Teacher:

Mathematics Extension 2

2020 Trial HSC Examination

General - Reading time - 10 minutes
 Instructions • Working Time -3 hours
 - Write using black pen
 - Calculators approved by NESA may be used

- A reference sheet is provided
- For questions in Section I, use the multiple-choice answer sheet provided
- For questions in Section II:
- Start each question in a new writing booklet
- Show relevant mathematical reasoning and/or calculations
- Extra writing booklets are provided if needed
- Marks may not be awarded for incomplete or poorly presented solutions

Total marks: Section I-10 marks (pages 3-6)
100 • Attempt Questions 1-10

- Allow about 15 minutes for this section

Section II - 90 marks (pages 7 -12)

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Q1 - Q10	$/ 10$
Q11	$/ 15$
Q12	$/ 15$
Q13	$/ 15$
Q14	$/ 15$
Q15	$/ 15$
Q16	$/ 15$
Total	$/ \mathbf{1 0 0}$
	$\%$

Section I

10 marks

Attempt Questions 1-10

On the multiple choice answer sheet circle the letter corresponding to the most correct answer for questions $1-10$.

1. In modular-argument form, the complex number $i-1$ is :
(A) $\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)$
(B) $\quad \sqrt{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right)$
(C) $2 \operatorname{cis}\left(-\frac{5 \pi}{4}\right)$
(D) $2 \operatorname{cis}\left(\frac{3 \pi}{4}\right)$
2. Which of the following is a primitive of $\frac{\sec ^{2} x}{\tan ^{3} x}$?
(A) $\frac{1}{2} \cot ^{2} x$
(B) $-\frac{1}{2} \cot ^{2} x$
(C) $\frac{1}{4} \cot ^{4} x$
(D) $-\frac{1}{4} \cot ^{4} x$
3. A lawyer for a person under investigation for a bank robbery states
IF MY CLIENT WAS NOT IN THE
SUBURB AT THE TIME OF THE
ROBBERY, THE ROBBER CANNOT
BE MY CLIENT.

Which of the following statements is logically equivalent to the statement made by the lawyer?
(A) If my client was in the suburb, then he was the robber.
(B) If my client was the robber, then my client was in the suburb.
(C) If my client was not the robber, then he was not in the suburb.
(D) If my client was not the robber, then my client was in the suburb.
4. Which of the following is the vector equation of the line segment joining the points $\left[\begin{array}{l}3 \\ -2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}5 \\ -3 \\ 4\end{array}\right]$?
(A) $\quad \underset{\sim}{r}=\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]+\lambda\left[\begin{array}{c}5 \\ -3 \\ 4\end{array}\right]$ for $0 \leq \lambda \leq 1$
(B) $\underset{\sim}{r}=\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]+\lambda\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]$ for $0 \leq \lambda \leq 1$
(C) $\underset{\sim}{r}=\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]+\lambda\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ for $0 \leq \lambda \leq 1$
(D) $\underset{\sim}{r}=\left[\begin{array}{c}3 \\ -2 \\ 3\end{array}\right]+\lambda\left[\begin{array}{c}15 \\ 6 \\ 12\end{array}\right]$ for $0 \leq \lambda \leq 1$
5. Which of the following is equivalent to $\sqrt{i^{3}}$?
(A) $e^{\frac{i \pi}{4}}$
(B) $e^{\frac{i \pi}{2}}$
(C) $e^{\frac{3 i \pi}{4}}$
(D) $e^{\frac{-i \pi}{2}}$
6. If $\frac{5}{(2 x+1)(2-x)}=\frac{A}{2 x+1}+\frac{B}{2-x}$, then A and B have values of:
(A) $A=-1, B=2$
(B) $A=1, B=-2$
(C) $A=2, B=-1$
(D) $A=2, B=1$
7. The equation $z^{5}=1$ has roots $1, \omega, \omega^{2}, \omega^{3}, \omega^{4}$ where $\omega=e^{\frac{2 \pi}{5} i}$. What is the value of $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)$?
(A) -5
(B) -4
(C) 4
(D) 5
8. The negation of ' P and not Q ' is :
(A) ' not Q or not P^{\prime}.
(B) ' Q or not P '.
(C) ' Q and not P '.
(D) ' not Q and not P '.
9. The lines ℓ_{1} and ℓ_{2} are given by the equations

$$
\ell_{1}: \quad \underset{\sim}{r}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)+s\left(\begin{array}{c}
-3 \\
-2 \\
a
\end{array}\right) \quad \ell_{2}: \quad \underset{\sim}{r}=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)+t\left(\begin{array}{c}
a+2 \\
a^{2} \\
-5
\end{array}\right)
$$

Where $s \in \mathbb{R}, t \in \mathbb{R}$ and a is a constant.
Given that ℓ_{1} and ℓ_{2} are perpendicular what are the values of a ?
(A) $a=1, a=3$
(B) $a=-1, a=3$
(C) $a=1, a=-3$
(D) $a=-1, a=-3$
10. Without evaluating the integrals, which one of the following integrals is greater than zero?
(A) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1+\cos x}{x^{3}} d x$
(B) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin ^{-1}\left(x^{5}\right) d x$
(C) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan ^{3} x}{x^{5}} d x$
(D) $\int_{-1}^{1}\left(x^{2}-4\right) e^{-x^{2}} d x$

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section.

Question 11 (15 marks) Begin a new booklet.
(a) Find $\int \frac{d x}{\sqrt{6+4 x-x^{2}}}$.
(b) (i) Write $1+i \sqrt{3}$ in modulus argument form.
(ii) Find the value of $(1+i \sqrt{3})^{6}$.
(iii) Is it possible for $(1+i \sqrt{3})^{n}$, where n is an integer,
to be purely imaginary? Give reasons for your answer.
(c) Rewrite $e^{1+\frac{i \pi}{6}}$ in
(i) Polar form
(ii) Cartesian form
(d) Consider the statement: $\forall x \in \mathbf{R}, \exists y \in \mathbf{R}$ such that $x^{2}+y^{2}=2$. Is the statement true or false? Justify your answer.
(e) Use the substitution $t=\tan \frac{x}{2}$, to find $\int \frac{1}{1+\cos x-\sin x} d x$.

Question 12 (15 marks) Begin a new booklet.

(a) (i) Find the numbers A, B and C such that:

$$
\begin{equation*}
\frac{1-x}{(1+x)\left(1+x^{2}\right)} \equiv \frac{A}{1+x}+\frac{B x+C}{1+x^{2}} \tag{2}
\end{equation*}
$$

(ii) Hence find the exact value of $\int_{0}^{1} \frac{1-x}{(1+x)\left(1+x^{2}\right)} d x$.
(b) The vertices of a triangle $A B C$ are defined by the position vectors

$$
\overrightarrow{O A}=\left(\begin{array}{c}
1 \\
-6 \\
-2
\end{array}\right) \quad \overrightarrow{O B}=\left(\begin{array}{c}
0 \\
-4 \\
-1
\end{array}\right) \quad \text { and } \overrightarrow{O C}=\left(\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right)
$$

(i) Show that $\cos \angle B A C=\frac{1}{2}$
(ii) Find the exact area of triangle $A B C$.
(c) Consider the point $P(2,1,-6)$ and the line L with equation

$$
\underset{\sim}{r}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

Find the shortest distance from the point P to the line L.
(d) Prove by contradiction that if n is a positive integer then

$$
\sqrt{8 n+6} \text { is always irrational. }
$$

Question 13 (15 marks) Begin a new booklet.

(a) The points P and Q have vector positions:

$$
\overrightarrow{O P}=-2 \underset{\sim}{i}+14 \underset{\sim}{j}-5 \underset{\sim}{x} \text { and } \overrightarrow{O Q}=-\underset{\sim}{i}+12 \underset{\sim}{j}-2 \underset{\sim}{k}
$$

(i) Show that the equation of the line ℓ_{1} that passes through P and Q is $\underset{\sim}{r}=(-2+s) \underset{\sim}{i}+(14-2 s) \underset{\sim}{j}+(-5+3 s) \underset{\sim}{k}$ where s is a real number.
(ii) Consider the line ℓ_{2} with equation

$$
{\underset{\sim}{r}}^{r_{2}}(2+a t) \underset{\sim}{i}+(27+(a+1) t) \underset{\sim}{i}+(1+(a+2) t) \underset{\sim}{k}
$$

where a is a constant and t is a real number. The line ℓ_{2} intersects ℓ_{1} at the point R. Find the coordinates of R.
(b) Evaluate $\int_{0}^{3} u \sqrt{u+1} d u$.
(c) (i) For a complex number z, shade the region of the Argand Plane where the inequalities
$|z+1+i| \leq 1$ and $-\frac{\pi}{4} \leq \arg (z+1+i) \leq \frac{\pi}{4}$ hold simultaneously.
(ii) The complex number z satisfies $|z+1+i|=1$.

What is the smallest distance that z can be from the real number -2 on an Argand diagram?
(d) Use contrapositive proof to prove that if $x^{2}\left(y^{2}-4 y\right)$ is odd then the integers x and y are odd.

Question 14 (15 marks) Begin a new booklet.
(a) Prove by induction that $\sum_{r=1}^{n} \frac{r}{(r+1)!}=1-\frac{1}{(n+1)!}$ for integers $n \geq 1$.
(b) Find $\int \cos ^{5} x d x$.
(c) Let $\underset{\sim}{v}$ be the position vector of a variable point on the surface of a sphere with centre $P(1,3,1)$ and radius 14 units.
(i) Write down the vector equation of the sphere.
(ii) The point $Q(2,1,4)$ lies on the surface of the sphere. Find the Cartesian equation of the tangent to the sphere at Q. (You may assume that the radius drawn to the point of contact of the tangent is perpendicular to the tangent.)
(d) Let $I_{n}=\int_{1}^{e} x^{3}(\ln x)^{n} d x$, where n is an integer $n \geq 0$.
(i) Show that $I_{n}=\frac{e^{4}}{4}-\frac{n}{4} I_{n-1}$.
(ii) Show that $I_{2}=\frac{5 e^{4}}{32}-\frac{1}{32}$.

Question 15 (15 marks) Begin a new booklet.

(a) A sequence is given by the recurrence relation

$$
u_{1}=7, u_{n+1}=2 u_{n}+3 \text { for } n \geq 1
$$

Prove by induction that the general formula for the sequence is

$$
u_{n}=5\left(2^{n}\right)-3
$$

(b) (i) Use De Moivre's Theorem to express $\cos 5 \theta$ and $\sin 5 \theta$ in terms of powers of $\sin \theta$ and $\cos \theta$.
(ii) Write an expression for $\tan 5 \theta$ in terms of t, where $t=\tan \theta$.
(iii) By solving $\tan 5 \theta=0$, deduce that: $\tan \frac{\pi}{5} \tan \frac{2 \pi}{5} \tan \frac{3 \pi}{5} \tan \frac{4 \pi}{5}=5$.
(c)

$A B C$ is an acute angled triangle. The altitudes $B E$ and $C F$ intersect at O. The line $A O$ produced meets $B C$ at D. Relative to O the position vectors of A, B and C are $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ respectively.
(i) Show that $\underset{\sim}{b} \cdot(\underset{\sim}{c}-\underset{\sim}{a})=0$ and $\underset{\sim}{c} \cdot(\underset{\sim}{b}-\underset{\sim}{a})=0$.
(ii) Hence show that $A D \perp B C$.
(iii) What geometrical property of the triangle has been proved?

Question 16 (15 marks) Begin a new booklet.

(a) Use mathematical induction to prove that $4^{n+1}+6^{n}$ is divisible by 10 when n is even.
(b) Recall that $x+\frac{1}{x} \geq 2$ for any real number $x>0$. (DO NOT PROVE THIS RESULT)
(i) Prove that $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9$ for any real numbers $a>0, b>0, c>0$.
(ii) Hence prove that $\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right) \geq \frac{3}{2}$ for any real numbers $a>0, b>0, c>0$.
(c) The function $F(p)$ is defined as $F(p)=\lim _{\mathrm{t} \rightarrow \infty} \int_{0}^{\mathrm{t}} x^{p-1} e^{-x} d x$, for $p>0$.
(i) Show that $F(1)=1$.
(ii) Use integration by parts to show $F(p+1)=p F(p)$.
(iii) Hence find $F(n)$ for integers $n \geq 1$.

End of Examination

MATHEMATICS EXTENSION 2 - QUESTION MC
6. $5=A(2-x)+B(2 x+1)$
if $x=2$

$$
\text { If } x=0
$$

$$
5=B(4+1)
$$

$$
5 B=5
$$

$$
B=1
$$

$$
\begin{aligned}
& 5=2 A+B \\
& 5=2 A+1 \\
& 2 A=4 \\
& A=2
\end{aligned}
$$

$$
D
$$

7. $z^{5}-1=(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)$
and

$$
\begin{aligned}
z^{5}-1= & (z-1)(z-\omega)\left(z-\omega^{2}\right)\left(z-\omega^{3}\right)\left(z-\omega^{4}\right) \\
(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right) & =(z-1)(z-\omega)\left(z-\omega^{2}\right)\left(z-\omega^{3}\right)\left(z-\omega^{4}\right) \\
z^{4}+z^{3}+z^{2}+z+1 & =(z-\omega)\left(z-\omega^{2}\right)\left(z-\omega^{3}\right)\left(z-\omega^{4}\right) \\
\text { but } z & =1 \text { gives } \\
1^{4}+1^{3}+1^{2}+1+1 & =(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right) \\
5 & =(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)
\end{aligned}
$$

D
8. B

$$
\begin{aligned}
& \text { 4. } \left.\quad \begin{array}{c}
\text { SUGGESTED SOLUTIONS } \\
\sim
\end{array}\right)\left(\begin{array}{c}
3 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
5-3 \\
-3-2 \\
4-3
\end{array}\right) \\
& =\binom{3}{-\frac{2}{3}}+\lambda\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \\
& \text { 5. } \quad \sqrt{i^{3}}=i^{\frac{3}{2}} \\
& =(0+i)^{\frac{3}{2}} \\
& \begin{array}{l}
=(0+1) \\
=\left(\frac{\cos \pi}{\left(e^{i \frac{\pi}{2}}\right)^{23 / 2}}+i \sin \frac{\pi}{2}\right)^{3 / 2}
\end{array} \\
& =\left(e^{i \frac{\pi}{2} / 2}\right)^{2 / 2} \\
& =e^{i \frac{3 \pi}{4}}
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION
9. Dot product of their direction vector is zero

$$
\begin{gather*}
\left(\begin{array}{c}
-3 \\
-2 \\
a
\end{array}\right) \cdot\left(\begin{array}{c}
a+2 \\
a^{2} \\
-5
\end{array}\right)=0 \\
-3(a+2)-2 a^{2}-5 a=0 \\
-3 a-6-2 a^{2}-5 a=0 \\
2 a^{2}+8 a+6=0 \\
a^{2}+4 a+3= \\
(a+3)(a+1)=0 \\
a=-3 a a=-1 .
\end{gather*}
$$

10. Recall $\int_{-a}^{a} f(x) d x=0$ if $f(x)$ is odd
and $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x d f(x)$ seen.
A. $1+\cos x$ is even, x^{3} is odd

$$
\begin{aligned}
& f(-x)=\frac{-f(x)}{g(x)}=-\left(\frac{f(x)}{g(x)}\right) \\
& \therefore \frac{1+\cos x}{x^{3}} \text { is odd }
\end{aligned}
$$

B. $\sin ^{-1}\left(x^{5}\right)$ is odd: $\int_{-\pi / 3}^{\pi / 3} \sin ^{-1}\left(x^{5}\right) d x=0$
e. $\tan ^{3} x$ is odd as $f(-x)=f(x)$

$$
\begin{gathered}
x^{5} \text { is odd as } g(-x)=-g(x) \\
\frac{\tan ^{3} x}{x^{5}}=\frac{-f(x)}{-g(x)}=\frac{f(x)}{g(x)} \\
\therefore \int_{-\pi / 4}^{\pi / 4} \frac{\tan ^{3} x}{x^{5}} d x=2 \int_{0}^{\pi / 4} \frac{\tan ^{3}}{x^{5}} d x
\end{gathered}
$$

MATHEMATICS EXTENSION 2 - QUESTION

SUGGESTED SOLUTIONS
but tan ${ }^{3} n$ and n^{5} are both
positive from 0 to $\pi / 4$
\therefore the integral will be positive

D.

$$
\begin{array}{rlrl}
f(x) & =x^{2}-4 & g(x) & =e^{-x^{2}} \\
f(-x) & =(-x)^{2}-4 & g(-x) & =e^{-(-x)^{2}} \\
& =x^{2}-4 & & =e^{-x^{2}} \\
\therefore f(x) \text { is even } & & & g(x)
\end{array}
$$

$$
\therefore \text { even }
$$

$$
\therefore\left(x^{2}-4\right) \cdot e^{-x^{2}} \text { is an even functor }
$$

$$
\therefore \int_{-1}^{1}\left(x^{2}-4\right) \cdot e^{-x^{2}} d x=2 \int_{0}^{1}\left(x^{2}-4\right) e^{-x^{2}} d x
$$

but between 0 and 1

$$
x^{2}-4<0
$$

and $e^{-x^{2}}>0 \quad \forall x$

$$
\therefore\left(x^{2}-4\right)\left(e^{-x^{2}}\right)<0
$$

\therefore the integral is negative
\therefore Answer is C

MATHEMATICS EXTENSION 2 - QUESTION | |

MATHEMATICS EXTENSION 2 -QUESTION ||
SUGGESTED SOLUTIONS
b) (ii) From (i) + (ii)
$(1+i \sqrt{3})^{n}=2^{n}\left(\operatorname{cis} \frac{n \pi}{3}\right)$

For $(1+\sqrt{3})^{n}$ to be purely imagivery would mean that:

$$
\arg (i+i \sqrt{3})^{n} \text {, which is } \frac{n \pi}{3} \text {, }
$$

should be $\frac{\pi}{2}+k \pi$, for k any integer.

$$
\text { So } \frac{n \pi}{3}= \pm \frac{\pi}{2}, \frac{3 \pi}{2},
$$

but there are no such
integers n for which

$$
\frac{n \pi}{3}=\frac{\pi}{2}+k \pi
$$

c)

$$
\text { 1) } \left.\begin{array}{rl}
& e^{1+\frac{i \pi}{6}} \\
= & e^{i} \times e^{i \frac{\pi}{6}} \\
& =e\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right) \\
& =e\left(\frac{\sqrt{3}}{2}+i \times \frac{1}{2}\right)^{2} \\
& =\frac{e}{2}(\sqrt{3}+i) \tag{1}\\
& =\frac{\sqrt{3}}{2} e+\frac{e}{2} i
\end{array}\right\} 1
$$

d) If the set of all counterexample y $x \in \mathbb{R}, x^{2}>2$, then $x>2$
If $x=3$, then there does not exist
a real y such that $x^{2}+y^{2}=2$
Students need to be more explicit when stating ${ }_{n}$ wheaties of x being used and what values of y ane disatisfed because the quantifier is in terms of
$x+y$ not $x^{2}+y^{2}$.
\therefore false statement

MATHEMATICS EXTENSION 2 - QUESTION | (

MATHEMATICS EXTENSION 2 - QUESTION 12

MATHEMATICS EXTENSION 2 - QUESTION 12

MATHEMATICS EXTENSION 2 - QUESTION 12

$$
\underset{\sim}{r}=\left(\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

This hos the direction vector $\binom{3}{2}=b$
Let $A\left(\begin{array}{c}-1+t \\ 2+3 t \\ 1+2 t\end{array}\right)$ which is Any point or ir

$$
\overrightarrow{P A}=\left(\begin{array}{c}
-1+t-2 \\
2+3 t-1 \\
1+2 t+6
\end{array}\right)=\left(\begin{array}{c}
t-3 \\
3 t+1 \\
2 t+7
\end{array}\right)
$$

We want A to be the closest point to $P \therefore \overrightarrow{P A} \perp b$

$$
\begin{aligned}
& \therefore \overrightarrow{P A} \cdot b=0 \\
& 1 \times(t-3)+3(3 t+1)+2(2 t+7)=0 \\
& t-3+9 t+3+4 t+14=0 \\
& 14 t+14=0 \\
& t=-1 \\
& \therefore \overrightarrow{P A}=\left(\begin{array}{l}
-1-3 \\
3(-1)+1 \\
2(-1)+7
\end{array}\right)=\left(\begin{array}{c}
-4 \\
-2 \\
5
\end{array}\right) \\
& |\overrightarrow{P A}|=\sqrt{(-4)^{2}+(-2)^{2}+5^{2}} \\
& = \\
& =3 \sqrt{45} \\
& =
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION $/ 2$

$$
r=\left(\begin{array}{c}
1 \\
2 \\
1
\end{array}\right)+t\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

$r=\left(\begin{array}{c}-1+t \\ 2+3 t \\ 1+2 t\end{array}\right)$ and $p=\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right)$

$$
\begin{aligned}
r-p & =\left(\begin{array}{c}
t-3 \\
3 t+1 \\
2 t+7
\end{array}\right) \\
|r-p| & =\sqrt{(t-3)^{2}+(3 t+1)^{2}+(2 t+7)^{2}} \\
& =\sqrt{t^{2}-6 t+9+9 t^{2}+6 t+1+4 t^{2}+28 t+49} \\
& =\sqrt{14 t^{2}+28 t+59} \\
& =\sqrt{14\left(t^{2}+2 t+1\right)+45} \\
& =\sqrt{14(t+1)^{2}+45}
\end{aligned}
$$

\therefore Minimum distance occurs when $t=-1$

$$
\begin{aligned}
\therefore|r-p| & =\sqrt{45} \\
& =3 \sqrt{5}
\end{aligned}
$$

MARKS	MARKER'S COMMENTS
$\frac{1}{2}$	Correct start
	find rap

MATHEMATICS EXTENSION 2 - QUESTION $/ 2$
C) METHOD 3

$$
\begin{aligned}
P=\overrightarrow{A P} & =\overrightarrow{O P}-\overrightarrow{O A} \\
P & =\left(\begin{array}{c}
2 \\
1 \\
-6
\end{array}\right)-\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
3 \\
-1 \\
-7
\end{array}\right)
\end{aligned}
$$

$$
\overrightarrow{A Q}=\left(\begin{array}{c}
-1+t \\
2+3 t \\
1+2 t
\end{array}\right)
$$

$$
\stackrel{b}{\sim}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

$$
|b|^{2}=1+9+4
$$

$$
=14
$$

$$
\begin{aligned}
|\overrightarrow{P Q}| & =\mid \text { prog }_{b} p-p \mid \\
& =\left|\frac{\tilde{\sim}}{|\underline{b}|^{2}} \times \sim^{b}-\sim\right| \\
& =\left|\frac{3-3-14}{14}\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)-\left(\begin{array}{c}
3 \\
-1 \\
-7
\end{array}\right)\right| \\
& =\left|\left(\begin{array}{l}
-1 \\
-3 \\
-2
\end{array}\right)-\left(\begin{array}{l}
3 \\
-1 \\
-7
\end{array}\right)\right| \\
& =\left|\left(\begin{array}{c}
-4 \\
-2 \\
5
\end{array}\right)\right| \\
& =\sqrt{(-4)^{2}+(-2)^{2}+5^{2}} \\
& =\sqrt{16+4+25} \\
& =\sqrt{45} \\
& =3 \sqrt{5}
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION $/ 2$
SUGGESTED SOLUTIONS
d) Assume $\sqrt{8 n+6}$ is rational
ie Assume $n \in \mathbb{N}$ such that

$$
\sqrt{8 n+6}=\frac{p}{9}
$$

Where p and q are integers and

$$
\begin{gathered}
\text { HCF }=1, q \neq 0 \\
\sqrt{8 n+6}=\frac{p}{q} \text { squ } \\
8 n+6=\frac{p^{2}}{q^{2}} \\
2(4 n+3) q^{2}=p^{2} \\
p^{2}=2(4 n+3)
\end{gathered}
$$

square both
$\therefore p^{2}$ is divisible by 2
$\therefore p$ is divisible by 2
sides

$$
\text { Let } p=2 k \text { } \begin{aligned}
\therefore(2 k)^{2} & =2(4 n+3) q^{2} \\
4 k^{2} & =2(4 n+3) q^{2} \\
2 k^{2} & =(4 n+3) q^{2} O R \\
q^{2} & =\frac{2 \times k^{2}}{4 n+3}
\end{aligned}
$$

$\therefore q^{2}$ is divisible by 2
$\therefore q$ is divisible by 2
As both p and q are divisible by 2 , this is a contradiction of the condition that \bar{p} and q have $H C F=1$.

Hence $\sqrt{8 n+6}$ is not rational/ $\therefore \sqrt{8 n+6}$ is irrational
this caused issues for some (1 solutions. $4 n+3$ is odd and since $2 k^{2}$ is enter
q^{2} must be even (odd xeven in) $\therefore q$ must be divisible by 2 . etc:. q was divisible q by 2 and hence HCF of p and $q \neq 1$ leading te proof by contradiction that $\sqrt{8 n+6}$ is irrational

MATHEMATICS EXTENSION 2 - QUESTION 13

1i)

$$
\begin{aligned}
-2+s & =2+a t \\
27+a t+t & =14-2 s \\
-5+3 s & =1+(a+2) t
\end{aligned}
$$

From (1) at $=s-4$
FIOM (2)

$$
\begin{align*}
14-2 s & =27+(s-4) \\
3 s & +t=-t \tag{5}
\end{align*}
$$

From (3)

$$
\begin{aligned}
-5+3 s & =1+a t+2 t \\
-5+3 s & =1+s-4+2 t \\
s-t & =1-6
\end{aligned}
$$

(1) $+(2)$

$$
\begin{aligned}
4 s & =-8 \\
s & =-2
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 13

MATHEMATICS EXTENSION 2 -QUESTION 13
SUGGESTED SO
Alternative solution
b) $\int_{0}^{3} u \sqrt{u t i} d u$

$$
=\int_{0}^{3}(u+1) \sqrt{u+1} d u-\int_{0}^{3} \sqrt{u+i} d u
$$

$$
=\int_{0}^{3}(u+1)^{3 / 2}-(u+1)^{1 / 2} d u
$$

$$
=\left[\frac{2(u+1)^{5 / 2}}{5}\right]_{0}^{3}-\left[\frac{2(u+1)^{3 / 2}}{3}\right]_{0}^{3}
$$

$$
=\left(\frac{2(4)^{5 / 2}}{5}-\frac{2}{5}\right)-\left(\frac{2(4)^{3 / 2}}{3}-\frac{2}{3}\right)
$$

$$
=\frac{2(32)}{5}-\frac{2}{5}-\left(\frac{2(8)}{3}-\frac{2}{3}\right)
$$

$$
=\frac{64}{5}-\frac{16}{3}-\frac{2}{5}+\frac{2}{3}
$$

$$
=\frac{116}{15}
$$

c) $|z+|+i| \leq 1$

$$
\begin{aligned}
& |x+i y+1+i| \leq 1 \\
& |(x+1)+1(y+1)| \leq 1 \\
& \sqrt{(x+1)^{2}+(y+1)^{2}} \leq 1 \\
& (x+1)^{2}+(y+1)^{2} \leq 1
\end{aligned}
$$

A few students did not have an open circle at $(-1,-1)$. $\rightarrow 1 / 2$ mark off.

1 - circle /are
1 - arms
1 - shading.

MATHEMATICS EXTENSION 2 - QUESTION $/ 3$

SUGGESTED SOLUTIONS		MARKS
C) ii)		

d) The contrapositive statement is: If x or y are not odd (even) $\frac{1}{2}$ then $x^{2}\left(y^{2}-4 y\right)$ is not odd(iceren)

There are three ways to prove this contrapositive statement.
Method : Prove by 2 cases.
case 1

Let x be even
1.e Let $x=2 k, k \in \mathbb{Z}$.

$$
\begin{aligned}
& x^{2}\left(y^{2}-4 y\right)=(2 k)^{2}\left[y^{2}-4 y\right] \\
&=4 k^{2}\left(y^{2}-4 y\right) \\
&=2 \times 2 h^{2}\left(y^{2}-4 y\right) \\
&=2\left[2 k^{2}\left(y^{2}-4 y\right)\right] \\
&=2 M \text { as } M, k, y \in \mathbb{Z} \\
& \therefore \text { even }
\end{aligned}
$$

Case 2: Let y be even
1.e Let $y=2 m, n \cdot \in \mathbb{Z}$

$$
\begin{aligned}
x^{2}\left(y^{2}-4 y\right) & =x^{2}\left[(2 m)^{2}-4(2 m)\right] \\
& =x^{2}\left[4 m^{2}-8 m\right] \\
& =2 x^{2}\left(2 m^{2}-4 m\right) \\
& =2\left[x^{2}\left(2 m^{2}-4 m\right)\right]
\end{aligned}
$$

Many students wrote the contrapositive statement as: - If x and y are even then $x^{2}\left(y^{2}-4 y\right)$ is even?
This statement is not logically equivalent to the original. Using this statement only one case was shown. (x even and yeven) $\therefore 1$ mark only was given.

MATHEMATICS EXTENSION 2-QUESTION
SUGGESTED SOLUTIONS
$=2 J$, where $J, \in \mathbb{Z}$
since x, m
\therefore divisible by 2
\therefore even
$\therefore \quad$ If x or y are even then

$$
x^{2}\left(y^{2}-4 y\right) \text { is even }
$$

\therefore the by cont
if $x^{2}\left(y^{2}-4\right)$ is odd then x and y are odd.
\therefore divisible by 2
\therefore even
\therefore If x or y are even then

Method 2
Proof by 3 cases:

1. Let x be even and y is odd
2. Let x be odd and y is even
3. Let x be even and y is even

Case 1: Let $x \neq 2 m$ and $y=2 m+1, m \in \mathbb{Z}$
Now $x^{2}\left(y^{2}-4 y\right)=(2 m)^{2}\left[(2 m+1)^{2}-4(2 m+1)\right]$

$$
\begin{aligned}
& =4 m^{2}\left[4 m^{2}+4 m+1-8 m-4\right] \\
& =2\left[2 m^{2}\left(4 m^{2}-4 m-3\right)\right]
\end{aligned}
$$

$$
=2 N \quad \text { where } N \in \mathbb{Z},
$$

since $2 m^{2}\left(4 m^{2}-4 m-3\right) \in Z, m \in Z$
\therefore dur by $2 \therefore$ even.
Case 2: Let $x=2 k+1$ and $y=2 k$
Now

$$
\begin{aligned}
x^{2}\left(y^{2}-4 y\right) & =(2 k+1)^{2}\left[(2 k)^{2}-4(2 k)\right] \\
& =(2 k+1)^{2}\left[4\left(k^{2}-2 k\right)\right] \\
& =4(2 k+1)^{2}\left(k^{2}-2 k\right) \\
& =2 \times 2(2 k+1)^{2}\left(k^{2}-2 k\right) \\
& =2 M \quad \text { where } M \in \mathbb{R}
\end{aligned}
$$

since $2(k+1)^{2}\left(h^{2}-2 h\right) \in \mathbb{Z}$
\therefore divisible by 2
\therefore even

MATHEMATICS EXTENSION 2 - QUESTION $/ 3$

MATHEMATICS EXTENSION 2 - QUESTION 14
SUGGESTED SOLUTIONS

$$
\begin{array}{rlrl}
L H S & =\sum_{r=1}^{n} \frac{r}{(r+1)!} & R H S & =1-\frac{1}{(n H)!} \\
& =\sum_{r=1}^{1} \frac{r}{(r+1)!} & & =1-\frac{1}{(1+1)!} \\
& & & =1-\frac{1}{2} \\
& & & \\
& =\frac{1}{2} \\
& =\frac{1}{2}
\end{array}
$$

$$
\therefore \angle H S=R H S
$$

\therefore true for $n=1$
Step 2 - Inductive Hypothesis.
Assume true for $n=k, \quad k \geqslant 1, n \in \mathbb{Z}$ ie $\sum_{r=1}^{k} \frac{r}{(r+1)!}=1-\frac{1}{(k+1)!}$

Step 3 - Inductive step
Prove true for $n=k+1$
ie prove $\sum_{r=1}^{k+1} \frac{r}{(r+1)!}=1=\frac{1}{(k+1+1)!}$

$$
\begin{aligned}
& r=1=1-\frac{1}{(k+2)!} \\
& \text { LBS }=\sum_{r=1}^{k+1} \frac{r}{(r+1)!} \\
&= \sum_{r=1}^{k} \frac{r}{(r+1)!}+\frac{k+1}{(k+2)!} \\
&=1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!} \quad \text { By the } \\
&=1-\left[\frac{1}{(k+1)!}-\frac{k+1}{(k+2)!}\right]
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 14

MATHEMATICS EXTENSION 2 - QUESTION 14

MATHEMATICS EXTENSION 2 - QUESTION 14
SUGGESTED SOLUTIO
c) (i) $|\underset{\sim}{v}-\underset{\sim}{c}|=r$
$\left|\underset{\sim}{v}-\left(\begin{array}{c}1 \\ 3 \\ 1\end{array}\right)\right|=14$
(ii) $\overrightarrow{O P}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right) \quad \overrightarrow{O Q}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$

$$
\overrightarrow{P Q}=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)-\binom{1}{3}
$$

$$
=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)
$$

Let another point on tangent be M

$$
\begin{gathered}
\overrightarrow{O M}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad O Q=\binom{2}{4} \\
\overrightarrow{M Q}=\left(\begin{array}{l}
2-x \\
1-y \\
4-z
\end{array}\right) \\
\overrightarrow{P Q} \cdot \overrightarrow{M Q}=0 \\
\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
2-x \\
1-y \\
4-z
\end{array}\right)=0 \\
2-x-2(1-y)+3(4-z)=0 \\
2-x-2+2 y+12-3 z=0 \\
x-2 y+3 z=12
\end{gathered}
$$

Correct answer in vector form. Many students mixed up "vector form" and "cartesian form"

Very poorly done.
Full marks a warded if one tangent was found.

MATHEMATICS EXTENSION 2 - QUESTION 14

d) $I_{n}=\int_{1}^{e} x^{3}(\ln x)^{n} d x$

$$
\begin{array}{ll}
u=(\ln x)^{n} & v^{\prime}=x^{3} \\
u^{\prime}=n(\ln x)^{n-1} \cdot \frac{1}{x} & v=\frac{x}{1}
\end{array}
$$

$$
\left.I_{n}=\left[(\ln x)^{n} \times \frac{x^{4}}{4}\right]_{1}^{e}-\int_{1}^{e} n(\ln x)^{n-1} \times \frac{1}{x} \times \frac{x^{4}}{4} d x\right]
$$

$$
I_{n}=\frac{e^{4}}{4}-\frac{n}{4} I_{n-1} \quad \text { as required }
$$

(ii)

$$
\begin{aligned}
& I_{2}=\frac{e^{4}}{4}-\frac{1}{2} I \\
& I_{1}=\frac{e^{4}}{L_{1}}-\frac{1}{4} I_{0}
\end{aligned}
$$

$$
I_{0}=\int_{1}^{e} x^{3} d x
$$

$$
=\left[\frac{x^{4}}{4}\right]_{1}^{e}
$$

$$
=\frac{e^{4}}{4}-\frac{1}{4}
$$

$$
\therefore T_{2}=\frac{e^{4}}{4}-\frac{1}{2}\left[\frac{e^{4}}{4}-\frac{1}{4}\left(\frac{e^{4}}{4}-\frac{1}{4}\right)\right]
$$

$=\frac{e^{4}}{4}-\frac{e^{4}}{8}+\frac{1}{8}\left(\frac{e^{4}}{4}-\frac{1}{4}\right)$

$$
=\frac{e^{4}}{8}+\frac{e^{4}}{32}-\frac{1}{32}
$$

$$
=\frac{5 e^{4}}{32}
$$

1 mark for uv

$$
I_{n}=u v-\int v u^{\prime} d x
$$ 1 mark $\int v u^{\prime} d x$

$$
\begin{aligned}
& =\left[(\ln e)^{n} \times \frac{e^{4}}{4}-(\ln 1)^{n} \times \frac{1}{4}\right]-\frac{n}{4} \int_{1}^{e}(\ln \\
& =\frac{e^{4}}{4}-0-\frac{n}{4} \int_{1}^{e}(\ln x)^{n-1} x^{3} d x
\end{aligned}
$$

(1)

SHOW
substitution.
you are convincing the marker that you know how to get to the answer.
(1) Evaluating I_{2}, I_{1}, I_{0}
showing this obtained correct answer

MATHEMATICS EXTENSION 2 -QUESTION 15
SUGGETED SOLUTIONS
\therefore true for $n=1$
Assume the statement is true
for $n=k$
ie given $u_{k+1}=2 u_{k}+3$
then $u_{k}=5\left(2^{k}\right)-3$
Inductive step, prove true for $n=k+1$
ie prove that $u_{k+1}=5\left(2^{k+1}\right)-3$

$$
\begin{aligned}
\text { LHS } & =u_{k+1} \\
& =2 u_{k}+3 \\
& =2\left[5\left(2^{k}\right)-3\right]+3 \\
& =5\left(2 \times 2^{k}\right)-6+3 \\
& =5\left(2^{k+1}\right)-6+3 \\
& =5\left(2^{k+1}\right)-3
\end{aligned}
$$

by the assumption
\therefore true for $n=k+1$, since it is true for $n=k$. Since it is true for $n=1$ then it is true for $n=1+1=2$ and so true for all integer $n, n \geqslant 1$.

This proof was generally done well.

MATHEMATICS EXTENSION 2-QUESTION 15

SUGGESTED SOLUTIONS	
b	
i) $(\cos \theta+i \sin \theta)^{5}=\cos 5 \theta+i \sin 5 \theta$	
iHS $=$	$\cos ^{5} \theta+5 i \cos ^{4} \theta \sin \theta+10 \cos ^{3} \theta i^{2} \sin ^{2} \theta+$
	$10 \cos ^{2} \theta i^{3} \sin ^{3} \theta+5 \cos ^{2} i^{4} \sin ^{4} \theta+i^{5} \sin ^{5} \theta$
$=$	$\cos ^{5} \theta+5 \cos ^{4} \theta i \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta$
	$-10 \cos ^{2} \theta i \sin ^{3} \theta+5 \cos \theta \sin ^{4} \theta+i \sin ^{5} \theta$

Equating real part

$$
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos 3 \sin \theta
$$

Equating imaginary part

$$
\sin 5 \theta=5 \cos 4 \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta-1
$$

ii)

$$
\frac{\sin 5 \theta}{\cos 5 \theta}=\frac{5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta}{\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta}
$$

$\therefore \cos ^{5} \theta$

$$
\begin{align*}
& \tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta} \\
& \tan 5 \theta=\frac{5 t-10 t^{3}+t^{5}}{1-10 t^{2}+5 t^{4}} \tag{i}
\end{align*}
$$

iii) if $\tan 5 \theta=0$

$$
\begin{aligned}
& 5 \theta=0+k \pi \\
& \theta=\frac{k \pi}{5}, k=0,1,2,3,4 \\
& \text { If } k=0, \theta=0 \\
& k=1, \theta=\frac{\pi}{5} \\
& k=2, \theta=\frac{2 \pi}{5} \\
& k=3, \theta=\frac{3 \pi}{5} \\
& k=4, \theta=\frac{4 \pi}{5}
\end{aligned}
$$

MATHEMATICS EXTENSION 2 - QUESTION 15
SUGGESTED SOLUTIONS

MARKS	MARKER'S COMMENTS

Now the solution of $t^{4}-10 t^{2}+5=0$ are the solutions to $\tan 5 \theta=0$ but not where $t=0$ as $\theta=0$.
So if $t=\tan \theta$, the solutions of $t^{4}-10 t^{2}+5=0$
are the roots: $\tan \frac{\pi}{5}, \tan \frac{2 \pi}{5}, \tan \frac{3 \pi}{5}, \tan \frac{4 \pi}{5}$ Product of roots $=\frac{e}{a}$
1.. $\tan \frac{\pi}{5} \tan \frac{2 \pi}{5} \tan \frac{3 \pi}{5} \tan \frac{4 \pi}{5}=\frac{5}{1}$

$$
=5
$$

MATHEMATICS EXTENSION 2-QUESTION 15

$$
\begin{array}{ll}
\therefore & \overrightarrow{O B} \perp \overrightarrow{A C} \\
\therefore \quad & \text { So } \overrightarrow{O B} \cdot \overrightarrow{A C}=0 \\
\therefore & b=(c-a)=0
\end{array}
$$

Also

$$
\begin{aligned}
\overrightarrow{F C} \perp \overrightarrow{A B} & \text { (given) } \\
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =b-a
\end{aligned}
$$

but $\quad \overrightarrow{O C}=k \overrightarrow{F C}$

$$
\therefore \quad \overrightarrow{O C} \perp \overrightarrow{A B}
$$

So $\overrightarrow{O C} \cdot \overrightarrow{A B}=0$

MARKS	MARKER'S COMMENTS
$1 / 2$	
$1 / 2$	
$1 / 2$	
$1 / 2$	
1	
1	

ii) Using the results from (i)

From $0 \quad b \cdot(c-a)=0$

$$
\begin{align*}
\frac{b \cdot c}{2}-b \cdot a & =0 \\
\tilde{b} \cdot c & =b \cdot a \tag{3}
\end{align*}
$$

From (2) $\quad c \cdot(b-a)=0$

$$
\frac{c}{\sim} \cdot \frac{b}{\sim}-\frac{c}{\sim} \cdot a=0
$$

$$
\begin{equation*}
\frac{c^{2} \cdot b^{2}}{\sim}=c \cdot a \tag{4}
\end{equation*}
$$

(3)

$$
\begin{gathered}
=\text { (4) } \therefore \frac{b \cdot a}{}=c \cdot a \\
b \cdot a-c+a=0 \\
a \cdot \tilde{2}=0 \\
\tilde{2} \cdot(\hat{b}-c)=0 \\
\therefore A D i C B
\end{gathered}
$$

iii) the 3 perperiduular lines from each vertex go through a common point 0
\therefore all altitudes are concurrent

MATHEMATICS EXTENSION 2 - QUESTION 16

Prove true for $n=k+2, k$ is even $k \in \mathbb{Z}$ ie prove $4^{k+3}+6^{k+2}=10 Q$ where Q

$$
\begin{aligned}
\text { HS } & =4^{k+3}+6^{k+2} \\
& =4^{k+1} \cdot 4^{2}+6^{k} \cdot 6^{2} \\
& =4^{2}\left(10 p-6^{k}\right)+6^{2} \cdot 6^{k} \quad \text { By the } \\
& =160 p-16\left(6^{k}\right)+36\left(6^{k}\right) \\
& =160 p+20\left(6^{k}\right) \\
& =10\left(16 p+2\left(6^{k}\right)\right) \quad \text { where } P \in \mathbb{Z} \\
& =10 Q \quad \therefore Q \text { is an integer. }
\end{aligned}
$$

Alternative for step 3

$$
\begin{aligned}
\vdots \text { IHS } & =4^{2} \cdot 4^{k+1}+6^{2}\left(10 p-4^{k+1}\right) \\
& =4^{2} \cdot 4^{k+1}+360 p-6^{2} \cdot 4^{k+1} \\
& =360 p-20\left(4^{k+1}\right) \\
& =10\left(36 p-2\left(4^{k+1}\right) \text { etc } \cdots\right.
\end{aligned}
$$

Step $4 \therefore$ true for $n=k+2$, since it is
true for $n=k$. Since is is $n=2+2=4$
$n=2$ then it is true for $n=2+2=n, n \geqslant 2$.
and so true for all even integer,

MATHEMATICS EXTENSION 2 - QUESTION 16

$$
\begin{aligned}
& \text { SUGGESTED SOLUTIONS } \\
& \text { b) (i) LHS }=(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \\
&=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1 \\
&=3+\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}
\end{aligned}
$$

Now $x+\frac{1}{x} \geqslant 2$ (given)

$$
\left.\begin{array}{lll}
x \Rightarrow \frac{a}{b} & x \Rightarrow \frac{a}{c} & x \Rightarrow \frac{b}{c} \\
\frac{a}{b}+\frac{b}{a} \geqslant 2 & \frac{a}{c}+\frac{c}{a} \geqslant 2 & \frac{b}{c}+\frac{c}{b} \geqslant 2
\end{array}\right\}
$$

\therefore From $L H S=3+\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}$

$$
\geq 3+2+2+2
$$

$$
=9
$$

$$
\therefore(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geqslant 9
$$

(ii) $a \rightarrow a+b$ $b \rightarrow b+c \quad c \rightarrow c+a$
\therefore From (i)

$$
\begin{aligned}
& (a+b+b+c+c+a)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \geqslant 9 \\
& 2(a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \geqslant 9 \\
& (a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \geqslant \frac{9}{2} \\
& \frac{a}{a+b}+\frac{a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a} \geqslant \frac{9}{2} \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{c+a}+\frac{c}{c+9}+\frac{b}{b+c}+\frac{c}{b+c} \geqslant \frac{9}{2} \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+1+1+1 \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geqslant \frac{9}{2}-3 \\
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geqslant \frac{3}{2}
\end{aligned}
$$

(1)
correct application of replacement

MATHEMATICS EXTENSION 2 - QUESTION 16

MATHEMATICS EXTENSION 2 - QUESTION $/ 6$

