrightarrow{R Q}$ in terms of w and hence show $|\overrightarrow{O R}|=|\overrightarrow{R Q}|$.
b) If $x>1$, show that $\tan ^{-1}\left(\frac{x+1}{x-1}\right)-\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{4}$.
c) A particle of mass m moves along the x-axis, beginning at $x=0$. It experiences a resistive force R given by $R=k v$, where k is a constant and v is the velocity of the particle.
(i) Show that its speed v, is given by $v=v_{0} e^{-\frac{k t}{m}}$, where v_{0} is the initial speed.
(ii) Show that the displacement (x) of the particle after t seconds is given by

$$
x=\frac{m v_{0}}{k}\left[1-e^{-\frac{k t}{m}}\right] .
$$

(iii) Show that its limiting position x_{L} is given by $x_{L}=\frac{m v_{0}}{k}$.

Year 12 Ext 2 HSC Trial HSC Exam
MATHEMATICS EXTENSION 2 - QUESTION MC
SUGGESTED SOLUTIONS
SUGGESTED SOLUTIONS

MARKS	MARKERS COMMENTS

4.

$\arg (z-a)=\alpha$ and $\arg (\gamma+a)=\beta$
then $\alpha=\beta+\gamma$ (ext $<i$ ipopecty)
1.e $\quad \operatorname{cog} g(z-a)=\arg (z+a)+j$

So $\arg (3-a)-a r g(3+a)=8$
$B+\angle$ at coartre is less than π

$$
\therefore<\text { of } z \therefore \text { must be less than } \pi / 2=\pi / 2
$$

MATHEMATICS EXTENSION 2 -QUESTION MC

For $x=3, P(3)=0$

$$
\begin{aligned}
& (3)=3^{3}-6(3)+9(3)+c \\
& 0=27-54+27+c \\
& c=0
\end{aligned}
$$

$$
p(1)=0
$$

$$
0=1-6 \times 1+9 \times 1+c
$$

$$
c=-4
$$

A

MATHEMATICS EXTENSION 2 - QUESTION MC
SUGGESTED SOLUTIONS
8.

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=16 \\
& \frac{x^{2}}{4}+\frac{y^{2}}{16}=1
\end{aligned}
$$

$$
a^{2}=4 \quad b^{2}=16 / 9
$$

$$
b^{2}=a^{2}\left(1-e^{2}\right)
$$

$$
\frac{16}{a}=4\left(1-e^{2}\right)
$$

$$
\frac{96}{36}=1-e^{2}
$$

$$
e^{2}=\frac{5}{4}
$$

$$
e=\frac{\sqrt{5}}{3}
$$

9. By Cylindrical Shells

$$
\begin{aligned}
& \delta V=2 \pi\left(R^{2}-r^{2}\right) \cdot y \\
&\left.=2 \pi\left[(4-x+\delta x)^{2}-(4-x)^{2}\right] \sqrt{9-x^{2}}\right] \\
&=2 \pi\left[(4-x)^{2}+2(4-x) \delta x+(\sqrt{x})^{2}-(4-x)^{2}\right] \\
& \times \sqrt{9-x^{2}} \\
& \text { bt }(\delta x)^{2} \rightarrow 0 \\
&=2 \pi[2(4-x) \delta x] \sqrt{9-x^{2}} \\
&=4 \pi(4-x) \sqrt{9-x^{2}} \delta_{x} \\
& V=\lim _{x \rightarrow 0} \sum_{x=-3}^{3} \pi \pi(4-x) \sqrt{9-x^{2}} \delta_{x} \\
&=4 \pi \int_{-3}^{3}(4-x) \sqrt{9-x^{2}} d x
\end{aligned}
$$

MATHEMATICS EXTENSION 2 -QUESTION MC

MATHEMATICS EXTENSION 2 - QUESTION 11

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { a) i) } \arg (\operatorname{ar}-z)=\arg (2+2 i-(3+i)) \\
&=\arg (2+2 i-3-i) \\
&=\arg (-1+i) \\
&=\tan ^{-1}(-1) \\
&=3 \pi
\end{aligned}
$$

ii) $2+2 i+2 i(3+i)=2+2 i+6 i-2$

$$
=2+2 i-2-6 i
$$

b) Use the substitution $x=\sin \theta$

A few student

$$
=-4 i
$$ took the conjugate of $\overline{6 i-2}$ as $6 i+2$ which is incorrect.

MATHEMATICS EXTENSION 2 -QUESTION / /

SUGGESTED SOLUTIONS	
$\frac{\text { c) i) }}{(x-1)\left(x^{2}+i\right)}$	$=\frac{A}{x+1}+\frac{B x+1}{x^{2}+1}$
x	$=A\left(x^{2}+1\right)+(B x+c)(x+1)$

when $x=-1$

$$
\begin{aligned}
-1 & =2 A \\
A & =-\frac{1}{2}
\end{aligned}
$$

when $x=0$
when $x=1$

MATHEMATICS EXTENSION 2 - QUESTION
SUGGESTED SOLUTIONS
d) $(a+i b)^{2}=-3+4 i$
$a^{2}+2 i b a-b^{2}=-3+4 i$

Equating parts:

$$
a^{2}-b^{2}=-3
$$

$$
2 a b=4
$$

From (2) $a=\frac{2}{b}$

$$
\therefore z=2+i \text { or } z=1-i \quad 1
$$

MATHEMATICS EXTENSION 2 -QUESTION 12

MATHEMATICS EXTENSION 2 - QUESTION 12
SUGGESTED SOLUTIONS
a) (iv) cosintinued
$\therefore O P \| B Q$ and $O Q \| B P$
$\therefore O P Q B$ in a parallelogram
$O P=\sqrt{2^{2}+2^{2}} \quad O Q=\sqrt{9^{2}+2^{2}}$

$$
=\sqrt{85}
$$

\therefore adjacent socles event
\therefore rhombus
.$g R$
$O P=\sqrt{85} \quad O Q=\sqrt{85} \quad$ (from above)
$P B=\sqrt{(11-2)^{2}+(11-9)^{2}} \quad Q B=\sqrt{(11-9)^{2}+(11-2)^{2}}$

$$
=\sqrt{9^{2}+2^{2}}
$$

$$
=\sqrt{9^{2}+2^{2}}
$$

$$
=\sqrt{85}
$$

\therefore all four sides equisuil

$$
\therefore \text { rluombur }
$$

$O R$

$$
\text { midpoint } O B=\left(\frac{11}{2}, \frac{11}{2}\right)
$$

$$
\text { midpoint } P Q=\left(\frac{2+9}{2}, \frac{p+2}{2}\right)
$$

$$
=\left(\frac{11}{2}, \frac{11}{2}\right)
$$

$\therefore O B$ and $P Q$. biscuit excel other

$$
\begin{aligned}
m_{O B} & =\frac{11}{11} & m_{r L 2} & =\frac{9-2}{2-9} \\
& =1 & & =-1
\end{aligned}
$$

$$
m_{0 Q} \times m_{r Q}=-1
$$

$$
\therefore O B \perp P Q
$$

\therefore dicigoneals bisect at 90°
\therefore rhombus.
b)

$$
\text { Let } \begin{aligned}
P(x) & =18 x^{3}+3 x^{2}-28 x+12 \\
P^{\prime}(x) & =54 x^{2}+6 x-28 \\
& =2\left(27 x^{2}+3 x-14\right) \\
& =2(9 x+7)(3 x-2)
\end{aligned}
$$ to find poses ole doubt le roils

MATHEMATICS EXTENSION 2 -QUESTION 12

MATHEMATICS EXTENSION 2-QUESTION 12

MATHEMATICS EXTENSION 2-QUESTION 13

MATHEMATICS EXTENSION 2 - QUESTION 13
SUGGESTED SOLUTIONS

Restricted domain: $-1 \leq x \leq 1$

Many students did not restrict. the domain and sketched the inverse relation - $1 / 2$ marks.
(13b)

MATHEMATICS EXTENSION 2 -QUESTION 13

MATHEMATICS EXTENSION 2 -QUESTION 14

MATHEMATICS EXTENSION 2 -QUESTION 14

MATHEMATICS EXTENSION 2 - QUESTION
lUGES

$$
V T=\frac{V^{2}}{9} \ln 2
$$

Fran (1)

$$
\begin{aligned}
& V T-x=\frac{V^{2}}{g} \ln 2+\frac{V^{2}}{2 g}-\frac{V^{2}}{g} \ln 2 \\
& V T-x=\frac{V^{2}}{2 g}
\end{aligned}
$$

$$
\Rightarrow \quad 2 x y+\frac{x^{2} d y}{d x}+y^{2}+2 y \frac{d y}{d x}=0
$$

$$
\begin{aligned}
\frac{x^{2} d y}{d x}+2 y \frac{x y}{d x} & =-2 x y-y^{2} \\
\left(x^{2}+2 y\right) \frac{d y}{2 x} & =-\frac{\left(2 x y+y^{2}\right)}{d y} \\
\frac{d y}{d x} & =\frac{-\left(2 x y+y^{2}\right)}{x^{2}+2 y} \\
\text { ut }(1,2) \quad \frac{d y}{d x} & =\frac{-\left(2 \times 1 \times 2+z^{2}\right)}{1^{2}+2 \times 2} \\
& =\frac{-8}{5}
\end{aligned}
$$

Equation of the tangent

$$
y-2=-\frac{8}{5}(x-1)
$$

MATHEMATICS EXTENSION 2 -QUESTION $/ 4$

MATHEMATICS EXTENSION 2- QUESTION 15		
SUGGESTED Solutions	MARKS	MARKER'S COMMENTS
(5a) i)		
$x=a \cos \theta \quad y=b \cdot \sin \theta$		
$d x=-a \sin \theta \quad \quad d y=b \cos \theta$		
$d \theta \quad \frac{d \theta}{}$		
$\therefore \quad \frac{d y}{d x}=\frac{d y}{d \theta} \times \frac{d \theta}{d x}$		
$b \cos \theta x=1$		
$a \sin \theta$		
$=-b \cos \theta$		1 mack for gradient
$a \sin \theta$		
Equation of tangentat P,		
$y-b \sin \theta=-\frac{b \cos \theta}{\sin }(x-a \cos \theta)$	$\}$	
$a \sin \theta$ (1 mark for
$y a \sin \theta-a b \sin ^{2} \theta=-b \cos \theta x+a b \cos ^{2} \theta$		Equation of tangent.
$x b \cos \theta+y a \sin \theta=a b \sin ^{2} \theta+a b \cos ^{2} \theta$		
$=a b\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$		
$\therefore x b \cos \theta+y a \sin \theta=a b$		
$\div a b$		
$x \cos \theta+y \sin \theta=1$		(2)
$\frac{1}{a}+\frac{1}{b}=1$		
ii) Gradient of normal is asin θ		
$b \cos \theta$	1/2	
Equation of normal is:		
$\begin{aligned} & y-b \sin \theta= a \sin \theta(x-a \cos \theta) \\ & b \cos \theta \end{aligned}$	1/2	
	1/2	
$\begin{aligned} a x \sin \theta-b y \cos \theta & =a^{2} \sin \theta \cos \theta-b^{2} \sin \theta \cos \theta \\ & =\sin \theta \cos \theta\left(a^{2}-b^{2}\right) \end{aligned}$		
	1/2	
$\therefore \frac{a x}{}-\frac{b y}{}=-a^{2}-b^{2}$		
$\underline{\cos \theta} \sin \theta$		(2)

MATHEMATICS EXTENSION 2- Question 15		
suggesteo solutions	MaRKS	MARKER'S COMMENTS
a) iii) $\overline{6}$ find the coordinates of A		
Sub $x=0$ into equation of tangent		
$y=b$		
- $\frac{\sin \theta}{}$		
$\therefore A$ is $\left(0, \frac{b}{\sin \theta}\right)$	1	
To find the wordinates of B		
sub $x=0$ into equation of normal		
$-b^{\prime}=a^{2}-b^{2}$		
$\sin \theta$		
$b y=b^{2}-a^{2}$		
$\sin \theta$		
$y=\frac{\left(b^{2}-a^{2}\right)}{b}$		
$\therefore \quad B$ is $\left(0,\left(b^{2}-a^{2}\right) \sin \theta\right)$	1	
Gradient of AS: $m_{A S}=\frac{b}{\sin \theta}-0$		
$=a-b$		
$a \sin \theta$		
$\text { Gradient of BSi } m_{B S}=\left(b^{2}-a^{2}\right) \sin (t$		
$=\left(a^{2}-b^{2}\right) \sin \theta$		
$a e^{6}$	From $b^{2}=a^{2}\left(1-c^{4}\right.$	
		$=a^{2}-a^{2} e^{2}$
$\therefore m_{B S}=\alpha^{2} e^{2} \sin \theta$		$a^{2}-b^{2}=a^{2} e^{2}$.
$=$ ae $\sin \theta$	1/2	
b		

MATHEMATICS EXTENSION 2 - QUESTION 15

MATHEMATICS EXTENSION 2 -QUESTION 15

MATHEMATICS EXTENSION 2 -QUESTION 15

MATHEMATICS EXTENSION 2-QUESTION 16
—— SUGGESTED SOLUTIONS
a) (i) $\overrightarrow{O R}=\frac{1}{2} \overrightarrow{O P}$
$\overrightarrow{Q P}$ is a 90° clockwise rotation of $\overrightarrow{O Q}$
multiplied by a Actor of $k, k>0$

$$
\begin{aligned}
\overrightarrow{Q P} & =-i \overrightarrow{O Q} \times k \\
& =-k i \overrightarrow{O Q} \\
& =-k i w \\
\overrightarrow{O P} & =\overrightarrow{O Q}+\overrightarrow{Q P} \\
& =w^{i}+(-k i w) \\
\text { From (i) } \overrightarrow{O R} & =\frac{1}{2} \overrightarrow{O P} \\
& =\frac{1}{2}(w-k i w) \\
& =\frac{1}{2}(1-k i) w
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\overrightarrow{R Q} & =\overrightarrow{O Q}-\overrightarrow{O R} \\
& =w-\frac{1}{2}(1-k i) w \\
& =w-\frac{w}{2}+\frac{k i w}{2} \\
& =\frac{w}{2}+\frac{k i w}{2} \\
& =\frac{w}{2}(1+k i)
\end{aligned}
$$

$$
\begin{aligned}
|\overrightarrow{O R}| & =\left|\frac{1}{2}(1-k i) w\right| \\
& =\left|\frac{1}{2}\right||1-k i||w| \\
& =\frac{1}{2} \sqrt{1+(-k)^{2}}|w| \\
& =\frac{1}{2} \sqrt{1+k^{2}}|w| \\
|\overrightarrow{R Q}| & =\left|\frac{1}{2}(1+k i) w\right| \\
& =\left|\frac{1}{2}\right||1+k i||w| \\
& =\frac{1}{2} \sqrt{1+k^{2}}|w| \\
& =|\overrightarrow{O R}|
\end{aligned}
$$

MATHEMATICS EXTENSION 2 -QUESTION 16

| SUGGESTED SOLUTIONS | MARKS | MARKERS COMMENTS |
| :---: | :---: | :---: | :---: |
| b) $L_{\text {et }} \alpha=\operatorname{tin}^{-1}\left(\frac{x+1}{x-1}\right)$ and $\beta=\tan ^{-1}\left(\frac{1}{x}\right)$ | | |
| $\tan \alpha=\frac{x+1}{x-1} \tan \beta=-\frac{1}{2} \quad x>1$ | 1 | Inasinh for inctatituction |

$$
\therefore \tan ^{-1} \frac{x+1}{x-1}-\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}
$$

c) (i) when $t=0,-2=0, v=v_{0}$

$$
\begin{aligned}
m \ddot{x} & =-k v \\
\ddot{x} & =-\frac{k v}{m}
\end{aligned}
$$

$\ddot{x}=\frac{d v}{d t}$

$$
\begin{aligned}
\frac{d v i}{d t} & =-\frac{k v}{m} \\
\frac{i l t}{d v} & =\frac{-m}{k v} \\
\int_{v}^{t} d t & =\int_{v_{0}}^{v}-\frac{m}{k v} d v \\
t & =-\frac{m}{k} \int_{v_{0}}^{v} i \frac{i}{v} d v \\
& =-\frac{m}{k}[\ln |v| \mid]_{v_{0}}^{i v} \\
& =-\frac{m}{k}(\ln v-\ln v)
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION

