
 4 unit mathematics
 $\tau_{\text {Riad }}$ hSC Examination 1994

1. (a) Find $\int \frac{2 x}{1+x^{4}} d x$
(b) Evaluate
(i) $\int_{1}^{2} \frac{d x}{x^{2}-x+1}$
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{2+\cos x}$
(iii) $\int_{0}^{1} e^{\sqrt{x}} d x$
(c) Prove that $\int_{a}^{b} f(m x) d x=\frac{1}{m} \int_{m a}^{m b} f(x) d x \quad(m \neq 0)$
2. (a) (i) If $z=3-4 i$, express z^{2} and $\frac{1}{z}$ in the form $a+i b$ where a and b are real numbers. Represent them on an Argand diagram.
(ii) If $w^{2}=z$, express the two values of w in the form $a+i b$.
(b) Illustrate on the Argand diagram the region $\left\{z: 0 \leq \arg (z+4) \leq \frac{2 \pi}{3} \wedge|z+4| \leq 4\right\}$
(c) Let z_{1}, z_{2} and z_{3} be three complex numbers represented by Z_{1}, Z_{2} and Z_{3} respectively where $z_{1} \times z_{3}=\left(z_{2}\right)^{2}$. Show that $O Z_{2}$ bisects $\angle Z_{1} O Z_{3}$.
(d) A sequence $z_{1}, z_{2}, z_{3}, \ldots$ satisfy $z_{m+1}=z_{n}^{2}+z_{1}$ for all $n \geq 1$. If $z_{1}=i$, find the distinct values that occur in the sequence.
3. (a) A hyperbola has equation $9 x^{2}-16 y^{2}=144$
(i) Prove that the eccentricity is $\frac{5}{4}$.
(ii) Find the coordinates of the foci.
(iii) Find the equations of the asymptotes.
(iv) Find the length of the latus rectum. (A latus rectum is a focal chord parallel to the directrix.)
(v) Find the equation of the normal to the hyperbola at the point $\left(\frac{4 \sqrt{10}}{3}, 1\right)$
(b) The tangents at the two points P and Q with parameters θ and ϕ respectively on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersect at the point T. Show that $T=\left(\frac{a(\sin \theta-\sin \phi)}{\sin (\theta-\phi)}, \frac{b(\cos \phi-\cos \theta)}{\sin (\theta-\phi)}\right)$.
(c) Find the condition for the line $p x+q y+r=0$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
4. (a) Sketch, on separate diagrams, the curves
(i) $y=\frac{x-4}{x}$
(ii) $y=\frac{x^{2}-16}{x^{2}}$.
(The equation of any asymptotes should be stated, together with the coordinates of any intersections with the axes.) Hence or otherwise sketch the curves
(iii) $y=\left|\frac{x-4}{x}\right|$ (iv) $y^{2}=\frac{x^{2}-16}{x^{2}}$
(b) $A B=A D=A R, R P \perp D C$.

Prove that
(i) $B C P Q$ is a cyclic quadrilateral.
(ii) $\angle C B D=90^{\circ}$
(iii) $A B=A P$.
5. (a) Let $f(x)=(\ln x)^{2}+5$
(i) Find the domain of f.
(ii) Find $f^{\prime}(x)$
(iii) Sketch the graph
(iv) Find the maximum domain such that $f(x)$ has an inverse function
(v) Find the inverse function f^{-1} of f and state its domain and range
(vi) Sketch the graph of f^{-1}
(b) The sequence of real numbers $u_{1}, u_{2}, u_{3}, \ldots$ is such that $u_{1}=5$ and $u_{n+1}=$ $\left(u_{n}+\frac{1}{i_{n}}\right)^{2}$ for all $n \geq 1$. Prove by induction that, for every positive integer n, $u_{n}>2^{m}$ where $m=2^{n}$.
6. (a) For the equation $x^{4}+2 x^{3}+3 x^{2}+5 x+1=0$
(i) Obtain the sum of the squares of the roots of the equation
(ii) Show that the equation has two negative roots, α and β, such that $-2<\alpha<\beta<0$
(iii) Hence, or otherwise, prove that the equation has no other real roots.
(b) The roots of the equation $x^{3}+p x+q=0,(q \neq 0)$ are α, β and γ
(i) Show that $\alpha^{n+3}+p \alpha^{n+1}+q \alpha^{n}=0$ where n is a positive integer.
(ii) Write down equations involving β and γ similar to (i).
(iii) Deduce that $S_{n+3}+p S_{n+1}+q S_{n}=0$, where $S_{n}=\alpha^{n}+\beta^{n}+\gamma^{n}$
(iv) Hence show that $S_{3}=-3 q$, and find S_{5} in terms of p and q.
7. (a) Use DeMoivres' theorem to show that $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$. Hence: (i) Solve the equation $16 x^{4}-16 x^{2}+1=0$ and deduce the exact values of $\cos \frac{\pi}{12}$ and $\cos \frac{5 \pi}{12}$.
(b) (i) A particle P is projected, from a point O on the horizontal ground, with speed V at an angle θ above the horizontal, where $\tan \theta=\frac{1}{3}$. The particle passes through the point with coordinates $\left(3 a, \frac{3 a}{4}\right)$ relative to the horizontal and vertical axes at O in the plane of motion. Show that $v^{2}=20 \mathrm{ga}$.
(ii) A particle Q is projected, from a point O at the instant when P is moving horizontally. It strikes the ground at the same place and at the same instant as P. Show that the speed of projected of Q is $\sqrt{\frac{145 g a}{2}}$ and find the tangent of the angle of projection.
8. (a)

Mr Keating's crystal ball rests on a solid stand which is in the shape of a square based frustrum as shown.

The stand is constructed such that the crystal ball of radius R fits snugly inside and just touches the centre of the square base. The sides, $E C$, of the base slope so that, if extended, they would pass through the top-most point on the ball at A and make an angle θ with the vertical $A D$.
(i) Show that $O B=R \cos 2 \theta$
(ii) Consider a slice $P Q R$ of thickness Δx as shown taken perpendicular to $A D$ such that $O Q=x$ units. Draw a neat sketch of the slice, determine its dimensions and show that it has a volume ΔV given by $\Delta V \approx\left[4 \tan ^{2} \theta(R+x)^{2}-\pi\left(R^{2}-x^{2}\right)\right] \Delta x$ (iii) Find the volume of such a solid where the angle $\theta=\frac{\pi}{6}$.

