

YEAR 12 MATHEMATICS

EXTENSION 2

TRIAL EXAMINATION 2008

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- There are 8 questions.
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working must be shown in every question
- All questions are of equal value
- Use a separate booklet for each question
- A table of standard integrals is provided at the back of this paper.

<u>Question 1</u> (15 marks)

Marks

(a) Find
$$\int \frac{x}{(2-x)^3} dx$$
 2

(b) By completing the square, find
$$\int \frac{dx}{\sqrt{6x-x^2}} dx$$

(c) Use integration by parts to find
$$\int_{0}^{\frac{\pi}{2}} x \cos 2x \, dx$$
 3

$$\frac{4x^2 + 7x - 5}{(x - 2)(x + 3)^2} \equiv \frac{A}{x - 2} + \frac{B}{(x + 3)} + \frac{C}{(x + 3)^2}$$

(ii) Hence find
$$\int \frac{4x^2 + 7x - 5}{(x - 2)(x + 3)^2} dx$$
 2

(e) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{1 - \cos x} dx$ 4

(a) Let $z = 1+3i$ and $w = 1-2i$ Find, in the form $x + iy$, (i) $(z+w)^2$ (ii) $z \overline{w}$	larks
Find, in the form $x + iy$, (i) $(z + w)^2$ (ii) $z \overline{w}$	
(i) $(z+w)^2$ (ii) $z \overline{w}$	
(ii) $z \overline{w}$	1
	1
(iii) $\frac{z}{w}$	1
(b) Let $z = -\sqrt{3} - i$	•
(i) Express z in modulus-argument form	2
(ii) Hence evaluate z^{10} in the form $x + iy$.	2
(c) On an Argand diagram, shade the region where the inequalities	3

$$|z-3-2i| \le 2$$
 and $-\frac{\pi}{2} < \arg(z-3-2i) < \frac{\pi}{4}$ both hold

(d) Find, in the form x + iy, complex numbers such that $(x + iy)^2 = 16 + 30i$ 3

OABC is a rectangle in which $OC = 2 OA$	
The point A represents the complex number z	1
(i) What is the complex number represented by the point C	1
(ii) What is the complex number that is represented by \overrightarrow{CA}	1

Question 3 (15 marks) Use a SEPARATE writing booklet

(a) The diagram shows the graph of y = f(x)
 Make separate, one-third page sketches showing the main features of the graphs of

(i)
$$y = f(-x)$$
 2

(ii)
$$\mathbf{y} = (f(\mathbf{x}))^2$$
 2

(iii)
$$y^2 = f(x)$$
 2

(iv)
$$y = \frac{1}{f(x)}$$
 2

(b) Determine the equation of the normal to the curve $x^2 - 2xy - y^2 = 2$ at the point (3,1) on the curve.

(c) Consider the graph of the function whose equation is $y = x + \frac{5x}{x^2 - 4}$	2
(i) Write down the equations of asymptotes and the coordinates	
of the intercepts with the coordinate axes.	2
5 r	

(ii) Make a neat half-page sketch of the graph of $y = x + \frac{5x}{x^2 - 4}$

Marks

3

(a)

Marks

The diagram shows two different circles that touch externally at K.XY is a common tangent to the two circles at K.The straight line ABCD cuts the first circle at A and B and cuts the second circle at C and D.The straight line through D and K cuts the first circle at P.The straight line through C and K cuts the first circle at Q.Copy or trace the diagram into your examination booklet.Prove that PQ is parallel to AD	4
(b) The roots of $x^3 - 3x^2 - 2x + 4 = 0$ are α, β and γ (i) Find a cubic polynomial equation with integer coefficients whose roots are $\alpha^2 \beta^2$ and γ^2	2
(ii) Hence, or otherwise, find the value of $\alpha^2 + \beta^2 + \gamma^2$	1
(iii) Detemine the value of $\boldsymbol{\alpha}^3 + \boldsymbol{\beta}^3 + \boldsymbol{\gamma}^3$	2
(c) Let $P(x) = x^3 + 3x^2 - 24x + k$ Find the possible values of k given that the equation $P(x) = 0$ has a double root.	3
(d) When the polynomial $P(x)$ is divided by $(x+2)(x-3)$, the remainder is $4x+1$. Find the remainder when $P(x)$ is divided by $(x+2)$	3

Marks

3

5

(a)

The base of a solid is the region bound by the parabola $y = x^2$ and the line y = 4. Vertical cross-sections parallel to the *y*-axis are right-angled isosceles triangles with the right-angle on the line y = 4.

(i) Show that the area of a typical cross-section, at a distance a units

from the y-axis is given by
$$A = \frac{1}{2}(a^4 - 8a^2 + 16)$$
.

(ii) Form an integral whose value will give the volume of the solid.Evaluate this integral to find the volume of the solid.

The region bound by $y = 8 - 2x^2$ and $y = 4 - x^2$ is rotated about the line x = -3.

Use the method of cylindrical shells to find the volume of the solid that is formed.

Question 5 continues on the next page.

<u>Question 5</u> (continued)

Marks

The region bound by $y = 2x - x^2$ and the x – axis is to be rotated about the line x = 5 to form a solid.

(i) <i>AB</i> is a horizontal chord of $y = 2x - x^2$, at a height <i>a</i> units above the <i>x</i> -axis.	
When this chord is rotated about the line $x = 5$, it will form an annulus.	2
Show that the area of this annulus is given by A = $16\pi\sqrt{1-y}$	3
(ii) Form an integral whose value will give the volume of the solid.	_
	2

Hence find the volume of the solid.

4

Question 6 (15 marks) Use a SEPARATE writing booklet

(a) Consider the ellipse whose equation is $\frac{x^2}{16} + \frac{y^2}{9} = 1$	
(i) Find the eccentricity of the ellipse	1
(ii) Find the coordinates of the focii and the equations of the directrices	2
(iii) Make a neat sketch of the ellipse clearly showing and labelling the focii	2
and directrices.	

(b)

$$y = \frac{bx}{a}$$

$$y = \frac{bx}{a}$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $P(a \sec \theta, b \tan \theta)$ is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ The equation of the normal at $P(a \sec \theta, b \tan \theta)$ is given by

$$\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2 \quad \text{(Do not prove this)}$$

A line through **P** parallel to the y-axis meets the asymptote $y = \frac{bx}{a}$ at **Q**. The normal at P meets the x-axis at G.

(i) Find the coordinates of Q and G

(ii) Show that $\angle OQG = 90^{\circ}$, where *O* is the origin.

Question 6 continues on the next page

Marks

2

2

(c)
$$P(2p, \frac{2}{p})$$
 and $Q(2q, \frac{2}{q})$ are two points on the rectangular hyperbola $xy = 4$.

The chord PQ always passes through the point R(4,2)

(i) Show that the equation the chord PQ is $x + pqy = 2(p+q)$	2
(ii) Show that $pq = p + q - 2$	1
(iii) Let M be the midpoint of PQ	1
Write down the coordinates of M and hence find the equation of the	3
locus of <i>M</i> as the points <i>P</i> and <i>Q</i> move on the curve $xy = 4$.	

(a) A body P of mass 0.5 kg is suspended from a fixed point O by a light, inextensible string of length 1 (one)metre. The mass is rotated in a horizontal circle with constant speed of v metres per second. The string makes an angle of θ^o with the downward direction of the vertical.

(i) Copy the diagram onto your own paper and show the forces that	
are acting on P.	1
(ii) By resolving the horizontal and vertical forces acting on P, show that	
$\tan \theta = \frac{v^2}{rg}$ where <i>r</i> is the radius of the circle.	3
For parts (iii) and (iv) assume $g = 9.8$ and $\theta = 30^{\circ}$	
(iii) Find the tension in the string	
(iv) Find the speed v of P	1
(b) A rock of mass 5 kg is propelled vertically upwards into the air from the ground with an initial velocity of 12 ms ⁻¹ . The rock is subject to a downward gravitational force of 50 Newtons (ie $mg = 50$) and air resistance of $\frac{v^2}{2}$ Newtons in the opposite direction to the velocity, $v \text{ ms}^{-1}$	I
(i) Make a neat sketch showing the forces acting and the rock.	1
Hence show that the equation of motion of the rock is $\ddot{x} = -\frac{v^2}{10} - 10$	
(ii) Using $\ddot{x} = \frac{dv}{dt}$, find the time taken for the rock to reach its maximum height.	3
(iii) Using $\ddot{x} = v \frac{dv}{dx}$, show that $v^2 = 244e^{-\frac{x}{5}} - 100$	3
(iv) Find the maximum height reached by the rock.	2

Marks

2

(a) Use the principle of mathematical induction to prove that

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$
 for all integers $n \ge 1$

(b) Let
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$
 for $n = 0, 1, 2, \dots$ 3

(i) Use integration by parts to show that $I_n = \frac{n-1}{n}I_{n-2}$ for n = 2, 3, 4...

(iii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \cos^5 x \, dx$$

(c) (i) On an Argand diagram, plot and label the 5 points that represent the roots	
of the equation $z^5 - 1 = 0$.	2
(ii) Hence express $z^5 - 1$ as a product of one linear and two quadratic factors	2
with real coefficients.	

(iii) Using the result $z^5 - 1 = (z - 1)(z^4 + z^3 + z^3 + z + 1)$ and part (i), write down the roots of $z^4 + z^3 + z^3 + z + 1 = 0$

(iv) Hence show that
$$\cos\frac{2\pi}{5} + \cos\frac{4\pi}{5} = -\frac{1}{2}$$
 1

END OF EXAMINATION

STANDARD INTEGRALS

$\int x^n dx$	$= \frac{1}{n+1} x^{n+1} , n \neq -1 ; x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x$, $x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}$, $a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax$, $a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax$, $a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax$, $a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax$, $a \neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}$, $a \neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}$, $a > 0$, $-a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln(x + \sqrt{x^2 - a^2})$, $x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln(x + \sqrt{x^2 + a^2})$

NOTE: $\ln x = \log_e x$, x > 0