Student Number:

Teacher:

St George Girls High School

Mathematics Extension 2

2020 Trial HSC Examination

General Instructions

- Reading time 10 minutes
- Working Time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided
- For questions in Section I, use the multiple-choice answer sheet provided
- For questions in **Section II**:
 - o Start each question in a new writing booklet
 - o Show relevant mathematical reasoning and/or calculations
 - o Extra writing booklets are provided if needed
 - Marks may not be awarded for incomplete or poorly presented solutions

Total marks:	Section I – 10 marks (pages 3 – 6)
100	 Attempt Questions 1 - 10 Allow about 15 minutes for this
	section
	Section II – 90 marks (pages 7 – 12)

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section

Q1 – Q10	/10
Q11	/15
Q12	/15
Q13	/15
Q14	/15
Q15	/15
Q16	/15
Total	/100
	%

Section I

10 marks Attempt Questions 1–10

On the multiple choice answer sheet circle the letter corresponding to the most correct answer for questions 1-10.

- 1. In modular-argument form, the complex number i 1 is :
 - (A) $\sqrt{2} \operatorname{cis} \left(-\frac{\pi}{4}\right)$ (B) $\sqrt{2} \operatorname{cis} \left(\frac{3\pi}{4}\right)$ (C) $2 \operatorname{cis} \left(-\frac{5\pi}{4}\right)$
 - (D) $2\operatorname{cis}\left(\frac{3\pi}{4}\right)$
- 2. Which of the following is a primitive of $\frac{\sec^2 x}{\tan^3 x}$?
 - (A) $\frac{1}{2} \cot^2 x$ (B) $-\frac{1}{2} \cot^2 x$ (C) $\frac{1}{4} \cot^4 x$ (D) $-\frac{1}{4} \cot^4 x$
- 3. A lawyer for a person under investigation for a bank robbery states

IF MY CLIENT WAS NOT IN THE SUBURB AT THE TIME OF THE ROBBERY, THE ROBBER CANNOT BE MY CLIENT.

Which of the following statements is logically equivalent to the statement made by the lawyer?

- (A) If my client was in the suburb, then he was the robber.
- (B) If my client was the robber, then my client was in the suburb.
- (C) If my client was not the robber, then he was not in the suburb.
- (D) If my client was not the robber, then my client was in the suburb.

4. Which of the following is the vector equation of the line segment joining

the points
$$\begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} 5 \\ -3 \\ 4 \end{bmatrix}$?

(A)
$$r = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 5 \\ -3 \\ 4 \end{bmatrix}$$
 for $0 \le \lambda \le 1$

(B)
$$r = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$$
 for $0 \le \lambda \le 1$
(C) $r = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ for $0 \le \lambda \le 1$
(D) $r = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 15 \\ 6 \end{bmatrix}$ for $0 \le \lambda \le 1$

$$\begin{pmatrix} D \end{pmatrix} \stackrel{r}{}_{\mu} \stackrel{r}{=} \begin{bmatrix} -2 \\ 3 \end{bmatrix} \stackrel{r}{=} \begin{bmatrix} 1 \\ 12 \end{bmatrix} \stackrel{\text{ISI}}{=} \begin{bmatrix} 0 \\ 12 \end{bmatrix}$$

5. Which of the following is equivalent to $\sqrt{i^3}$?

6. If
$$\frac{5}{(2x+1)(2-x)} = \frac{A}{2x+1} + \frac{B}{2-x}$$
, then *A* and *B* have values of:

- (A) A = -1, B = 2
- (B) A = 1, B = -2
- (C) A = 2, B = -1
- (D) A = 2, B = 1
- 7. The equation $z^5 = 1$ has roots 1, ω , ω^2 , ω^3 , ω^4 where $\omega = e^{\frac{2\pi}{5}i}$. What is the value of $(1 - \omega)(1 - \omega^2)(1 - \omega^3)(1 - \omega^4)$?
 - (A) -5 (B) -4 (C) 4 (D) 5

- 8. The negation of 'P and not Q' is :
 - (A) 'not Q or not P'.
 - (B) 'Q or not P'.
 - (C) 'Q and not P'.
 - (D) 'not Q and not P'.

9. The lines ℓ_1 and ℓ_2 are given by the equations

$$\ell_1: \quad \underline{r} = \begin{pmatrix} 2\\3\\4 \end{pmatrix} + s \begin{pmatrix} -3\\-2\\a \end{pmatrix} \qquad \qquad \ell_2: \quad \underline{r} = \begin{pmatrix} 3\\4\\5 \end{pmatrix} + t \begin{pmatrix} a+2\\a^2\\-5 \end{pmatrix}$$

Where $s \in \mathbb{R}$, $t \in \mathbb{R}$ and *a* is a constant.

Given that ℓ_1 and ℓ_2 are perpendicular what are the values of *a*?

- (A) a = 1, a = 3
- (B) a = -1, a = 3
- (C) a = 1, a = -3
- (D) a = -1, a = -3
- 10. Without evaluating the integrals, which one of the following integrals is greater than zero?

(A)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1+\cos x}{x^3} dx$$
 (B) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin^{-1}(x^5) dx$

(C)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan^3 x}{x^5} dx$$
 (D) $\int_{-1}^{1} (x^2 - 4) e^{-x^2} dx$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section.

Question 11 (15 marks) Begin a new booklet.3(a) Find $\int \frac{dx}{\sqrt{6+4x-x^2}}$.3(b) (i) Write $1 + i\sqrt{3}$ in modulus argument form.2(ii) Find the value of $(1 + i\sqrt{3})^6$.2(iii) Is it possible for $(1 + i\sqrt{3})^n$, where *n* is an integer, to be purely imaginary? Give reasons for your answer.2

Marks

(c) Rewrite $e^{1+\frac{i\pi}{6}}$ in

(i)	Polar form	1
(ii)	Cartesian form	1

(d) Consider the statement: ∀x ∈ R, ∃y ∈ R such that x² + y² = 2. 1 Is the statement true or false? Justify your answer.

(e) Use the substitution
$$t = \tan \frac{x}{2}$$
, to find $\int \frac{1}{1 + \cos x - \sin x} dx$. 3

Question 12 (15 marks) Begin a new booklet.

(a) (i) Find the numbers A, B and C such that :

$$\frac{1-x}{(1+x)(1+x^2)} \equiv \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$$

3

2

2

3

(ii) Hence find the exact value of
$$\int_0^1 \frac{1-x}{(1+x)(1+x^2)} dx.$$
 3

(b) The vertices of a triangle *ABC* are defined by the position vectors

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -6 \\ -2 \end{pmatrix} \qquad \overrightarrow{OB} = \begin{pmatrix} 0 \\ -4 \\ -1 \end{pmatrix} \qquad \text{and } \overrightarrow{OC} = \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix}$$

- (i) Show that $\cos \angle BAC = \frac{1}{2}$
- (ii) Find the exact area of triangle ABC.
- (c) Consider the point P(2, 1, -6) and the line L with equation

$$\underline{r} = \begin{pmatrix} -1\\2\\1 \end{pmatrix} + t \begin{pmatrix} 1\\3\\2 \end{pmatrix}$$

Find the shortest distance from the point P to the line L.

(d) Prove by contradiction that if *n* is a positive integer then

 $\sqrt{8n+6}$ is always irrational.

Question 13 (15 marks) Begin a new booklet.

(a) The points *P* and *Q* have vector positions:

 $\overrightarrow{OP} = -2i + 14j - 5k$ and $\overrightarrow{OQ} = -i + 12j - 2k$

- (i) Show that the equation of the line ℓ_1 that passes through P and Q is $r_1 = (-2 + s)i + (14 - 2s)j + (-5 + 3s)k$ where s is a real number. 2
- (ii) Consider the line ℓ_2 with equation $r_2 = (2 + at) \underbrace{i}_{k} + (27 + (a + 1)t) \underbrace{j}_{k} + (1 + (a + 2)t) \underbrace{k}_{k}$

where *a* is a constant and *t* is a real number. The line ℓ_2 intersects ℓ_1 at the point *R*. Find the coordinates of *R*.

(b) Evaluate
$$\int_0^3 u\sqrt{u+1} du$$
.

- (c) (i) For a complex number z, shade the region of the Argand Plane where the inequalities
 |z + 1 + i| ≤ 1 and -π/4 ≤ arg (z + 1 + i) ≤ π/4 hold simultaneously.
 - (ii) The complex number z satisfies |z + 1 + i| = 1.
 What is the smallest distance that z can be from the real number -2 on an Argand diagram?
- (d) Use contrapositive proof to prove that if $x^2(y^2 4y)$ is odd then the integers x and y are odd.

3

1

3

3

Question 14 (15 marks) Begin a new booklet.

(a) Prove by induction that
$$\sum_{r=1}^{n} \frac{r}{(r+1)!} = 1 - \frac{1}{(n+1)!}$$
 for integers $n \ge 1$. 3

3

1

- (b) Find $\int \cos^5 x \, dx$.
- (c) Let y be the position vector of a variable point on the surface of a sphere with centre P(1, 3, 1) and radius 14 units.
 - (i) Write down the vector equation of the sphere.
 - (ii) The point Q (2, 1, 4) lies on the surface of the sphere. Find the **Cartesian** equation of the tangent to the sphere at Q. (You may assume that the radius drawn to the point of contact of the tangent is perpendicular to the tangent.)
- (d) Let $I_n = \int_1^e x^3 (\ln x)^n dx$, where *n* is an integer $n \ge 0$.
 - (i) Show that $I_n = \frac{e^4}{4} \frac{n}{4} I_{n-1}$. 3

(ii) Show that
$$I_2 = \frac{5e^4}{32} - \frac{1}{32}$$
.

Question 15 (15 marks) Begin a new booklet.

- (a) A sequence is given by the recurrence relation
 u₁ = 7, u_{n+1} = 2u_n + 3 for n ≥ 1.
 Prove by induction that the general formula for the sequence is
 u_n = 5(2ⁿ) 3.
- (b) (i) Use De Moivre's Theorem to express cos5θ and sin5θ in terms of powers of sinθ and cosθ.
 - (ii) Write an expression for tan5 θ in terms of *t*, where $t = \tan \theta$.
 - (iii) By solving $\tan 5\theta = 0$, deduce that: $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} \tan \frac{3\pi}{5} \tan \frac{4\pi}{5} = 5$. 3

(c)

ABC is an acute angled triangle. The altitudes *BE* and *CF* intersect at *O*. The line *AO* produced meets *BC* at *D*. Relative to *O* the position vectors of *A*, *B* and *C* are \underline{a} , \underline{b} and \underline{c} respectively.

- (i) Show that $\underline{b} \cdot (\underline{c} \underline{a}) = 0$ and $\underline{c} \cdot (\underline{b} \underline{a}) = 0$.
- (ii) Hence show that $AD \perp BC$.
- (iii) What geometrical property of the triangle has been proved?

2 2

2

1

Question 16 (15 marks) Begin a new booklet.

- (a) Use mathematical induction to prove that $4^{n+1} + 6^n$ is divisible by 10 when *n* is even.
- (b) Recall that $x + \frac{1}{x} \ge 2$ for any real number x > 0. (DO NOT PROVE THIS RESULT)
 - (i) Prove that $(a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \ge 9$ for any real numbers a > 0, b > 0, c > 0.

(ii) Hence prove that
$$\left(\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}\right) \ge \frac{3}{2}$$

for any real numbers $a > 0, b > 0, c > 0$.

- (c) The function F(p) is defined as $F(p) = \lim_{t \to \infty} \int_0^t x^{p-1} e^{-x} dx$, for p > 0.
 - (i) Show that F(1) = 1. 2
 - (ii) Use integration by parts to show F(p + 1) = pF(p). 3
 - (iii) Hence find F(n) for integers $n \ge 1$.

End of Examination

2

3

3

MATHEMATICS EXTENSION 2 – QUESTION MC	EXT 2	, Trial 2020
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$I_{a} = \sqrt{1 + (-i)^{2}}$ $= \sqrt{2}$ $arg(i-i) = arg(-1+i)$ $\vartheta = +an^{-1}(-i)$ $\vartheta_{a} = T$ $Arck = 4$		
$\dot{\theta} = \tau \tau - \frac{\tau}{4}$ $= 3\tau$ $= 3\tau$ $\frac{\tau}{4}$ $\dot{\tau} = \sqrt{2} \operatorname{cis} 3\tau$ 4	В	· · · · · · · · · · · · · · · · · · ·
2. $\int \frac{\sec^2 n}{\tan^3 n} dn = \frac{\det u = \tan n}{du}$		
$= \int u^{-3} du = \sec^2 x dx$ $= \frac{u^{-2}}{-2} + c$		
$= -\frac{1}{2 u^2} + c$ $= -\frac{1}{1 + c}$		
$\frac{2}{2} + \frac{1}{\cos^2 x}$ $= -\frac{1}{2} \cos^2 x + c$	B	
3.	B	
	,	

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$4 r = (3) + \lambda (5-3)$		
$\begin{pmatrix} 2\\ 3 \end{pmatrix}$ $\begin{pmatrix} -3-2\\ 4-3 \end{pmatrix}$		
$= (3) + \lambda (2)$		
$\begin{pmatrix} 2\\3 \end{pmatrix}$	C	
_ [
5_{\circ} $Vl^{2} = l^{-3}$		
$= (0+i)^{2}$		
$= \left(\cos \frac{\pi}{1} + 1 \sin \frac{\pi}{1} \right)^{2}$		
$= \begin{pmatrix} e^{-r_2} \\ e^{-3\pi} \end{pmatrix}$		
$= e^{i 4}$		
$f_{1} = 5 = A(2 - n) + B(2 - n)$	11-10-10-10-10-10-10-10-10-10-10-10-10-1	
$\int \frac{\partial f(z, x) + D(z, x+1)}{\int f(x+2)} df = 2$		Na po Net-Jo di Bona na na su na - A ana ta na ta na na posta da da ana na na na ta
5 = B(4+1) $5 = 24 + B$		
5B = 5 $5 = 2A + 1$		ли на се община на представля на селото н
$B=1 \qquad 2A=4$		
A = Z	D	
$\frac{7}{z^{5}-1} = (z-1)(z^{4}+z^{3}+z^{2}+z+1)$		
and -		
$\frac{z^{2}-1}{z^{2}-1} = (z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4})$		
$\frac{(z^{T}+z^{2}+z^{2}+z+i)}{(z^{T}+z^{2}+z+i)} = \frac{(z-1)(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega$	<i>9</i>]	
$z^{+}+z^{+}+z^{+}+z^{+}(=(z-\omega)(z-\omega^{2})(z-\omega^{3})(z-\omega^{4$)	
$\frac{\text{but } z=1 \text{ gives}}{1 \text{ dives}}$	1	
$\frac{1 + 1 + 1 + 1 + 1 + 1 = (1 - \omega)(1 - \omega^{2})(1 - \omega^{3})(1 - \omega^{3})}{(1 - \omega^{3})(1 - \omega^$		
$= (1 - \omega)(1 - \omega^{2})(1 - \omega^{2})$,4)	
	D	
3 R		
· · ·		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKER'S COMMENTS MARKS 9 Dot product of their direction vertor IS Zero $\begin{array}{c} \bullet & \left(\begin{array}{c} a+2 \\ a^2 \end{array} \right) = 0$ $\frac{-3}{-2}$ $\frac{-3(a+2)}{-3a-6-2a^2} - \frac{5a}{-5a} = 0$ $2a^2 + 8a + 6 = 0$ $a^2 + 4a + 3 = 3$ (a + 3)(a + 1) = 0D $a = -3 \circ a = -1$ 10. Recall $\int_{a}^{a} f(x) dx = 0$ if f(x) is odd and $\int_{-a}^{a} f(n) dn = 2 \int_{-a}^{a} f(n) dn dfb) is even$ A. 1+ cos2 is even, n³ is odd $\frac{f(x)}{g(-x)} = \frac{-f(x)}{g(x)} = -\left(\frac{f(x)}{g(x)}\right)$ $\frac{1+\cos n}{n^2}$ is odd B sin⁻(n^{5}) is odd : $\int^{T_{3}} \sin^{-1}(n^{5}) dx = 0$ $\tan^3 n$ is odd as f(-n) = f(n) $\frac{n^{5} \text{ is odd as } g(-x) = -g(x)}{\frac{4an^{3}n}{n^{5}} - \frac{-f(x)}{-g(x)} - \frac{f(x)}{g(x)}$ even $\int_{-\frac{\pi}{n}}^{\frac{\pi}{4}} \frac{\tan n}{\ln dn} dn = 2 \int_{-\frac{\pi}{n}}^{\frac{\pi}{4}} \frac{\tan n}{\ln dn} dn$

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS but tan'n and n' are both positive from 0 to Ty . the integral will be positive $\frac{(\pi) = \pi^{2} - 4}{(\pi) = e^{-\pi^{2}}} g(\pi) = e^{-\pi^{2}}$ $\frac{(\pi) = (-\pi)^{2} - 4}{(\pi)^{2} - 4} g(-\pi) = e^{-(-\pi)^{2}}$ $= \pi^{2} - 4 = e^{-\pi^{2}}$ $\frac{f(\pi)}{f(\pi)} = g(\pi)$ D = f(x)i, (x^2-4) . e^{-1} is an even function $du = 2 \int (q^2 - 4) e^{-1}$ --: f (n²du but ween O and I n-4<0 e-n-20 HM ard $(\pi^2 - 4)(e^{-\kappa^2}) < 0$ the integral is negative. · Answer is C Ċ

MATHEMATICS EXTENSION 2 – QUESTION SUGGESTED SOLUTIONS **MARKER'S COMMENTS** MARKS a) $\int \frac{dn}{\sqrt{6+4n-n^2}} = \int \frac{dn}{\sqrt{-(n^2-4n-6)}}$) This part $-(n^2-4n-6)$ I was generally $-[(n^2-4n-6)]$ done well $=-[(n^2-4x+4)-6-4]$ =-[(2-2)2-10] $= \frac{10 - (x-2)^{2}}{\sqrt{10 - (x-2)^{2}}}$ $= \int \frac{dx}{\sqrt{10 - (x-2)^{2}}} \frac{4u}{\sqrt{10 - u^{2}}} \frac{1}{\sqrt{10 - u$ $\frac{\sin^{-1}u}{\sqrt{10}}$ + c $= \sin^{-1}(\pi - 2) + C$ Alternate method. b) i) For 1+ilis $r = \sqrt{1^2 + 3}$ arg(Hilis)=tan⁻¹ $\frac{15}{7}$ = 2 $\theta = \pi$ 4is 2 cis T 2 $(1+i\sqrt{3})^{6} = (2c_{1}s_{1})^{6}$ 64 cis 6TI l $= 64 cis 2t^{3}$ = 64 (05 2TT + i sin 2TT) = 64 (1+0) =64

MATHEMATICS EXTENSION 2 - QUESTION (SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS b) (1) From (1) $rac{(i)}{(1+i\sqrt{3})^{n}} = 2^{n} (c_{1} \le n\pi)$ For (1+it3)" to be purely maginery would mean that: arg(Itili), which is not should be TT + KTT for Kany ____integer= $\frac{S_{0}}{2} \frac{n\pi}{2} = \frac{\pm \pi}{2}, \frac{\pm 3\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2},$ but there are no such integers a for which $\frac{n\pi}{2} = \frac{\pi}{2} + k\pi$ $\frac{i+\frac{i\pi}{6}}{e} = e^{i} \times e^{i\pi}$ $= c \left(\cos \pi + i \sin \pi \right)$ $= c \left(\sqrt{3} + i \times \frac{1}{6} \right)$ $= c \left(\sqrt{3} + i \times \frac{1}{2} \right)$ $= c \left(\sqrt{3} + i \right)$ $= \sqrt{3}e + ei$ If the set of all counterexample Students need to be $\frac{\chi \in \mathbb{R}, \ \pi^2 > 2}{1f \ \pi = 3}, \ \frac{1}{16n} \frac{1}{1$ more explicit when stating what values of a being used and what values of y are disatisfied because the quantifyer is in terms of x + y not x 2 + y2.

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
e)		
<u> </u>		
$\int 1 + \cos x - \sin x$		
- C 2014		
$1 + 1 - t^2 - 2t + t^2$		
1+++2 1++2	nen na ka an Angala di Antong Pagina area ta ganag ka ka na angar ang	
$= (1+t^2) \times 2dt$	41	
$1+t^{2} \neq 1-t^{2}-2t$ $1+t^{2}$	12	
$= \int \frac{1+t^{-}}{2 dt} \frac{2 dt}{12}$	17-16-1 (Mari 16.07)/17.001 (20.17)/17.001/19.001/19.001/19.001/19.001/19.001/19.001/19.001/19.001/19.001/19.00	
$= \int 2 dt$	999 199 199 199 199 199 199 199 199 199	***************************************
2-2t	1/	
$= -\int -\int dt$		
JI-t		
= -infi-tft		*****
$= - \ln \left[1 - + an \right] + i$		<u> </u>
1 21 -		(3

MATHEMATICS EXTENSION 2 – QUESTION 12MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS $\frac{a(i) - x}{(1+x)(1+x^2)} = \frac{A}{1+x} + \frac{Bx+C}{1+x^2}$ $1 - x \equiv A(1 + x^{2}) + (Bx + C)(1 + x)$ I mark to set When x = 0When x = -1x = 1up identity and I = A + C Q = 2A + 2B2 = 2Aattempt to solve A = 1 1 = 1 + c 0 = 2(1) + 2B2B = -2C = OB = -1Correct values. .: A=1 B=-1 C=0 1 $(ii) \int \frac{1}{(1+x)(1+x^2)} dx$ $= \int \left(\frac{1}{1+x} + \frac{-x}{1+x^2} \right) dx$ $= \int \frac{1}{1+2c} dx - \int \frac{x}{1+x^2} dx$ Use of identity $= \int \frac{1}{1+x^{2}} dx - \frac{1}{2} \int \frac{23}{1+x^{2}} dx$ 1 $= \left[\ln \left| 1 + x \right| - \frac{1}{2} \ln \left| 1 + x^2 \right| \right]_{-}^{+}$ Correct Integration $= \ln 2 - \frac{1}{2} \ln 2 - \left(\ln 1 - \frac{1}{2} \ln 1 \right)$ $= \ln 2 - \frac{1}{2} \ln 2$ = - 21h 2 also accepted In JZ In 2" Correct answer

MATHEMATICS EXTENSION 2 – QUESTION 12		
, SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) (i) b $\overrightarrow{AB} = \begin{pmatrix} 0 - 1 \\ -4 - 6 \\ -1 - 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$	1/2	Find AB
$\overrightarrow{AC} = \begin{pmatrix} 3-1\\ -46\\ 22 \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ 4 \end{pmatrix}$	1/2	Find R
$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \overrightarrow{AC} \cos CAB$	a alatifaquana a a a a a a a a a a a a a a a a a a	
COS L CAB = [AB] [AC]		
$= \sqrt{(-1)^2 + (2)^2 + (1)^2} \times \sqrt{(2)^2 + 2^2 + 4^2}$		
$= \frac{-2+4+4}{\sqrt{24}}$	·	
$= \overline{\sqrt{6} \times 2\sqrt{6}}$		
$= \frac{6}{12}$		
(ii) $A = \frac{1}{2} ab sin C$		
$= \frac{1}{2} \times \sqrt{6} \times \sqrt{24} \sin \frac{\pi}{3} as \cos \ \text{CBACE}$		set up area
$= \frac{1}{2} \times 12 \times \frac{\sqrt{3}}{2}$		with correct angle
= 3 [3		correct answer
	1. 1	
		•
	1119940114AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	

MATHEMATICS EXTENSION 2 – QUESTION 12 MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS C) METHOD 1 25, 120 A (-1+6,2) P(2, -6) $r = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ This has the direction vector $\begin{pmatrix} 3 \\ 2 \end{pmatrix} = b$ Let A (-1+t) which is ANY point or r 1/2 Correct start and Finding A. $\overrightarrow{PA} = \begin{pmatrix} -1+t-2\\ 2+3t-1\\ 1+2t+t \end{pmatrix} = \begin{pmatrix} t-3\\ 3t+1\\ 2t+7 \end{pmatrix}$ We want A to be the closest point to P: $\overrightarrow{PA} \perp \overrightarrow{b}$: $\overrightarrow{PA} \cdot \overrightarrow{b} = 0$ $1 \times (t-3) + 3(3t+1) + 2(2t+7) = 0$ E-3 +9E+3+4E+14=0 146 + 14 =0 t = -1 $\vec{PA} = \begin{pmatrix} -1 - 3 \\ 3(-1) + 1 \\ 2(-1) + 7 \end{pmatrix} = \begin{pmatrix} -4 \\ -2 \\ 5 \end{pmatrix}$ $|\vec{pA}| = \sqrt{(-4)^2 + (-2)^2 + 5^2}$ = 545 Correct answer L = 3/5

MATHEMATICS EXTENSION 2 - QUESTION /2 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS C) METHOD 2 ž 7 r IE-El 3 2 + t 2 $\frac{-1+t}{2+3t}$ $\frac{1+2t}{1+2t}$ and $p = \begin{pmatrix} 2 \\ 1 \\ 6 \end{pmatrix}$ 3 Correct start シン find r-p $\left| \sum - \frac{p}{2} \right| = \sqrt{(t-3)^2 + (3t+1)^2 + (2t+7)^2}$ $= \sqrt{E^2 - 6E + 9 + 9E^2 + 6E + 1 + 4E^2 + 28E + 49}$ = 142 +286 +59 $= \sqrt{14(t^2+2t+1)+45}$ = 14(t+1)2 +45 · Minimum distance occurs when t=-1 $\frac{1}{2} \frac{|r-p|}{|r-p|} = \sqrt{45}$ = 315 Correct answer.

MATHEMATICS EXTENSION 2 - QUESTION 12 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS C) METHOD 3 9 P(2,1-6) A(-121 $= \overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$ 1-1+5 2+36 1+26 / Correct stort No 1/2 $\overrightarrow{A}\overrightarrow{\phi} =$ $\frac{\rho}{\sim} = \begin{pmatrix} \frac{2}{1} \\ -\frac{2}{6} \end{pmatrix} - \begin{pmatrix} -1 \\ -\frac{2}{2} \end{pmatrix}$ Ь 1/2 p $^{2} = 1 + 9 + 4$ 16 = 14 |PQ|= projb P-P $= \left| \frac{p \cdot b}{\frac{2}{1b} + \frac{2}{2}} \times \frac{b}{2} - \frac{p}{2} \right|$ $= \left| \frac{3-3-14}{14} \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} \right|$ $\begin{vmatrix} \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ -7 \end{pmatrix}$ = · 2 5 / $(-4)^2 t (-2)^2 + 5^2$ 16+4+25 <u>-</u> Correct answe = 545 = 35

MATHEMATICS EXTENSION 2 – QUESTION 17 MARKS **MARKER'S COMMENTS** SUGGESTED SOLUTIONS d) Assume Von+6 is rational ie Assume nie IN such that $\sqrt{8n+6} = \frac{p}{q}$ where p and q are integers and 1 HCF = 1 q = 0 $\sqrt{8n+6} = \frac{p}{q}$ square both sides $\frac{p^2}{8n+6} = \frac{q^2}{q^2}$ $2(4n+3)q^2 = p^2$ $p^2 = 2(4n+3)$: p² is divisible by 2 : p is divisible by 2 correctly showing p was divisible by 2 Let p = 2k: $(2k)^2 = 2(4n+3)q^2$ this caused issues for some $4k^2 = 2(4n+3)q^2$ ANOTHER WAY solutions $2k^{2} = (4n+3)q^{2} \quad OR \quad 2k^{2} = (4n+3)q^{2}$ $q^{2} = 2x \quad b^{2} \qquad 4n+3 \quad is \quad odd$ $q^{2} = 4n+3 \quad a^{2} \quad a^{2} \quad a^{2} \quad b^{2}$ 4n+3 is odd and since 2k2 is even q² must be even (odd x even is even :- q² is divisible by 2 :- q must be divisible by 2. etc... : q is divisible by 2 \mathbb{T} Correctly showing As both p and q are divisible by 2 9 was divisible 9 by 2 and hence this is a contradiction of the condition that p and q have HCF=1. Hence 18n+6 is not rational HCF of p and g # 1 leading to proof by · Jan+6 is irrational contradiction that J81+6 is irrational

MATHEMATICS EXTENSION 2 - QUESTION 13 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $a) \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{Op} \qquad Q = \begin{pmatrix} -1 \\ 12 \\ -2 \end{pmatrix}$ Many students $P = \begin{pmatrix} -2 \\ 14 \end{pmatrix}$ found the three - 1 + 2 12-14 ____ equations but found it => direction vector difficult to -find 3=-2 $\begin{pmatrix} -2 \\ 14 \\ -5 \end{pmatrix} + S \begin{pmatrix} -2 \\ -2 \\ 3 \end{pmatrix}$ $\left(\frac{-2+3}{14-25}\right)$ $r_1 =$ $\Gamma = (-2+s)i + (14-2s)j + (-5+3s)k$ -2 + S = 2 + at - -(1) 27 + at + t = 14 - 2s - (2)4 -5+3s = 1+(a+2)t = -(3)From () at = s - 4 - - (4) From (2) 14 - 2s = 27 + (s - 4) + 43s + t = -9 - -(5)From (3) -5+3s = 1+at+2t-5+3s = 1+s-4+26<u>S-t=1 - (6)</u> (1) + (2) + 4s = -8S = -21

MATHEMATICS EXTENSION 2 - QUESTION 13 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $\Gamma = (-2 + -2)i + (14 - 2(-2)j)$ +(-5+3(-2))k = -4i + 18j - 11k--R = (-4, 18, -11) $\frac{13(b)}{1=\int^{3}u\sqrt{u+1}\,du}$ $\frac{dx = u + 1 - 1}{du dx} = du$ From () u=>1-1 a when u=3 n=4 $U=0, \chi=1$ $I = \int (n-1) \sqrt{n} \, dn$ $r_{4}n^{3/2} - n^{2} dn$ $\frac{1}{2n} - \frac{2n}{3} + \frac{1}{3}$ $\left[\frac{2(4)^{\frac{5}{2}}-2(4)^{\frac{3}{2}}}{2}-\frac{2(4)^{\frac{3}{2}}}{5}-\frac{2}{5}\right]$ $= \frac{2}{5} \frac{(32)}{5} - \frac{2}{5} \frac{8}{5} - \frac{-4}{15}$ = 64 - 16 + 4= 116

MATHEMATICS EXTENSION 2 – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Alternative solution to 13(6)	-	
b) j u vut i du	a a a a a a a a a a a a a a a a a a a	
$= \int_{-\infty}^{\infty} (u+i) \sqrt{u+i} du = \int_{-\infty}^{\infty} \frac{1}{u+i} du$	-	
$=\int^{3} (u+i)^{\frac{3}{2}} - (u+i)^{\frac{1}{2}} du$		
$- [3(11)^{2}]^{3} - [7(11)^{3}]^{3}$		
$\frac{1}{5} = 0$		
$= (2(4)^{5/2} - 2) - (2(4)^{3/2} - 2)$		
5 5 3		
$\frac{-2(32)}{5} - \frac{2}{5} - \frac{(48) - 2}{3}$		
= 64 - (6 - 2 + 2)		
5 3 5 3	v	
= 116		
15		
c) $ z + 1 + i \le 1$		
$ n+iy + (+i) \leq 1$		A few students
$ (x + 1) + \tau (y + 1) \le 1$		did not have an
$\sqrt{(2i+i)^2 + (y+i)^2} = i$		open arcle at
$\frac{(n+1)}{4} + \frac{(y+1)}{4} = 1$		(-1, -1)
		1.2 MCG(1- 0.1-
	1 -	-circle / arc
	1 -	arms
	1 -	shading.
		(3)

MATHEMATICS EXTENSION 2 – QUESTION $/ \gtrsim$ SUGGESTED SOLUTIONS MARKER'S COMMENTS MARKS c) 11) Ċ In JABC $AB = \sqrt{1^2 + 1^2}$ = 12 The shortest distance is AD AD = AB - PB= 12 -1 units. d) The contrapositive statement is: if x or y are not odd (even) '2 Many students then n²(y²-4y) is not odd(i.eeky) put in and ' There are three ways to prove this contrapositive statement. Method 1: Prove by 2 cases. Many students wrote the contrapositive Case l' Let a be even statement as: $\frac{1.6 \quad \text{Lef } n = 2k, \quad \text{ke Z}}{n^2(y^2 - 4y) = (2k)^2 [y^2 - 4y]}$ $= 4k^2 (y^2 - 4y)$ $= 2 \times 2k^2 (y^2 - 4y)$ $= 2 [2k^2(y^2 - 4y)]$ 'If n and y are even then n2(y2-4y) is even! This statement is not logically = 2 M as M, K, y E Z equivalent to the : even original. Case 2:Let y be even 1.e Let y = 2m, $na: \in \mathbb{Z}$ $2 + (n - 2^2 - 4/2)$ Using this statement only one case was shown $n^{2}(y^{2}-4y) = n^{2} \left[(2m)^{2} - 4(2m) \right]$ ix even and yeven) $= n^2 \int 4m^2 - 8m7$ was given. $\frac{=2\pi^{2}(2m^{2}-4m)}{=2(\pi^{2}(2m^{2}-4m))}$

MATHEMATICS EXTENSION 2 - QUESTION MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS = 2J, where J, EZ since $x, m \in \mathbb{Z}$. \therefore divisible by 2 ". even $\frac{1f n \text{ or } y \text{ are even then}}{n^2(y^2-4y) \text{ is even}}$ $\frac{1f n^2(y^2-4y) \text{ is even}}{1f n^2(y^2-4) \text{ is odd then}}$ n and y are odd Method 2 Proof by 3 cases; 1. Let 21 be even and y is odd 2. Let 21 be odd and y is even 3. Let 21 be even and y is even Cose 1: Let x = 2m and $y = 2m + 1, m \in \mathbb{Z}$ Now $2c^{2}(y^{2}-4y) = (2m)^{2} \int (2m+1)^{2} - 4(2m+1)^{2}$ $= 4m^2 [4m^2 + 4m + 1 - 8m - 4]$ $= 2 \left[2m^2 (4m^2 - 4m - 3) \right]$ = 2N where NEZ Since 2m2(4m2-4m-3)EZ, mEZ i. div. by 2 i- even. Case 2; Let n=2k+1 and y=2k $N_{0,j} = \frac{1}{2} \left(\frac{2}{4} - \frac{4}{3} \right) = \frac{2(2k+1)^2}{2(2k)^2} - \frac{4(2k)}{3}$ $=(2k+1)^{2}\overline{f}4(k^{2}-2k)]$ $= 4 (2k+i)^{2} (h^{2}-2k)$ = 2×2 (2k+i)^{2} (h^{2}-2k) = 2 M where MEZ Since 2(2k+1)²(h²-2h) EZ OS KEZ indivisible by 2 ! even

MATHEMATICS EXTENSION 2 - QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Case 3: Let x = 2K and y=2n		
where k, nez	1	
$n^{2}(y^{2}-4y) = (2k)^{2}[(2n)^{2}-4(2h)]$		
$=4h^{2}(4n^{2}-8n)$		
$=4 h^{2} \times 4(n^{2} - 2n)$. 19-14. Mart 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -	
$= 16h^2(n^2-2n)$		
$= 2 \times 8h^2(n^2 - 2n)$		
= 2 P where PEZ		
$\sin ce_{8k^{2}(n^{2}-2n) \in \mathbb{Z}}$		
as h, n e Z		
<u>é even</u>	ana a la ta ta ta da fa ta ta gan a martina da fasa a sen a m	
C.E.,		
	a A reason and the first of the second se	ייש הערבים איני אין איני איני איני איני איני איני
Method 3	a na ann an State a	
It nor y are even	naan kaatsu ta jad keele haanno kaassa da kaasa r	21212111111111111111111111111111111111
then scy is even		
$S_0 n^2 (y^2 - 4y) = ny^2 - m^2 y$	anoly-langed to the control of the second second	
= 2(y(2(y-4y)))		
= 2(y(y(u-4)))	-	
e^{2/y^2-4y} has a further of	Anna ann Aonail Airte an Aonaichean Anna an Aonaichean an Aonaichean an Aonaichean an Aonaichean an Aonaichean	
2111 which is even		
in it has a factor of 2	Annan a an ann an Annan Ann	
enen		
	unanisi (Mili (da na alim i a	

MATHEMATICS EXTENSION 2 – QUESTION 14 MARKS MARKER'S COMMENTS SUGGESTED SOLUTIONS a) Step1 - Base case - Prove true for n=1 $LHS = \sum_{n=1}^{n} \frac{r}{(r+1)!} RHS = 1 - \frac{1}{(n+1)!}$ $= \sum_{r=1}^{l} \frac{r}{(r+1)!} = 1 - \frac{1}{2!}$ $=\frac{1}{(1+1)!}$ $=1-\frac{1}{2}$ = 1 1/2 Prove base case = 4 : LHS = RHS correctly : true for n=1 Step 2 - Inductive Hypothesis. Assume true for n=k., k=1, nez 1/2 Correct assumption Step 3 - Inductive Step Prove true for n=k+1 ie prove r = 1 $\sum_{r=1}^{k+1} \frac{r}{(r+1)!} = 1 - \frac{1}{(k+1+1)!}$ Correct set up = 1 - 1 + 2)1 of proof. $LHS = \sum_{r+1}^{k+1} (r+1)!$ $\frac{r=1}{\sum_{k=1}^{k} \frac{r}{(r+1)!}} \frac{k+1}{(k+2)!}$ $= 1 - (k+i)! + (k+2)! \qquad \text{assumption}$ Note - 1/2 lost IF "by the assumption " (or similar $= 1 - \left[\frac{k+1}{(k+1)!} - \frac{k+1}{(k+2)!} \right]$ was not written.

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) $LHS = 1 - \left[\frac{k+2 - (k+1)}{(k+2)!} \right]$		Correct working b
= 1 - (k+2)! $= RHS$		prove result.
step 4 - conclusion .:. true for n=k+1 since it is true for n=k. Sincem it is true for n=1 then Lie true for n=1tl=2 find for		
true for all integer n, n21.		
	aalaaga ayaa ah a	
	, and 4 4 5 a 4 a a a a a a a a a a	approximation of a second and the second
	ал ба — _а р униц (насаларын байлал) байлал бай алар байлан алар улсан алар улсан алар улсан алар байлаг байл	
	annes - F Fallanan mandada yaray kasamanya ya	
		a a a summarian and a , and an an angle a summarian and a , a , a summarian a , and distances of the summarian and a
	na i Maran Maran Maran a sense aga (Maran i a se a sense aga ma a se al alam gang manan se ana ang ang ang ang ang ang ang ang ang	
	anal a second and a second	
	NUMERO (NEW YORK) (NEW YORK) (NEW YORK) (NEW YORK)	

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) $\int \cos^5 x dx$		N .
		riore experience.
$= \cos'x \cos x \cos x$	9 - 2010 Marine - Construction - Con	needed to think
$= \left(\frac{2}{2} \right)^2 \cos \alpha d\alpha$	M	of the quickes.
$= (1-sin^{-sc}) \cos uc$	U	mernoq.
$-\left(1 + 2\sin^2 x + \sin^4 x\right)\cos x dx$	a 1003aa wax y o 1971 - a 17	art was Noi
$= \int (1 - 2 \sin \alpha + \sin \alpha) \cos \alpha d\alpha$	ngen tint we- faktoret sonren til	required and
= [cosx dx -2] sin x cosx dx+ [sin x cosx dx	$\widehat{(1)}$	neuch time
		was wasted
let u=sinx	analdingengengengen von 1993 Bass annen oggenst	here .
$\frac{dw}{dx} = \cos x$	antoning	
$du = \cos x dx$		a na an
		n 1998 an 1 1 10 - Marine I 1996 a contracto e o co i i i i i i i i i i i i i i i i i
$= \sin x - 2 \int u^2 du + \int u^9 du$	allalla annados aspir registre de a se a	anna amara a ata matu, a magna anna ata mata mata ata ata ata magna ata da ata mandana ata dike atana anna atan
$= \sin x - \frac{2}{3}\sin^3 x + \frac{1}{5}\sin^4 x + C$		
		ана – маницирација ј јакта њине на нарија ја промотовићаја и и екрета – как ј 1888 ја – 4 маје 1 или 2014 (18 и 1991 –
	ange annangeste te te a prop o senationsta	
	· · · · · · · · · · · · · · · · · · ·	
	a nagagangang saga sang pang kang pang ka	
	1 	
		· ····································
	- 199 171 199 199 199 199 199 199 199 199	
	a 191 kilkaadaa acada cooq yyyeeykaalaacalaatka	
	1 1993 - 1993 - 1994 - 1994 - 1995 - 1905 -	

MATHEMATICS EXTENSION 2 – QUESTION 14 MARKS **MARKER'S COMMENTS** SUGGESTED SOLUTIONS c) (i) |Y - c| = r $|v - \binom{1}{3}| = 14$ Correct answer 1 in vector form. (ii) $\vec{op} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ $\vec{oq} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ Many students mixed up "vector form" and $\overrightarrow{PQ} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ "cartesian form" = (-2 Let another point on tangent be M $\vec{OM} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $O\varphi = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ Very poorly done · $\overrightarrow{M0} = \begin{pmatrix} 2-x \\ 1-y \end{pmatrix}$ Full marks awarded if one tangent pq·mq=0 was found. $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \begin{pmatrix} 2-x \\ 1-y \\ 4-z \end{pmatrix} = 0$ 2-x - 2(1-y) + 3(4-z) = 02 - x - 2 + 2y + 12 - 3z = 0x - 2y + 32 = 12

MATHEMATICS EXTENSION 2 – QUESTION 14 MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS d) $I_n = \int_{-\infty}^{e} x^3 (\ln x)^n dx$ $\begin{array}{ccc} u = (\ln x)^{n} & v' = x^{3} \\ u' = n(\ln x)^{n-1} & v = \frac{x}{4} \\ \end{array}$ I mark for uv 2 1 mark (vu'dx $I_n = uv - \int vu' dx$ $I_n = \left[(\ln x)^n \times \frac{x^4}{4} \right]^e - \left[\binom{e}{n(\ln x)^n \times \frac{x^4}{4}} \frac{x^4}{4} dx \right]$ SHOW $= (lne)^{n} \times \frac{e^{4}}{4} - (lni)^{n} \times \frac{1}{4}^{n} - \frac{n}{4} \int_{-\infty}^{\infty} (lnz)^{n-1} \frac{3}{2} dz$ substitution. you are convincing $= \frac{e^{4}}{4} - 0 - \frac{n}{4} \left(\frac{e}{\ln x} \right)^{n-1} x^{3} dx$ the marker that you know $I = \frac{e^{2}}{4} - \frac{h}{4} I_{n-1} \quad as required$ how to get to the answer. $(ii) T = \frac{e^4}{4}$ $I = - - + I_o$ Evaluating (1)J_ I Jo $\overline{J}_{o} = \int_{-\infty}^{\infty} \chi^{3} d\chi$ $= \begin{bmatrix} x^4 \end{bmatrix}^e$ $= e^{4} - \frac{1}{4}$ $T_{2} = e^{4} - \frac{1}{2} \left[\frac{e^{4}}{4} - \frac{1}{4} \left(\frac{e^{4}}{4} - \frac{1}{4} \right) \right]$ (1)Showing this obtained $= \frac{e^{4}}{4} - \frac{e^{4}}{8} + \frac{1}{8} \left(\frac{e^{4}}{4} - \frac{1}{4}\right)^{-1}$ $= \frac{e^{4}}{8} + \frac{e^{4}}{32} - \frac{1}{32}$ correct onswer $=\frac{5e^{4}}{32}$

MATHEMATICS EXTENSION 2 – QUESTION 15 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS (a) Prove true for n=1 This proof was generally done well. For $u_n = 5(2^n) - 3$, $u_1 = 7$ when n=1 $u_1 = 5(2') - 3$ = 10 -3 = 7 in true for n=1 Assume the statement is true for n=k $ie given '4_{K+1} = 24_{K} + 3$ then $U_{k} = 5(2^{k}) - 3$ Inductive step, prove true for n=k+1 1.e. prove that UK = 5 (2 K+1) -3 LHS = UK+1 $= 2 U_{\rm K} + 3$ $2 \left[5 \left(2^{k} \right) - 3 \right] + 3$ 2 by the assumption $(2 \times 2^k) = 6 + 3$ $(2^{k+1}) = 6 + 3$ 5(: true for n=K+1, since it is true for n=k. Since it is true for n=1 then it is true for n=1+1=2 and so true for all integer n, n>1.

MATHEMATICS EXTENSION 2 - QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) $(\cos\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$		
(;) /		
LHS= cos &+ 51 cos + 0 sind + 10 cos + 2 sin 20 +		
10 cos 201 3 sin 30 + 5 cos 0 2 4 sin 40 + 15 in 50		
$= \cos^5\theta + 5\cos^4\theta i\sin\theta - 10\cos^3\theta \sin^2\theta$		
$-10\cos^2\thetai\sin^3\theta+5\cos\theta\sin^4\theta+i\sin^5\theta$	44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	n a sea a
Equating real part		
$\cos 5\theta = \cos^5 \theta - 10\cos^5 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	<u>}</u>	
Equating imaginary part	annan 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
$\frac{\sin 5\theta}{5} = 5\cos \frac{4\theta}{5}\sin \theta - 10\cos^2\theta \sin^2\theta + \sin^2\theta}$		98 9717111120000000000000000000000000000000
		ann an air air air air an an ar ar an
$\frac{1}{5059} = \frac{4}{59} = 0$ $\frac{10}{59} = \frac{30}{59} = \frac{50}{59}$	97-76-100-10-10-10-10-10-10-10-10-10-10-10-10	
$\frac{511750}{1000} = \frac{5}{2} \frac{10}{2} \frac{1000}{1000} \frac{1000}$		
	na thuy upper at the second state from the theory of all the second states of the	
$tansA = 5 tan A - 10 tan ^3 + tan ^5 A$	Non-Alast Andromonan in a second canadama i	
$1 - 10 + 4n^2 + 5 + 4n^4 0$	οη (θαιμοτρηγεικό) λαλ λη στη ματαγολική που του του του του του του του του του τ	
$tan 50 = 5t - 10t^3 + t^5$		
$1 - 10t^2 + 5t^4$)	
III) If tan 50 = 0		
$570 = 0 + k\pi$		
$\Theta = KT, K = 0, 1, 2, 3, 4$		
IF k=0, &=0	44-19-19-19-19-19-19-19-19-19-19-19-19-19-	
$K=1$, $\Theta=\frac{T_1}{5}$		
$K=2, \Theta=2\pi$		
$K=3, \forall = 3\pi$		
$K=4, \Theta=4\pi$	First four land of the second s	

MATHEMATICS EXTENSION 2 - QUESTION 15 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS b) 11/ Also if tan 50 = 0 from () $\frac{54 - 104^{3} + 4^{5}}{1 - 104^{2} + 54^{4}} = 0$ 5-1-10+3++5=0 $\pm (5 - 10t^2 + t^4) = 6$ t=0 or 5-10+2++4=0 Now the solution of t4-10+2+5=0 are the solutions to tan 50=0 but not where t=0 as &=0. So if t = tan &, the solutions of t +-1012+5=0 ore the roots: $\tan \frac{\pi}{5}$, $\tan 2\pi$, $\tan 3\pi$, $\tan 4\pi$ Product of roots = e $1 + \tan \frac{\pi}{5} + \tan \frac{2\pi}{5} + \tan \frac{3\pi}{5} + \tan \frac{4\pi}{5} = \frac{5}{5}$ ĺ = 5

MATHEMATICS EXTENSION 2 – QUESTION 15SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** $\vec{OB} = b$ $\vec{OA} = a$ $\vec{DC} = e$ $\overline{+2} = \overline{-3} - \overline{-3}$ = c - qNow $\overrightarrow{EB} \perp \overrightarrow{AC}$ (given) by $\overrightarrow{OB} = k \overrightarrow{EB}$ 1/2 i. OB LAZ $S_0 \vec{OB} \cdot \vec{AC} = 0$ $\frac{b}{c} \cdot (c-a) = 0 \qquad = -(c) \neq \pm \frac{b}{c} + \frac$ $\frac{A1so}{FC \perp \overrightarrow{AB} \quad (given)}{\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}}$ 1/2 = b - abut $\overrightarrow{OC} = \overrightarrow{KFC}$ $\overrightarrow{OC} \perp \overrightarrow{AB}$ $\overrightarrow{OC} \cdot \overrightarrow{AB} = 0$ 1/2_ $\frac{1e \quad c \quad (b - a) = 0}{2} = 0$ -(2 ii) Using the results from (i) $From (0) \qquad b \cdot (c-q) = 0$ $b \cdot c = b \cdot a = 0$ $b \cdot c = b \cdot a = - (3)$ $F_{n(2)} \xrightarrow{c \cdot (b-a)} = 0$ $\frac{c \cdot b}{2} = \frac{c \cdot a}{2} = 0$ $\frac{c \cdot b}{2} = \frac{c \cdot a}{2} = -\frac{(4)}{2}$ $(3) = (4) \cdot b \cdot a = c \cdot a$ 1 $\frac{b \cdot a - c \cdot a = 0}{2 \cdot a - a}$ $\frac{a \cdot (b - c)}{2} = 0$ l Z 111) the 3 perpendicular lines from each vertex go through a common point o .", all altitudes are concurrent

MATHEMATICS EXTENSION 2 - QUESTION 16 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS METHOD a) step 1 - Base case - Prove true for n=2 4 n+1 + 6" $=4^{2+1}+6$ $=4^{3}+6^{2}$ = 64+36 = 100 = 10(10) which is divisible by 10 Prove base case 12 .". true for n=2 Step 2 - Inductive hypothesis Assume true for n=k, k is even, k EZ $4^{k+i}+6^k = 10^p$ where P is an integer or $4^{k+i} = 10^p - 6^n$ Correct assumption Step 3 - Inductive step Prove true for n=k+2, k is even $k\in\mathbb{Z}$ is prove $4^{k+3} + 6^{k+2} = 10$ Q where Q Correct Inductive is an integer $U+s = 4^{k+3} + 6^{k+2}$ step with $=4^{k+1}\cdot 4^2 + 6^k\cdot 6^2$ correct assumption. $= 4^{-1} \cdot 4 + 6 \cdot 6$ = $4^{2} (10p - 6^{k}) + 6^{2} \cdot 6^{k}$ By the assumption $= 160P - 16(6^{k}) + 36(6^{k})$ $= 160P + 20(6^{k})$ correct working to obtain = $10(16P + 2(6^*))$ where PEZ109. : Q is an integer. = 10 Q Alternative for Step 3 $\frac{U_{45}}{U_{45}} = \frac{4^2 \cdot 4^{k+1} + 6^2 (10P - 4^{k+1})}{4^2 \cdot 4^{k+1} + 360P - 6^2 \cdot 4^{k+1}}$ = 360P - 20 (4kt) $= 10 (36p - 2(4^{k+1}) e^{k} \cdots$ Step 4 .: true for n= k+2 since it is true for n=k. Since it is true for n=2 then it is true for n=2+2=4 and so true for all even integer, n=2.

MATHEMATICS EXTENSION 2 – QUESTION 16 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS b) (i) LHS = (a+b+c)(a+b+c)(a+b+c) $= 1 + \frac{9}{6} + \frac{9}{6}$ $= 3 + \frac{9}{5} + \frac{5}{6} + \frac{9}{c} + \frac{5}{c} + \frac{5}{5} + \frac{5}{5}$ Now $x + \frac{1}{x} \ge 2$ (given) $x = \frac{a}{b} \xrightarrow{a} x = \frac{a}{c} \xrightarrow{b} x = \frac{b}{c}$ Correct use 3 $\frac{q}{h} + \frac{b}{a} \ge 2 \qquad \frac{a}{c} + \frac{c}{a} \ge 2 \qquad \frac{b}{c} + \frac{c}{h} \ge 2$ of inequalities Correct expansion + Correct grouping to use inequalities $\geq 3 + 2 + 2 + 2$ 1/2 1/2 replacing with 2 and writing correct inequality $(a+b+c)(\frac{i}{a}+\frac{j}{b}+\frac{j}{c}) \ge 9$ $(ii) a \rightarrow a + b \qquad b \rightarrow b + c \qquad c \rightarrow c + a$ recognising : From (i) replacements $(a+b+c+c+a)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \ge 9$ $\frac{2(a+b+c)}{a+b} + \frac{1}{b+c} + \frac{1}{c+q} \rightarrow q$ $(a+b+c)(\overline{a+b}+\overline{b+c}+\overline{c+g}) \ge \frac{1}{2}$ Correct $\frac{a}{a+b} + \frac{a}{b+c} + \frac{a}{a+b} + \frac{b}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} + \frac{c}{b+c} + \frac{c}{c+a} + \frac{c}{2} + \frac{c}{2}$ application of replacements $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} + \frac{a}{a+b} + \frac{b}{a+b} + \frac{a}{c+a} + \frac{c}{c+a} + \frac{b}{b+c} + \frac{c}{b+c} + \frac{2}{b+c} + \frac{2}{2}$ $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} + \frac{c}$ Correct grouping $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{q}{2} - 3$ that led to answe $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} = \frac{3}{7}$

MATHEMATICS EXTENSION 2 – QUESTION /6 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS $c)(i)F(p) = \lim_{t \to \infty} \int x^{p-1}e^{-x} dx$ p>0 $F(1) = \lim_{t \to \infty} \int x^{1-t} e^{-\alpha} d\alpha$ $=\lim_{t\to\infty}\int_{-\infty}^{t}e^{-\alpha}dx$ $=\frac{1}{2}\frac{1}{2$ Some half $= \lim_{t \to \infty} \left(-\frac{1}{e^{t+1}} \right) A_{J} t \to \infty$ $= \frac{1}{e^{t}} \to \infty$ marks lost IF there was no mention of =0+1 'Zero" · Either the zero or Ast >00 (ii) $F(p+1) = \lim_{t \to \infty} \int_{-\infty}^{t} c^{p+1} dx$ - jt = > needs to be mentioned $=\lim_{t\to\infty}\int_{-\infty}^{t}xe^{-x}dx$ correct application of Integration by parts $u = x \qquad v' = e^{-x}$ $u' = px \qquad v = -e^{-x}$ Some 1/2 marks lost $F(p+1) = \lim_{t \to \infty} \left\{ \left[-x^{2}e^{-x} \right]^{t} - \int_{0}^{t} px^{p-1} \left(-e^{-x} \right) dx \right\}$ due to no brockets - the limit $=\lim_{E \to 00} \left\{ -te^{-t} + 0e^{-t} + \int_0^t xe^{-x} dx \right\}$ is applied to Both. $A_{t \neq 30} = \lim_{t \to \infty} \left(\frac{t}{t^{x}} \frac{t}{e^{t}} \right) - \lim_{t \to \infty} p \int_{0}^{t} \frac{t}{x^{p-1}} \frac{x}{e^{t}} dx$ $\frac{1}{e^{t}} \frac{y}{e^{t}} = 0 + p F(p)$ @ for correct. integration and limits (1)correct working $\therefore F(p+1) = pF(p)$ that led po answer.

MATHEMATICS EXTENSION 2 - QUESTION 16 MARKER'S COMMENTS SUGGESTED SOLUTIONS MARKS c)(iii) F(p+1) = pF(p)Replace p+1 ->n .: p → n-1 F(n-1+1) = (n-1)F(n-1) (Π) obtaining F(n) F(n) = (n-1)F(n-1) $= (n-1) \left[(n-2) \neq (n-2) \right]$ = (n-1) (n-2) F (n-2) = (n-1) (n-2) \left[(n-3) \neq (n-3) \right] Students found this part of A the question very challenging. $= (n-1)(n-2)(n-3) \cdot \cdot \cdot |F(1)|$ $= (n-1)(n-2)(n-3) \cdots 1$ from (1) F(n) = (n-1)!