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Question 5 
 
(a) (i) Taking the downward direction as positive we get the following force 

equation mx mg mkv= −�� , the resistance is negative as it OPPOSES the 
motion and is therefore directed upwards. 

  So mx mg mkv x g kv= − ⇒ = −�� ��  
 

(ii)  The terminal velocity is when the net acceleration of the mass is 0 ie 
0 Tx g kv V g k= − = ⇒ =�� . 

 

 (iii) Taking 
dv dv

x g kv
dt dt

= ⇒ = −��  
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   We can remove the absolute value brackets since the initial direction is 

positive and it doesn’t come to rest until it hits the ground so 0
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(b) (i) If we choose 5 players to form a team, this can be done in 
10

5

 
 
 

 ways. But 

the remaining 5 will form the opposing team. So there are 
101

126
52

 
= 

 
 

 (ii) If the twins are on one team then the remaining team can be formed in 
8

3

 
 
 

 = 56 ways. So the probability that the twins are on the same team is 

56 126 4 9= . 



(5) (c) (i) There are 4! = 24 ways to arrange everyone without restrictions. 
However with 3 men and only 2 women there must be one pair of 
men sitting next to each other. 
Probability = 0. 
 

(ii)  There are 4! ways to sit everyone down without restriction.  
Seat two women down next to each other. This leaves 2! = 2 ways 
to seat the men down and 1 way to sit the other woman.  

The two women can be chosen in 
3

3
2

 
= 

 
 ways. Then the two 

women seated together can swap seats 
So there are 2 3 2 12× × =  ways. to sit everyone down. 
So the probability is 12 24 1 2= . 

 
(iii) There are (2n!) ways to sit everyone down without restrictions. 

Choose two women first and sit them down. This can be done in 
1 ( 1)
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 ways. The remaining women can be seated in 

( 1)!n −  ways. Then the men can be seated in n! ways.  
The two women together can be swapped around. 

A total of 2( 1)
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n n
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So the probability is 
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Question 7 
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To get the coefficient of 4x−  we need 5 3 2 4 3 2 9 6r r r− = − ⇒ − = − ⇒ =  

So the coefficient of 4 6 10
6 13440x a C− = × =  

6
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(b) (i) 2CP AC BC= ×  by the rule for intercepts and tangents.  

Similarly 2 2 2CQ AC BC CP CQ CP CQ= × ⇒ = ⇒ =  as (CP, CQ > 0) 
 
 (ii) PQC∆ is isosceles with CPQ CQP x∠ = ∠ =  (base angles of isos. ∆ ) 
  BAP CPQ x∠ = ∠ =  (alternate segment theorem). Similarly BAQ x∠ =  
  So CAQ CPQ∠ = ∠  both of which stand on chord CQ.  

So A, P, C &  Q are concyclic points by the converse of angles in the same 
segment theorem. 

 
 (iii) The exterior angle 180 2DAP x∠ = − , DAQ is a straight line. 
  So 180DAC x∠ = − . Now BADP is a cyclic quad so that  

180BPD BAD∠ + ∠ = °  BAD x⇒ ∠ = . 
   Thus CPB BPD x PB∠ = ∠ = ⇒  bisects CPD∠ . 
 
(c) 

  



7 (ii) Test n = 1: 

   LHS = 
1 1
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   So the statement is true for n = 1 
   Assume true for some integer n = k. 
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We need to prove the statement is true for n = k + 1 
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(iii) Substitute 1 2x =  into both sides of the result from (ii) and simplify 
 

 

from (i) 



 



 
 Clearly sin 1θ ≤  

 
8

sin
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θ = . Now d AW AP= ≥  (triangle inequality) 

 So 
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sin
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θ = ≥  

 ie 
8

sin 1
d

θ≤ ≤  

 

 

 We can use this value of θ  because 18
sin 1 sin (2 5) 2

20
θ θ π−≤ ≤ ⇒ ≤ ≤  

 and clearly 3θ π=  satisfies this inequality. 



 
More appropriate alternative solution: 
We can’t use the same method because with d = 9 we get 

18
sin 1 sin (8 9) 2

9
θ θ π−≤ ≤ ⇒ ≤ ≤  and clearly 3θ π=  does NOT satisfy this 

inequality. 
So in this range we have a 1:1 function for L (you can quickly show that it is 
increasing) so all we need to is test the end points of 1sin (8 9) 2θ π− ≤ ≤  ie 

substitute 1sin (8 9)θ −=  and 2θ π=  into the formula for L and take the 
minimum value of L resulting. 
 


