

STELLA MARIS COLLEGE

2005

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question.

Total marks - 120

- Attempt Questions $1-8$
- All questions are of equal value.

Question 1 - 15 Marks

Marks
(a) Evaluate $\int_{0}^{1} \frac{2}{\sqrt{1+3 x}} d x$

2
(c) Use the substitution $u=\sqrt{x}$ to evaluate $\int_{1}^{25} \frac{1}{x+\sqrt{x}} d x$, expressing your answer in simplest exact form.
(d) Using $t=\tan \frac{x}{2}$, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sin x}$
(e) (i) Find real constants A, B and C such that

$$
\frac{x+4}{x\left(x^{2}+4\right)} \equiv \frac{A}{x}+\frac{B x+C}{x^{2}+4}
$$

(ii) Hence find $\int \frac{x+4}{x\left(x^{2}+4\right)} d x$

Question 2-15 marks - Start on a new sheet of paper
(a) The diagram shows the graph of $y=f(x)$

On separate diagrams, sketch the following, showing essential features.
(i) $y=f(|x|)$
(ii) $y=\frac{1}{f(x)}$
(iii) $y=(f(x))^{2}$
(iv) $y^{2}=f(x)$
(v) $y=\ln (f(x))$
(b) The sketch shows the graph of $y=f(x)$, where $f(x)=x^{3}-3 x, \quad x \geq 1$.

Copy the diagram.
On your diagram, sketch the graph of the inverse function $y=f^{-1}(x)$ showing any intercepts with the coordinate axes, the coordinates of any endpoints and the coordinates of the point of intersection of $y=f(x)$ and $y=f^{-1}(x)$
(c) Find the equation of the tangent to the curve $x^{3}+y^{3}-3 x y=3$ at the point $(1,2)$ on the curve.

Question 3-15 marks - Start on a new sheet of paper
(a) Let $\alpha=1-2 \boldsymbol{i}$ and $\beta=3+\boldsymbol{i}$

Find, in the form $x+i y$,
(i) $\alpha \beta$

1
(b) Let $z=-\sqrt{3}-i$
(i) Express z in modulus-argument form.
(ii) Hence or otherwise, find z^{10}, expressing your answer in the form $x+i y$
(c) Let $z_{1}=4\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$ and $z_{2}=2\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
(i) On an Argand diagram, draw the vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ representing z_{1}, z_{2} and $z_{1}+z_{2}$ respectively.
(ii) Hence find $\left|z_{1}+z_{2}\right|$ in simplest exact form.
(d) (i) On an Argand diagram shade the region where both $\mid z-1-i) \mid \leq \sqrt{2}$ and

$$
0 \leq \arg (z) \leq \frac{\pi}{2}
$$

(ii) Find the exact area of the shaded region. Justify your answer.

Question 4-15 marks - Start on a new sheet of paper
(a) Sketch the graph of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ showing the intercepts on the axes, the coordinates of the focii and the equations of the directrices.
(b) The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, a>b>0$, has eccentricity \boldsymbol{e}.
(i) Show that the line through the focus $\mathrm{S}(\mathrm{ae}, 0)$ that is perpendicular to the asymptote $y=\frac{b x}{a}$ has equation $a x+b y-a^{2} e=0$
(ii) Show that this line meets the asymptote at a point on the corresponding directrix.
(c) $\mathrm{P}\left(p, \frac{1}{p}\right)$ and $\mathrm{Q}\left(q, \frac{1}{q}\right)$ are two variable points on the rectangular hyperbola $x y=1$ such that the chord PQ passes through the point $\mathrm{A}(0,2) . \mathrm{M}$ is the midpoint of PQ.
(i) Show that PQ has equation $\boldsymbol{x}+\mathbf{p q} \boldsymbol{y}-(\mathbf{p}+\mathbf{q})=0$. Hence deduce that $\mathbf{p}+\mathbf{q}=\mathbf{2 p q}$
(ii) Deduce that the tangent drawn from the point A to the rectangular hyperbola touches the curve at the point $(1,1)$
(iii) Sketch the rectangular hyperbola showing the points P, Q, A and M. Find the equation of the locus of M and state any restrictions on the domain of this locus.

Question 5-15 marks - Start on a new sheet of paper
(a)

The base of a certain solid is the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
Every cross-section perpendicular to the x -axis is an equilateral triangle. The shaded cross-section is thus an equilateral triangle with base PQ .
(i) Show that the shaded cross-sectional area is given by

$$
A=\sqrt{3} y^{2}
$$

(ii) Find the cross-sectional area as a function of \boldsymbol{x}
(iii) Find the volume of the solid.
(b) (i) The polynomial equation $\mathrm{P}(\boldsymbol{x})=0$ has a double root α. Show that α is also a root of $\mathrm{P}^{\prime}(\boldsymbol{x})=0$
(ii) The line $y=m x$ is a tangent to the curve $y=3-\frac{1}{x^{2}}$

Explain why the equation $m x^{3}-3 x^{2}+1=0$ has a double root.
(iii) Hence find all values of \boldsymbol{m}

2
(c) (i) Show that the equation $x^{3}+13 x-16=0$ has exactly one real root, $x=\alpha$, and that $1<\alpha<2$
(ii) If $x=\beta$ is one of the non-real roots of the equation in part (i), show that

$$
-1<\boldsymbol{\operatorname { R e }}(\beta)<-\frac{1}{2} \quad \text { and } \quad 2 \sqrt{2}<|\beta|<4
$$

Question 6-15 marks - Start on a new sheet of paper
(a) x

A solid is formed by rotating the region bounded by $y=2 x-x^{2}$ and the x -axis about the line $x=-1$.
(i) When the segment PQ of the region is rotated about $\boldsymbol{x}=-1$, it will form an annulus.
Show that the area of this annulus is given by $A=8 \pi \sqrt{1-y}$
(ii) Find the volume of the solid.
(b) (i) Sketch the region containing all points that simultaneously satisfy the following

$$
x \leq 1, y \geq 1 \text { and } y \leq e^{x}
$$

(ii) The region in part (i) is rotated through one complete revolution about the line $\mathrm{x}=2$
Use the method of cylindrical shells to find the volume of the solid that is formed.
(c)

$P\left(a, e^{a}\right)$ and $Q\left(b, e^{b}\right)$, where $\mathrm{a}>\mathrm{b}$, are two points on the curve $y=e^{x}$
\mathbf{M} is the midpoint of $P Q$.
(i) Use the diagram to show that $e^{a}+e^{b}>2 e^{\frac{1}{2}(a+b)}$
(ii) Hence show that if $\mathrm{a}>\mathrm{b}>\mathrm{c}>\mathrm{d}$ then $e^{a}+e^{b}+e^{c}+e^{d}>4 e^{\frac{1}{4}(a+b+c+d)}$

Question 7-15 marks - Start on a new sheet of paper
(a) A conical pendulum consists of a mass of M kg hanging at the end of a light, inextensible string of length 1 metre attached from a fixed point O

The mass rotates in a circle and moves with a period of S seconds. Therefore, its angular velocity (ω) is $\frac{2 \pi}{S}$ radians per second.
The string makes an angle θ to the vertical.

(i) Use a sketch to illustrate the forces acting on the mass.
(ii) By resolving the forces on the mass, show that $S=2 \pi \sqrt{\frac{\cos \theta}{g}}$ where g is the acceleration due to gravity.
(iii) The string can just support a stationary mass of 5 M kg hanging vertically.

Find the smallest period that the conical pendulum can have, leaving your answer in terms of g.
(b) A body of mass $\boldsymbol{m} \mathrm{kg}$ falls from rest and moves under gravity. The air resistance on the body is $\boldsymbol{k v}$ newtons when the speed of the body is $v \mathrm{~ms}^{-1}$
(i) Make a neat sketch showing the forces acting on the body during its fall.
(ii) Show that the equation of motion of the body is given by

$$
\frac{d v}{d t}=\frac{m g-k v}{m}
$$

(iii) Hence, find the terminal velocity V of the system, stating your answer in terms of $\boldsymbol{m}, \boldsymbol{g}$ and \boldsymbol{k}.
(iv) Show that the time elapsed since the beginning of the motion is given by

$$
t=\frac{m}{k} \ln \left(\frac{m g}{m g-k v}\right)
$$

(v) If the body has attained a speed equal to half the terminal speed, show that the time elapsed is equal to

$$
\frac{V}{g} \ln 2
$$

where V is the terminal velocity.

Question 8-15 marks - Start on a new sheet of paper
(a) (i) With the aid of a diagram, show that $\int_{1}^{\sqrt{u}} \frac{1}{x} d x<\sqrt{u}-1$ for $u>1$
(iii) Hence show that $\frac{\ln u}{u} \rightarrow 0$ as $u \rightarrow \infty$
(b)

In the diagram, PQ and RS are two chords of the circle intersecting at X .
$T R$ and TP are perpendicular to $R S$ and $P Q$ respectively.
Prove that the line through T and X is perpendicular to $S Q$.
(c) (i) Show that $\sin \frac{\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}$ and find a similar expression for $\cos \frac{\pi}{12}$
(ii) Expand $(x-i y)^{3}$
(iii) Hence or otherwise, find all real numbers \boldsymbol{x} and \boldsymbol{y} satisfying :

$$
\begin{aligned}
& x^{3}-3 x y^{2}=1 \\
& y^{3}-3 x^{2} y=1
\end{aligned}
$$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

