

SYDNEY BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 2

Trial Higher School Certificate 2001

Time Allowed: 3 hours (plus 5 minutes reading time)

Total Marks: 120

Examiner: Mr R Dowdell, Mr PS Parker

INSTRUCTIONS:

- Attempt all questions. \bullet
- All questions are of equal value. \blacksquare
- All necessary working should be shown in every question. Full marks may not be awarded if work is careless or badly arranged.
- Standard integrals are provided on the last page. Approved calculators may be used.
- Return your answers in 8 booklets, 1 for each question. Each booklet must show your name.
- If required, additional Writing Booklets may be obtained from the Examination Supervisor upon request.
- NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject.

Question 1:

Marks

 $\overline{2}$

 $\mathbf 2$

 $\overline{\mathbf{3}}$

 $\overline{\mathbf{3}}$

 $\overline{\mathbf{5}}$

(a) Evaluate
$$
\int_0^{\frac{3}{2}} \frac{dx}{\sqrt{9-x^2}}
$$

(b) Find
$$
\int x^3 e^{x^4+7} dx
$$

(i) Express
$$
\frac{x^2 + x + 2}{(x^2 + 1)(x + 1)}
$$
 in the form $\frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1}$, where *A*, *B* and *C* are constants.

(ii) Hence find
$$
\int \frac{x^2 + x + 2}{(x^2 + 1)(x + 1)} dx
$$

By using the substitution $x = \pi - y$, or otherwise, evaluate $\int_0^{\pi} x \sin^3 x dx$

Question 2: START A NEW BOOKLET

(a)
$$
\frac{4+3i}{1+\sqrt{2}i} = a + ib
$$
, for *a*, *b* real.

Find the exact values of a and b .

Given
$$
z = 1 - \sqrt{3}i
$$
,
\n(i) show that z^2 is a real multiple of $\frac{1}{z}$;
\n(ii) plot z, z^2 , $\frac{1}{z}$ on an Argand diagram.
\n(c) Sketch the region represented by
\n $|z| \le 4$ and $\frac{\pi}{3} < \arg z \le \frac{2\pi}{3}$.
\n(d) (i) Show that $\frac{(1+i\sqrt{3})^6}{(\sqrt{3}-i)^k} = 2^{6-k} \operatorname{cis}(\frac{k\pi}{6})$.
\n(ii) For what values of k is $\frac{(1+i\sqrt{3})^6}{(\sqrt{3}-i)^k}$ purely imaginary?
\n**Example**
\n**Problem**
\n**Example**
\n

Page 3 of 11

 $\overline{2}$

Question 3: START A NEW BOOKLET

If the curve below represents $y = f(x)$, (a)

make neat sketches, on separate axes, of

(i)
$$
y = (f(x))^2
$$

\n(ii) $y = \frac{1}{f(x)}$
\n(iii) $y = |f(x)|$
\n(iv) $y = f(|x|)$
\n(v) $y^2 = f(x)$
\n(vi) $y = f'(x)$

 $\sqrt{6}$

 \cdot

Two sides of a triangle are in the ratio 3:1 and the angles opposite these sides $\mathbf 3$ differ by $\frac{\pi}{6}$. Show that the smaller of the two angles is $\tan^{-1}\left(\frac{1}{6-\sqrt{3}}\right)$.

 \bar{z}

Marks

 12

Question 4: START A NEW BOOKLET

- (a) $1+i$ and $3-i$ are zeroes of a real, monic polynomial, $p(x)$, of degree 4. Express $p(x)$ as a product of two real quadratic factors. (i) Explain briefly why the polynomial $p(x)$ cannot take negative values.
- $x^3 + 3px + q = 0$ has a double root of $x = k$. (b)
	- (i) Show that $p = -k^2$.
	- (ii) Show that $4p^3 + q^2 = 0$.
	- Hence factorise $x^3 6i x + 4 4i$ into linear factors, given that it has $\sqrt{(\mathrm{iii})}$ a repeated factor.

Consider
$$
f(x) = x^3 + 9x + 26
$$
 and $g(x) = x^2 + 26x - 27$.

(i) Verify that
$$
f\left(x - \frac{3}{x}\right) = \frac{g(x^3)}{x^3}
$$

 (ii) Hence solve $f(x) = 0$.

(c

 ΔPQR is a triangle inscribed in a circle of radius r. PR has length l, and $\angle PQR = \alpha$

- (i) Show that $l = 2r \sin \alpha$.
- If $\angle QPR = \theta$, show that the area of $\triangle PQR$ is (ii) $r^2 \sin \alpha (\cos \alpha - \cos(2\theta + \alpha))$
- If $PQ = QR$, what is the area of ΔPQR in terms of r and α ? (iii)

Marks

 $\mathbf{3}$

 $\overline{\mathbf{4}}$

 $\overline{\mathbf{3}}$

 $\mathfrak s$

Question 5: START A NEW BOOKLET

- A mass of m kilograms falls from rest. It experiences resistance during its fall (a) equal to mkv where v is its speed in metres per second and k is a positive constant. Let x be the distance in metres of the mass from its starting point measured positively as it falls and t be the time in seconds.
	- Show that the equation of motion of the mass is $\ddot{x} = g kv$ where g is (i) the acceleration due to gravity.
	- Show that the terminal velocity is $\frac{g}{h}$. (ii)
	- (iii)

Find v as a function of t .

Find x as a function of t.

- In how many ways can 10 students be grouped into two teams of 5 to (i) play a game of basketball?
	- Two of the 10 students are twins. If the teams are formed at random, (ii) what is the probability that the twins play on the same team?

 (b)

A group of men and women is seated randomly around a circular table. What is the probability that none of the men are sitting next to each other if there are

- (i) 3 men and 2 women;
- (ii) 2 men and 3 women;
- (iii) *n* men and $n + 1$ women?

Marks

8

 $\overline{2}$

5

Question 6: START A NEW BOOKLET

 (a) The base of a solid is the region enclosed by $y = 2x$ and $y = x^2$. Cross sections taken perpendicular to the x axis are semicircles with the diameter in the base of the solid (as indicated the diameter AB of the semicircle is perpendicular to the x axis; the semicircle is perpendicular to the xy plane).

Find the volume of the solid.

 \mathbf{r}

The length of the arc AB on the curve $y = f(x)$ between $x = a$ and $x = b$ is given by $l = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$.

 \boldsymbol{x}

 $\overline{\mathbf{4}}$

 \boldsymbol{b}

 \boldsymbol{a}

OA is an arc of the parabola $y = x^2$. The region OABC is rotated about the y axis forming a bowl. By using cylindrical shells determine the holding capacity of the bowl.

6

 $\overline{5}$

Marks

Question 7: START A NEW BOOKLET

Find the value of a given that $\left(\sqrt{x} + \frac{a}{x}\right)^{10}$ has 13440 as coefficient of x^{-4} . (a)

Two circles intersect at A and B . AB is produced to a point C , such that CP and CQ are tangents to the circles as shown and PBQ is a straight line.

NOTE: The diagram is not drawn to scale.

- Express CP in terms of CB and CA, and hence prove that $CP = CQ$. (i)
- (ii) Show that A , P , C and Q are concyclic.
- (iii) Let QA produced meet the larger circle at D. Show that PB bisects \angle CPD.

(c) Let
$$
T(m, y) = \frac{{}^{m}C_0}y - \frac{{}^{m}C_1}y + 1} + \frac{{}^{m}C_2}y + 2}
$$
 + $(-1)^m \frac{{}^{m}C_m}y + m$.

If it is given that $T(k, x) = \frac{k!}{x(x+1)(x+2)...(x+k)}$ for a particular (i)

value of
$$
k
$$
, show that

$$
T(k, x) - T(k, x + 1) = T(k + 1, x)
$$

Hence prove, using Mathematical Induction or otherwise, that for $n \geq 1$

$$
T(n,x) = \frac{{}^{n}C_0}x - \frac{{}^{n}C_1}x + \frac{{}^{n}C_2}x - \dots + (-1)^n \frac{{}^{n}C_n}x + \frac{n!}{x(n+1)(x+2)\dots(x+n)}
$$

(NOTE: you may use without proof the result ${}^{m+1}C_r = {}^mC_r + {}^mC_{r-1}$)

Hence prove that (iii)

$$
\frac{{}^{n}C_{0}}{{}1}-\frac{{}^{n}C_{1}}{{}3}+\frac{{}^{n}C_{2}}{{}5}-\dots\ldots+(-1)^{n}\frac{{}^{n}C_{n}}{{}2n+1}=\frac{2^{n}n!}{1.3.5\ldots\ldots(2n+1)}
$$

Marks $\overline{\mathbf{3}}$

 $\overline{\mathbf{5}}$

 $\overline{\tau}$

The arch $y = \sin x$, $0 \le x \le \pi$ is revolved around the line $y = c$ to generate the solid shown. Find the value of c that minimises the volume.

Question 8 is continued on Page 10

 $\hat{\mathbf{r}}$

 $\overline{1}$

(i) Let
$$
f(\theta) = \frac{2 - \cos \theta}{\sin \theta}
$$
, $0 < \theta < \frac{\pi}{2}$.

Show that $f'(\theta) = \frac{1 - 2\cos\theta}{\sin^2\theta}$. Find the minimum value of $f(\theta)$

Two towns A and B are 16km apart, and each at a distance of d km (ii) from a water well at W. Let M be the midpoint of AB, P be a point on the line segment MW, and $\theta = \angle APM = \angle BPM$. The two towns are to be supplied with water from W , via three straight water pipes: PW , PA and PB as shown below.

Show that the total length of the water pipe L is given

by $L = 8f(\theta) + \sqrt{d^2 - 64}$, when $\frac{8}{d} \le \sin \theta \le 1$, where $f(\theta)$ is given in part (i).

- If $d = 20$, find the length of MP when L is minimum, and the (iii) minimum value of L . Show that this minimum value of L is less than the sum of any pair of sides of $\triangle ABW$.
- If $d = 9$, show that the minimum value of L cannot be found by using (iv) the same methods as used in part (iii). Explain briefly how to find the minimum value of L in this case. (Hint: Draw a diagram which illustrates this situation.)

END OF PAPER

 (b)

2001

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

Sample Solutions

$$
\frac{d^{2}u^{2}m^{2}}{4}
$$
\n
$$
\frac{d^{2}u^{2}}{4}
$$
\n
$$
\frac{d^{2}u
$$

 $\label{eq:1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{$ \mathcal{L}_{max} and \mathcal{L}_{max}

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt$

 $\mathcal{L}^{\text{max}}_{\text{max}}$

$$
e^{2\xi} \cdot \int_{1}^{1} \int_{1}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} \int_{1}^{1} \int_{1}^{1
$$

3(a)
\n
$$
z = \sqrt{3\pi}
$$

\n $z = \frac{4\pi(6 + 7/6)}{3\pi}$
\n3.4 π = $\frac{4\pi(6 + 7/6)}{3\pi}$
\n3.4 π = $\frac{3\pi}{4}$
\n3.4 π = $\frac{1}{2}$
\n4.4 π = $\frac{1}{6-13}$
\n4.4 π = $\frac{1}{6-13}$
\n4.4 π = $\frac{1}{6-13}$
\n4.4 π = $\frac{1}{6-13}$

4(a) (i)
$$
\sec \alpha = 1 \pm i
$$
, $3 \pm i$
\n $[x - (1+i)][x - (1-i)] = x^2 - x + ix - x - ix + 1 + 1$
\n $= x^2 - 2x + 2$
\n $[x - (3+i)][x - (3-i)] = x^2 - 6x + 10$
\n $\therefore P(x) = (x^2 - 2x + 2)(x^2 - 6x + 10)$
\n(ii) Both factors are positive definite (350, $\csc\{f\}$.
\n(i) $x^2 > 0$ so their product must the positive.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\alpha} \frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{\alpha} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}$

$$
4 (b) (i) P(x) = x3 + 3px + q
$$

\n
$$
P'(x) = 3x2 + 3p
$$

\n
$$
P'(x) = 3x2 + 3p
$$

\n
$$
P'(x) = -x2
$$

\n
$$
P(x) = -x2
$$

\n
$$
P(x) = x3 + 3p(x + q) = 0
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

\n
$$
x = (-p)3
$$

\n
$$
x = (-p)2
$$

$$
4(h) \lim_{x \to 0} x^{3} + 3(-2i)x + (4-4i) = P(x)
$$
\n
$$
= h^{0} = -2i
$$
\n
$$
= h^{1} = -2i
$$
\n
$$
= \sqrt{2i}
$$
\n
$$
= \sqrt{2i}
$$
\n
$$
= 2i
$$
\n
$$
=
$$

4(d)(i)
\n
$$
PRQ = \pi_{2}
$$
 (angle standarding our same
\n $PRQ' = T_{2}$ (angle standard
\n $PRQ' = T_{2}$ (d) in a semicircle)
\n $2RQ' = 2\pi$ (diameter)
\n $2R = 2\pi$ sin X
\n $2T$
\n $2R = 2\pi$ sin X
\n $PRQ = T - \theta - \alpha$
\n $2R = 4$ sin X
\n $PRQ = T - \theta - \alpha$
\n $2R = 2e^{2\pi}$
\n $2R = 2$
\n $2R = 2$

Question 5

- (a) (i) Taking the downward direction as positive we get the following force equation $m\ddot{x} = mg - mkv$, the resistance is negative as it OPPOSES the motion and is therefore directed upwards. So $m\ddot{x} = mg - mkv \implies \ddot{x} = g - kv$
	- (ii) The terminal velocity is when the net acceleration of the mass is 0 ie $\ddot{x} = g - kv = 0 \Longrightarrow V_T = g/k$.

(iii) Taking
$$
\ddot{x} = \frac{dv}{dt} \Rightarrow \frac{dv}{dt} = g - kv
$$

\n
$$
\frac{dt}{dv} = \frac{1}{g - kv} = -\frac{1}{k} \left(\frac{-k}{g - kv} \right)
$$
\n
$$
t = -\frac{1}{k} \ln|g - kv| + c
$$
\n
$$
t = 0, v = 0 \Rightarrow c = \frac{1}{k} \ln g
$$
\n
$$
\therefore t = -\frac{1}{k} \ln \left| \frac{g - kv}{g} \right| \Rightarrow e^{-ik} = \left| \frac{g - kv}{g} \right| = \frac{g - kv}{g}
$$

 We can remove the absolute value brackets since the initial direction is positive and it doesn't come to rest until it hits the ground so $\frac{g - kv}{g} > 0$ *g* $\frac{-kv}{2}$

$$
g - kv = ge^{-ik} \Rightarrow v = \frac{g}{k} (1 - e^{-ik})
$$

(iv)
$$
v = \frac{g}{k} (1 - e^{-ik}) \Rightarrow x = \int \frac{g}{k} (1 - e^{-ik}) dt
$$

$$
x = \frac{g}{k} \left(t + \frac{1}{k} e^{-ik} \right) + c_1
$$

$$
t = 0, x = 0 \Rightarrow c_1 = -\frac{g}{k^2}
$$

$$
\therefore x = \frac{g}{k} \left(t + \frac{1}{k} e^{-ik} - \frac{1}{k} \right)
$$

(b) (i) If we choose 5 players to form a team, this can be done in 10 $\binom{10}{5}$ ways. But the remaining 5 will form the opposing team. So there are $\frac{1}{5}\binom{10}{5}$ = 126 $\frac{1}{2} \binom{10}{5} =$ (5)

 (ii) If the twins are on one team then the remaining team can be formed in 8 $\binom{8}{3}$ $= 56$ ways. So the probability that the twins are on the same team is $56/126 = 4/9$.

- (5) (c) (i) There are $4! = 24$ ways to arrange everyone without restrictions. However with 3 men and only 2 women there must be one pair of men sitting next to each other. Probability $= 0$.
	- (ii) There are 4! ways to sit everyone down without restriction. Seat two women down next to each other. This leaves $2! = 2$ ways to seat the men down and 1 way to sit the other woman.

The two women can be chosen in 3 3 $\binom{3}{2}$ (2) ways. Then the two

women seated together can swap seats So there are $2 \times 3 \times 2 = 12$ ways. to sit everyone down. So the probability is $12/24 = 1/2$.

(iii) There are $(2n!)$ ways to sit everyone down without restrictions. Choose two women first and sit them down. This can be done in 1) $n(n+1)$ $(n+1)$ $n(n+1)$

2 2 $\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$ = $\left(2\right)$ ways. The remaining women can be seated in

 $(n-1)!$ ways. Then the men can be seated in *n*! ways. The two women together can be swapped around.

A total of
$$
\frac{n(n+1)}{2} \times (n-1)! \times n \times 2 = (n+1)(n!)^2.
$$

So the probability is
$$
\frac{(n+1)(n!)^2}{n!} = \frac{(n+1)!n!}{n!}.
$$

So the probability is
$$
\frac{(h+1)(h!)}{(2n!)} = \frac{(h+1)(h)}{(2n!)}
$$

A U		
0	0	0
0	0	0
0	0	0
1	0	0
2	0	0
2	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0
8	0	0
9	1	0
10	0	0
11	0	0
12	0	0

Question 7

(a)
$$
\left(\sqrt{x} + \frac{a}{x}\right)^{10} = \left(x^{\frac{1}{2}} + ax^{-1}\right)^{10} = \sum_{r=0}^{10} {}^{n}C_{r} \left(x^{\frac{1}{2}}\right)^{10-r} \left(ax^{-1}\right)^{r} = \sum_{r=0}^{10} \left(a^{r} \times {}^{n}C_{r}\right) x^{5-3r/2}
$$

To get the coefficient of x^{-4} we need $5 - 3r/2 = -4 \implies -3r/2 = -9 \implies r = 6$ So the coefficient of $x^{-4} = a^6 \times 10^6$ C₆ = 13440 $a^6 = \frac{13440}{10 \text{ s}} = 64 \implies a = 2$

$$
a^{\circ} = \frac{a}{10}C_6} = 64 \Rightarrow a = 2
$$

(b) (i)
$$
CP^2 = AC \times BC
$$
 by the rule for intercepts and tangents.
Similarly $CQ^2 = AC \times BC \Rightarrow CP^2 = CQ^2 \Rightarrow CP = CQ$ as $(CP, CQ > 0)$

- (ii) ΔPQC is isosceles with $\angle CPQ = \angle CQP = x$ (base angles of isos. Δ) $\angle BAP = \angle CPQ = x$ (alternate segment theorem). Similarly $\angle BAQ = x$ So $\angle CAQ = \angle CPQ$ both of which stand on chord *CQ*. So *A, P, C* & *Q* are concyclic points by the converse of angles in the same segment theorem.
- (iii) The exterior angle $\angle DAP = 180 2x$, *DAQ* is a straight line. So $\angle DAC = 180 - x$. Now *BADP* is a cyclic quad so that $\angle BPD + \angle BAD = 180^\circ \Rightarrow \angle BAD = x$. Thus $\angle CPB = \angle BPD = x \Rightarrow PB$ bisects $\angle CPD$.

(c)

$$
(1) T(K,x) - T(K, x+1)
$$

= $\frac{k!}{x(0+1) \cdots (0+k)} - \frac{k!}{(x+1)(x+2) \cdots (x+k)(x+k+1)}$
= $\frac{k! (x+k+1) - k! x}{x(x+1) \cdots (x+k)(x+k+1)}$
= $\frac{(k+1)!}{x(x+1) \cdots (x+k+1)} = T(k+1, x-1)$

7 (ii) Test *n* = 1:

LHS =
$$
T(1, x) = \frac{{}^{1}C_0}{{}x} - \frac{{}^{1}C_1}{{}x + 1} = \frac{1}{x} - \frac{1}{x + 1} = \frac{1}{x(x + 1)} = \frac{1!}{x(x + 1)} =
$$
 RHS
\nSo the statement is true for $n = 1$
\nAssume true for some integer $n = k$.
\ni.e $T(k, x) = \frac{k!}{x(x + 1)(x + 2) \cdots (x + k)}$
\nWe need to prove the statement is true for $n = k + 1$
\ni.e $T(k + 1, x) = \frac{(k + 1)!}{x(x + 1)(x + 2) \cdots (x + k)(x + k + 1)}$
\nLHS = $T(k + 1, x)$
\n $= T(k, x) - T(k, x + 1)$
\nfrom (i)
\n $= \frac{(k + 1)!}{x(x + 1)(x + 2) \cdots (x + k)(x + k + 1)}$
\n= RHS

(iii) Substitute $x = 1/2$ into both sides of the result from (ii) and simplify

$$
\frac{n_{\zeta_0}}{\frac{1}{2}} - \frac{n_{\zeta_1}}{\frac{1}{2}+1} + \frac{n_{\zeta_2}}{\frac{1}{2}+1} + \dots \quad (-1)^n \frac{n_{\zeta_n}}{\frac{1}{2}+n} = \frac{n!}{\frac{1 \cdot 3 \cdot \dots \cdot (n+1)}{1 \cdot 3 \cdot 5 \cdot (2n+1)}} = \frac{n!}{\frac{2^{n+1} n!}{1 \cdot 3 \cdot 5 \cdot (2n+1)}} = \frac{n_{\zeta_0}}{\frac{1}{2} + \frac{n_{\zeta_1}}{5} + \dots \quad (-1)^n \frac{n_{\zeta_n}}{2n+1}} = \frac{n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}
$$

8.
\n(a)
$$
V = \pi \int_{0}^{\pi} (c-sinx)^{2} dx
$$
 λ
\n $= \pi \int_{0}^{\pi} c^{2} - 2csinx + \frac{1}{2} - \frac{1}{2} cos 2x dx$
\n $= \pi \left[c^{2}x + 2cosx + \frac{1}{2}x - \frac{1}{4} sin 2x \right]_{0}^{\pi}$
\n $= \pi \left[c^{2}\pi - 2c + \frac{1}{2}\pi - 0 - (0 + 2c + 0 - 0) \right]$
\n $= \pi \left[c^{2}\pi - 4c + \frac{1}{2}\pi \right]$
\n $V^{1} = \pi (2\pi - 4)$
\n $V^{1} = \pi (2\pi - 4)$
\n $V^{1} = \pi (2\pi - 4)$
\n $4e - 2c\pi = 4$
\n $c = \frac{2}{\pi}$
\n(b) $f(6) = \frac{2 - cos\theta}{sin\theta} = 0$ $6 < \theta < \frac{\pi}{2}$
\n $f'(0) = \frac{1-2cos\theta}{sin^{2}\theta} = 0$
\n $cos\theta = \frac{1}{2} \theta = \frac{\pi}{2}$

 $\mathcal{C} \subset \mathcal{M} \times \mathcal{S}$

Ţ $\frac{1}{2}$

 $\frac{1}{\pi}$

 \mathcal{L} .
 Constraint \mathcal{L}

j. $\ddot{}$

> t ł

 $\frac{1}{2}$

 $\begin{array}{c} \times \\ \times \\ \times \end{array}$

$$
b + 1 \Rightarrow f'(0) > 0 \Rightarrow f'(0) < 0
$$
\n
$$
0 = 1.2, \quad f'(0) < 0 \quad \text{when } 0 = \frac{\pi}{3}
$$
\n
$$
f(\frac{\pi}{3}) = \frac{2 - 60\frac{\pi}{3}}{sin \frac{\pi}{3}} = \frac{2 - \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \sqrt{3}
$$

 Clearly sin 1 θ ≤ 8 sin *AP* θ = . Now *d AW AP* = ≥ (triangle inequality) So 8 8 sin *AP d* θ = ≥ ie ⁸ sin 1 *d* ≤ ≤ θ

 $\hat{\mathcal{L}}$

J.

$$
f + d = 20
$$

\n
$$
L' = 3 f'(0)
$$

\n
$$
M_{\text{max}} \text{ occurs when } f'(0) = 0
$$

\n
$$
b_{\text{max}} \text{ power when } f'(0) = 0
$$

\n
$$
b_{\text{max}} \text{ power when } f'(0) = 0
$$

\n
$$
L = 8 J_3 + J_3 J_6.
$$

\n
$$
L = 8 J_3 + J_3 J_6.
$$

\n
$$
M P \text{ is } 8 \cot^2 \frac{\pi}{3} = \frac{8}{3 J_3}
$$

\nWe can use this value of θ because $\frac{8}{30} \le \sin \theta \le 1 \Rightarrow \sin^{-1}(2/5) \le \theta \le \pi/2$

20 and clearly $\theta = \pi/3$ satisfies this inequality.

More appropriate alternative solution:

We can't use the same method because with $d = 9$ we get

 $\frac{8}{5} \le \sin \theta \le 1 \implies \sin^{-1}(8/9) \le \theta \le \pi/2$ 9 \leq sin $\theta \leq 1 \Rightarrow$ sin⁻¹(8/9) $\leq \theta \leq \pi/2$ and clearly $\theta = \pi/3$ does NOT satisfy this inequality.

So in this range we have a 1:1 function for *L* (you can quickly show that it is increasing) so all we need to is test the end points of $\sin^{-1}(8/9) \le \theta \le \pi/2$ ie substitute $\theta = \sin^{-1}(8/9)$ and $\theta = \pi/2$ into the formula for *L* and take the minimum value of *L* resulting.