

YEAR 12 MATHEMATICS

EXTENSION 2

TRIAL EXAMINATION 2008

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- There are 8 questions.
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working must be shown in every question
- All questions are of equal value
- Use a separate booklet for each question
- A table of standard integrals is provided at the back of this paper.

Question 1 (15 marks)

(a) Find $\int \frac{x}{(2-x)^{3}} d x$
(b) By completing the square, find $\int \frac{d x}{\sqrt{6 x-x^{2}}} d x$
(c) Use integration by parts to find $\int_{0}^{\frac{\pi}{2}} \boldsymbol{x} \boldsymbol{\operatorname { c o s }} 2 \boldsymbol{x} d \boldsymbol{x}$
(d) (i) Find values for A, B and C so that

$$
\frac{4 x^{2}+7 x-5}{(x-2)(x+3)^{2}} \equiv \frac{A}{x-2}+\frac{B}{(x+3)}+\frac{C}{(x+3)^{2}}
$$

(ii) Hence find $\int \frac{4 x^{2}+7 x-5}{(x-2)(x+3)^{2}} d x$
(e) Use the substitition $\boldsymbol{t}=\boldsymbol{\operatorname { t a n }} \frac{\boldsymbol{x}}{2}$ to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1-\boldsymbol{\operatorname { c o s } x}} \boldsymbol{d x}$

Question 2 (12 marks) - Use a SEPARATE writing booklet

(a) Let $\mathbf{z}=1+3 \mathbf{i}$ and $\boldsymbol{w}=1-2 \boldsymbol{i}$

Find, in the form $x+i y$,
(i) $(z+w)^{2}$
(ii) $\boldsymbol{z} \overline{\boldsymbol{w}}$
(iii) $\frac{z}{w}$
(b) Let $\mathbf{z}=-\sqrt{3}-\boldsymbol{i}$
(i) Express \mathbf{z} in modulus-argument form
(ii) Hence evaluate \mathbf{z}^{10} in the form $\boldsymbol{x}+\boldsymbol{i y}$.
(c) On an Argand diagram, shade the region where the inequalities

$$
|z-3-2 \boldsymbol{i}| \leq 2 \text { and }-\frac{\pi}{2}<\arg (z-3-2 i)<\frac{\pi}{4} \text { both hold }
$$

(d) Find, in the form $\boldsymbol{x}+\boldsymbol{i} \boldsymbol{y}$, complex numbers such that $(\boldsymbol{x}+\boldsymbol{i} \boldsymbol{y})^{2}=16+30 \boldsymbol{i}$
(e)

OABC is a rectangle in which $\boldsymbol{O C}=2 \boldsymbol{O A}$
The point \boldsymbol{A} represents the complex number \mathbf{z}
(i) What is the complex number represented by the point C
(ii) What is the complex number that is represented by $\overrightarrow{C A}$

Question 3 (15 marks) Use a SEPARATE writing booklet

(a) The diagram shows the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$

Make separate, one-third page sketches showing the main features of the graphs of
(i) $y=f(-x)$
(ii) $y=(f(x))^{2}$
(iii) $y^{2}=f(x)$
(iv) $\boldsymbol{y}=\frac{1}{\boldsymbol{f}(x)}$

2

2

2

2
(b) Determine the equation of the normal to the curve $\boldsymbol{x}^{2}-2 \boldsymbol{x} \boldsymbol{y}-\boldsymbol{y}^{2}=2$ at the point $(3,1)$ on the curve.
(c) Consider the graph of the function whose equation is $\boldsymbol{y}=\boldsymbol{x}+\frac{5 \boldsymbol{x}}{\boldsymbol{x}^{2}-4}$
(i) Write down the equations of asymptotes and the coordinates of the intercepts with the coordinate axes.
(ii) Make a neat half-page sketch of the graph of $\boldsymbol{y}=\boldsymbol{x}+\frac{5 \boldsymbol{x}}{\boldsymbol{x}^{2}-4}$

Question 4 (15 marks) Use a SEPARATE writing booklet

Marks
(a)

The diagram shows two different circles that touch externally at K .
XY is a common tangent to the two circles at K .
The straight line ABCD cuts the first circle at A and B and cuts the second circle at C and D.
The straight line through D and K cuts the first circle at P .
The straight line through C and K cuts the first circle at Q .
Copy or trace the diagram into your examination booklet.
Prove that PQ is parallel to AD
(b) The roots of $x^{3}-3 x^{2}-2 x+4=0$ are α, β and γ
(i) Find a cubic polynomial equation with integer coefficients whose roots are α^{2}, β^{2} and γ^{2}
(ii) Hence, or otherwise, find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$
(iii) Detemine the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$
(c) Let $\boldsymbol{P}(\boldsymbol{x})=\boldsymbol{x}^{3}+3 \boldsymbol{x}^{2}-24 \boldsymbol{x}+\boldsymbol{k}$

Find the possible values of \boldsymbol{k} given that the equation $\boldsymbol{P}(\boldsymbol{x})=0$ has a double root.
(d) When the polynomial $\boldsymbol{P}(\boldsymbol{x})$ is divided by $(\boldsymbol{x}+2)(\boldsymbol{x}-3)$, the remainder is $4 \boldsymbol{x}+1$.

2

2

Find the remainder when $\boldsymbol{P}(\boldsymbol{x})$ is divided by $(\boldsymbol{x}+2)$

Question 5 (15 marks) Use a SEPARATE writing booklet

(a)

The base of a solid is the region bound by the parabola $\boldsymbol{y}=\boldsymbol{x}^{2}$ and the line $\boldsymbol{y}=4$.
Vertical cross-sections parallel to the \boldsymbol{y}-axis are right-angled isosceles triangles with the right-angle on the line $\boldsymbol{y}=4$.
(i) Show that the area of a typical cross-section, at a distance \boldsymbol{a} units

Evaluate this integral to find the volume of the solid.
(b)

The region bound by $\boldsymbol{y}=8-2 \boldsymbol{x}^{2}$ and $\boldsymbol{y}=4-\boldsymbol{x}^{2}$ is rotated about the line $\boldsymbol{x}=-3$.
Use the method of cylindrical shells to find the volume of the solid that is formed.

Question 5 continues on the next page.

(c)

The region bound by $\boldsymbol{y}=2 \boldsymbol{x}-\boldsymbol{x}^{2}$ and the \boldsymbol{x}-axis is to be rotated about the line $\boldsymbol{x}=5$ to form a solid.
(i) $\boldsymbol{A B}$ is a horizontal chord of $\boldsymbol{y}=2 \boldsymbol{x}-\boldsymbol{x}^{2}$, at a height \boldsymbol{a} units above the \boldsymbol{x}-axis.

When this chord is rotated about the line $\boldsymbol{x}=5$, it will form an annulus.
Show that the area of this annulus is given by $\mathrm{A}=16 \pi \sqrt{1-y}$
(ii) Form an integral whose value will give the volume of the solid.

Hence find the volume of the solid.

Question 6 (15 marks) Use a SEPARATE writing booklet

Marks

(a) Consider the ellipse whose equation is $\frac{\boldsymbol{x}^{2}}{16}+\frac{\boldsymbol{y}^{2}}{9}=1$
(i) Find the eccentricity of the ellipse
(ii) Find the coordinates of the focii and the equations of the directrices
(iii) Make a neat sketch of the ellipse clearly showing and labelling the focii and directrices.
(b)

$\boldsymbol{P}(\boldsymbol{a} \sec \theta, \boldsymbol{b} \tan \theta)$ is a point on the hyperbola $\frac{\boldsymbol{x}^{2}}{\boldsymbol{a}^{2}}-\frac{\boldsymbol{y}^{2}}{\boldsymbol{b}^{2}}=1$
The equation of the normal at $\boldsymbol{P}(\boldsymbol{a} \sec \theta, \boldsymbol{b} \boldsymbol{\operatorname { t a n }} \theta)$ is given by

$$
\frac{\boldsymbol{a} \boldsymbol{x}}{\boldsymbol{\operatorname { s e c }} \theta}+\frac{\boldsymbol{b} \boldsymbol{y}}{\tan \theta}=\boldsymbol{a}^{2}+\boldsymbol{b}^{2} \quad \text { (Do not prove this) }
$$

A line through \boldsymbol{P} parallel to the \boldsymbol{y}-axis meets the asymptote $\boldsymbol{y}=\frac{\boldsymbol{b x}}{\boldsymbol{a}}$ at \boldsymbol{Q}.
The normal at \boldsymbol{P} meets the \boldsymbol{x}-axis at \boldsymbol{G}.
(i) Find the coordinates of \boldsymbol{Q} and \boldsymbol{G}

Question 6 (Continued)

(c) $\boldsymbol{P}\left(2 \boldsymbol{p}, \frac{2}{\boldsymbol{p}}\right)$ and $\boldsymbol{Q}\left(2 \boldsymbol{q}, \frac{2}{\boldsymbol{q}}\right)$ are two points on the rectangular hyperbola $\boldsymbol{x} \boldsymbol{y}=4$.

The chord $\mathbf{P Q}$ always passes through the point $\boldsymbol{R}(4,2)$

(i) Show that the equation the chord $\mathbf{P Q}$ is $\boldsymbol{x}+\boldsymbol{p q y}=2(\boldsymbol{p}+\boldsymbol{q})$
(ii) Show that $\boldsymbol{p q}=\boldsymbol{p}+\boldsymbol{q}-2$
(iii) Let \boldsymbol{M} be the midpoint of $\boldsymbol{P Q}$

Write down the coordinates of \boldsymbol{M} and hence find the equation of the 3 locus of \boldsymbol{M} as the points \boldsymbol{P} and \boldsymbol{Q} move on the curve $\boldsymbol{x} \boldsymbol{y}=4$.

Question 7 (15 marks) - Use a SEPARATE writing booklet

Marks

(a) A body P of mass 0.5 kg is suspended from a fixed point O by a light, inextensible string of length 1 (one)metre. The mass is rotated in a horizontal circle with constant speed of v metres per second. The string makes an angle of θ° with the downward direction of the vertical.

(i) Copy the diagram onto your own paper and show the forces that are acting on P .
(ii) By resolving the horizontal and vertical forces acting on P , show that $\tan \theta=\frac{\boldsymbol{v}^{2}}{\boldsymbol{r g}}$ where \boldsymbol{r} is the radius of the circle.

Marks

(a) Use the principle of mathematical induction to prove that $\boldsymbol{(c o s} \theta+\boldsymbol{i} \sin \theta)^{\boldsymbol{n}}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{n} \theta)+\boldsymbol{i} \boldsymbol{\operatorname { s i n }}(\boldsymbol{n} \theta)$ for all integers $n \geq 1$
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ for $n=0,1,2, \ldots \ldots$
(i) Use integration by parts to show that $\boldsymbol{I}_{\boldsymbol{n}}=\frac{\boldsymbol{n}-1}{\boldsymbol{n}} \boldsymbol{I}_{\boldsymbol{n}-2}$ for $\boldsymbol{n}=2,3,4 \ldots$
(iii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{5} x d x$
(c) (i) On an Argand diagram, plot and label the 5 points that represent the roots of the equation $z^{5}-1=0$. with real coefficients.
(iii) Using the result $\mathbf{z}^{5}-1=(\mathbf{z}-1)\left(\mathbf{z}^{4}+\mathbf{z}^{3}+\mathbf{z}^{3}+\mathbf{z}+1\right)$ and part (i), write down the roots of $\mathbf{z}^{4}+\mathbf{z}^{3}+\mathbf{z}^{3}+\mathbf{z}+1=0$
(iv) Hence show that $\cos \frac{2 \pi}{5}+\cos \frac{4 \pi}{5}=-\frac{1}{2}$

1

END OF EXAMINATION

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 \quad ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, x>0 \\
& \int e^{a x} d x \\
& =\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{\mathrm{e}} x, x>0$

