

STELLA MARIS COLLEGE

2005

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question.

Total marks – 120

- Attempt Questions 1 8
- All questions are of equal value.

Question 1 – 15 Marks

Marks

.

(a) Evaluate
$$\int_{0}^{1} \frac{2}{\sqrt{1+3x}} dx$$
 2

•

(b) By using integration by parts, find
$$\int x \sin 2x \, dx$$
 2

(c) Use the substitution
$$u = \sqrt{x}$$
 to evaluate $\int_{1}^{25} \frac{1}{x + \sqrt{x}} dx$, expressing your answer 3 in simplest exact form.

(d) Using
$$t = \tan \frac{x}{2}$$
, evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sin x}$ 4

(e) (i) Find real constants A, B and C such that

$$\frac{x+4}{x(x^2+4)} \equiv \frac{A}{x} + \frac{Bx+C}{x^2+4}$$
 2

(ii) Hence find
$$\int \frac{x+4}{x(x^2+4)} dx$$
 2

Question 2 - 15 marks - Start on a new sheet of paper

(a)

Marks

On separate diagrams, sketch the following, showing essential features.

(i)	y = f(x)	2
(ii)	$y = \frac{1}{f(x)}$	2
(iii)	$y = (f(x))^2$	2
(iv)	$y^2 = f(x)$	2
(v)	$y = \ln(f(x))$	2

(b) The sketch shows the graph of y = f(x), where $f(x) = x^3 - 3x$, $x \ge 1$.

Copy the diagram.

On your diagram, sketch the graph of the inverse function $y = f^{-1}(x)$ showing any intercepts with the coordinate axes, the coordinates of any endpoints and the coordinates of the point of intersection of y = f(x) and $y = f^{-1}(x)$

(c) Find the equation of the tangent to the curve $x^3 + y^3 - 3xy = 3$ at the point (1,2) on the curve.

3

2

.

(a)	Let $\alpha = 1 - 2i$ and $\beta = 3 + i$ Find, in the form $x + iy$,	
	(i) $\alpha\beta$	1
	(ii) $\frac{\alpha}{\beta}$	1

(b) Let $z = -\sqrt{3} - i$

(i) Express z in modulus-argument form.	-	2
(ii) Hence or otherwise, find z^{10} , expressing your answer in the form $x + iy$		2

(c) Let
$$z_1 = 4(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12})$$
 and $z_2 = 2(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12})$

	\rightarrow	\rightarrow	\rightarrow	2
(i) On an Argand diagram, draw the vectors	<i>OA</i> ,	OB and	OC representing	_
z_1 , z_2 and $z_1 + z_2$ respectively.				
				2
(ii) Hence find $ z_1 + z_2 $ in simplest exact for	rm.			

(d) (i) On an Argand diagram shade the region where both
$$|z-1-i\rangle| \le \sqrt{2}$$
 and $0 \le \arg(z) \le \frac{\pi}{2}$

(ii) Find the exact area of the shaded region. Justify your answer.

Marks

2

Question 4 - 15 marks – Start on a new sheet of paper

(a) Sketch the graph of the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ showing the intercepts on the axes, the coordinates of the focii and the equations of the directrices.

(b) The hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $a > b > 0$, has eccentricity e .

- (i) Show that the line through the focus S(ae,0) that is perpendicular to the asymptote $y = \frac{bx}{a}$ has equation $ax + by - a^2e = 0$
- (ii) Show that this line meets the asymptote at a point on the corresponding directrix.
- (c) $P(p,\frac{1}{p})$ and $Q(q,\frac{1}{q})$ are two variable points on the rectangular hyperbola xy = 1 such that the chord PQ passes through the point A(0,2). M is the midpoint of PQ.
 - (i) Show that PQ has equation x + pqy (p+q) = 0. Hence deduce that p + q = 2pq

3

1

3

3

- (ii) Deduce that the tangent drawn from the point A to the rectangular hyperbola touches the curve at the point (1,1)
- (iii) Sketch the rectangular hyperbola showing the points P,Q,A and M. Find the equation of the locus of M and state any restrictions on the domain of this locus.

Marks 4 (a)

2

The base of a certain solid is the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$

Every cross-section perpendicular to the x-axis is an equilateral triangle. The shaded cross-section is thus an equilateral triangle with base PQ.

(i)	Show that the shaded cross-sectional area is given by	1
	$A = \sqrt{3}y^2$	1
(ii)	Find the cross-sectional area as a function of x	-

- Find the volume of the solid. (iii)
- 2 (b) (i) The polynomial equation P(x) = 0 has a double root α . Show that α is also a root of P'(x) = 0
 - (ii) The line y = mx is a tangent to the curve $y = 3 \frac{1}{x^2}$ 1 Explain why the equation $mx^3 - 3x^2 + 1 = 0$ has a double root. 2

(iii) Hence find all values of *m*

(c) (i) Show that the equation
$$x^3 + 13x - 16 = 0$$
 has exactly one real root, $x = \alpha$,
and that $1 < \alpha < 2$

4 (ii) If $x = \beta$ is one of the non-real roots of the equation in part (i), show that 4 -1

$$1 < \operatorname{\mathbf{Re}}(\beta) < -\frac{1}{2}$$
 and $2\sqrt{2} < |\beta| < 2$

•

A solid is formed by rotating the region bounded by $y = 2x - x^2$ and the x-axis about the line x = -1.

an annulus. Show that the area of this annulus is given by $A = 8\pi\sqrt{1-y}$	I IOIIII
(ii) Find the volume of the solid.	3
(i) Sketch the region containing all points that simultaneously satisfy the following $x \leq 1$ and $y \leq a^{x}$	2
$x \le 1$, $y \ge 1$ and $y \le e$	2
 (ii) The region in part (i) is rotated through one complete revolution about the line x = 2 	. 4

(c)

that is formed.

(b)

 $P(a,e^a)$ and $Q(b,e^b)$, where a > b, are two points on the curve $y = e^x$ **M** is the midpoint of **PQ**.

(i) Use the diagram to show that
$$e^a + e^b > 2e^{\frac{1}{2}(a+b)}$$
 2

(ii) Hence show that if
$$a > b > c > d$$
 then $e^a + e^b + e^c + e^d > 4e^{\frac{1}{4}(a+b+c+d)}$ 2

Question 7 – 15 marks – Start on a new sheet of paper

(a) A conical pendulum consists of a mass of M kg hanging at the end of a light, inextensible string of length 1 metre attached from a fixed point O

The mass rotates in a circle and moves with a period of S seconds. Therefore, its angular velocity (ω) is $\frac{2\pi}{S}$ radians per second.

The string makes an angle θ to the vertical.

(i) Use a sketch to illustrate the forces acting on the mass.
(i) Use a sketch to illustrate the forces acting on the mass.
(ii) By resolving the forces on the mass, show that
$$S = 2\pi \sqrt{\frac{\cos \theta}{g}}$$
 where g is
the acceleration due to gravity.
(iii) The string can just support a stationary mass of 5M kg hanging vertically.
Find the smallest period that the conical pendulum can have, leaving
your answer in terms of g.
A body of mass m kg falls from rest and moves under gravity.
The air resistance on the body is kv newtons when the speed
of the body is v ms⁴
(i) Make a neat sketch showing the forces acting on the body during its fall.
(ii) Show that the equation of motion of the body is given by
 $\frac{dv}{dt} = \frac{mg - kv}{m}$
(iii) Hence, find the terminal velocity V of the system, stating your
answer in terms of m, g and k.
(iv) Show that the time elapsed since the beginning of the motion is given by
 $t = \frac{m}{k} \ln(\frac{mg}{mg - kv})$
(v) If the body has attained a speed equal to half the terminal speed, show that
the time elapsed is equal to
 $\frac{V}{r} \ln 2$

where V is the terminal velocity.

(b)

Question 8 – 15 marks – Start on a new sheet of paper

Marks

2

3

4

(a) (i) With the aid of a diagram, show that
$$\int_{1}^{\sqrt{u}} \frac{1}{x} dx < \sqrt{u} - 1 \text{ for } u > 1$$
 2

(ii) Hence show that
$$0 < \ln u < 2(\sqrt{u} - 1)$$
, for $u > 1$

(iii) Hence show that
$$\frac{\ln u}{u} \to 0$$
 as $u \to \infty$

(b)

In the diagram, PQ and RS are two chords of the circle intersecting at X. TR and TP are perpendicular to RS and PQ respectively. Prove that the line through T and X is perpendicular to SQ.

(c) (i) Show that
$$\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 and find a similar expression for $\cos \frac{\pi}{12}$ 2

(ii) Expand
$$(x - iy)^3$$

(iii) Hence or otherwise, find all real numbers \boldsymbol{x} and \boldsymbol{y} satisfying :

$$x^{3} - 3xy^{2} = 1$$
$$y^{3} - 3x^{2}y = 1$$

END OF QUESTIONS

STANDARD INTEGRALS

•

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$

.

- 16 -

© Board of Studies NSW 2004