

2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes. •
- Working time -3 hours.
- Write using black or blue pen. •
- Board approved calculators may • be used.
- All necessary working should be • shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy • or badly arranged work.
- Hand in your answer booklets in 3 • sections. Section A (Questions 1 - 3), Section B (Questions 4 - 5) and Section C (Questions 6 - 8).
- Start each section in a NEW answer ٠ booklet.

Total Marks - 120 Marks

- Attempt Sections A C ٠
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 120 Attempt Questions 1 – 8 All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION II (USe a SET IIKITE writing booket)			
Quest	Question 1 (15 marks) Marks		
(a)		Evaluate	
	(i)	$\int_{0}^{\sqrt{3}} \frac{dx}{\sqrt{4-x^2}}$	1
	(ii)	$\int_{0}^{1} \sqrt{4-x^2} dx$	1
	(iii)	$\int_{-1}^{2} x\sqrt{2-x} dx$	1
(b)		Evaluate	
	(i)	$\int_{-1}^{2} \frac{e^{2x}}{e^x - 1} dx$	2
	(ii)	$\int_{0}^{\frac{\pi}{2}} \frac{1}{4+5\sin x} dx$	4
(c)	(i)	If $I_n = \int_0^{\frac{\pi}{4}} \tan^{2n} x dx$, $n \ge 0$, show that $I_n + I_{n-1} = \frac{1}{2n-1}$	3
	(ii)	Hence, evaluate $\int_{0}^{\frac{\pi}{4}} \tan^6 x dx$	1

SECTION A (Use a SEPARATE writing booklet)

(d) Evaluate $\int_{1}^{e} x \ln(x^2) dx$ 2

Question 2 (15 marks)

(a)	(i)	Sketch on the same axes the graphs	2
-----	-----	------------------------------------	---

$$y = x + 3$$
 and $y = 2|x|$.

(ii) Hence or otherwise:

(
$$\alpha$$
) Solve for *x*, $2|x| < x+3$. 2

(
$$\beta$$
) Sketch the curve $y = \frac{2|x|}{x+3}$.

(b) Let
$$f(x) = \frac{3}{x-1}$$
.

On separate diagrams sketch the graphs of the following:

(i)
$$y = f(|x|)$$
 2

(ii)
$$y^2 = f(x)$$
 3

(iii)
$$y = e^{f(x)}$$
 3

SECTION A continued

Question 3 (15 marks)		
(a) (i)	If $z = -1 + i\sqrt{3}$ and $w = 2\operatorname{cis} \frac{\pi}{6}$ Find $ z $.	1
(ii)	arg z.	1
(iii)	Express z in the form $r \operatorname{cis} \theta$.	1
(iv)	Express $z^6 \div w^3$ in the form $r \operatorname{cis} \theta$.	1
(b) (i)	Express $\sqrt{5-12i}$ in the form $a+ib$.	2
(ii)	Hence describe the locus of the point which represents z on the Argand diagram if $ z^2 - 5 + 12i = z - 3 + 2i $	2
(c)	The origin and the points representing the complex numbers z , $\frac{1}{z}$ and $z + \frac{1}{z}$ are joined to form a quadrilateral. Write down the conditions for z so that the quadrilateral will be	
(i)	a rhombus;	1
(ii)	a square.	1
(d) (i)	Find the equation and sketch the locus of z if $ z-i = \text{Im}(z)$	2
(ii)	Find the least value of $\arg z$ in (i) above.	3

END OF SECTION A

SECTION B (Use a SEPARATE writing booklet)

Question 4 (15 marks)		
(a)	$3-i$ is a zero of $P(z) = z^3 - 4z^2 - 2z + m$, where <i>m</i> is a real number.	3
	Find <i>m</i> .	
(b)	If α , β and γ are the roots of $x^3 + px + q = 0$, find a cubic equation whose roots are α^2 , β^2 and γ^2 .	3
(c)	Given a real polynomial $Q(x)$, show that if α is a root of $Q(x) - x = 0$, then α is also a root of $Q(Q(x)) - x = 0$.	3
(d)	Use the following identity to answer the following questions. $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$	
(i)	Solve $16x^5 - 20x^3 + 5x = 0$	3
(ii)	Hence show that $\pi = 3\pi = 7\pi = 9\pi = 5$	3

 $\cos\frac{\pi}{10}\cos\frac{3\pi}{10}\cos\frac{7\pi}{10}\cos\frac{9\pi}{10} = \frac{5}{16}$

SECTION B continued

Marks Question 5 (15 marks) Let $z = \cos \theta + i \sin \theta$, show that (a) $z^n + z^{-n} = 2\cos n\theta$ 1 (i) (ii) $z^n - z^{-n} = 2i\sin n\theta$ 1 2 (b) Show that for any integer k that (i) $\left[z - \left(\cos\frac{k\pi}{4} + i\sin\frac{k\pi}{4}\right)\right] z - \left(\cos\frac{(8-k)\pi}{4} + i\sin\frac{(8-k)\pi}{4}\right) = z^2$ Hence simplify the following products (ii) 1 (α) $\left[z - \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right] \left[z - \left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)\right]$ 1 (β) $\left[z - \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\right] \left[z - \left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)\right]$ Using the results of (b) above, factorise $z^4 + 1$ into 2 real 2 (c) quadratic factors. (d) Using (a) and (c) above, prove the identity 2 $\cos 2\theta = 2\cos^2 \theta - 1$ The complex numbers z = x + iy, $z_1 = -x + iy$ and $z_2 = -\frac{2}{z}$ are (e)

represented by the points P, P_1 and P_2 in the Argand diagram respectively.

(i) Show that O, P_1 and P_2 are collinear where O is the origin. 3

(ii) Show that
$$OP_1 \times OP_2 = 2$$
 2

END OF SECTION B

Question 6 (15 marks)

- (a) A particle of mass *m* is projected vertically upwards with a velocity of $u \text{ ms}^{-1}$, with air resistance proportional to its velocity.
 - (i) Show that after a time *t* seconds, the height above the ground is 4

$$x_1 = \frac{g + ku}{k^2} \left(1 - e^{-kt} \right) - \frac{gt}{k} \,,$$

where *k* is a constant and *g* is the acceleration due to gravity.

(ii) At the same time another particle of mass m is released from rest, from a height h metres vertically above the first particle. You may assume that at time t seconds, its distance from the ground is given by:

$$x_2 = h + \frac{g}{k^2} \left(1 - e^{-kt} \right) - \frac{gt}{k}$$

Show that the two particles will meet at time T where

$$T = \frac{1}{k} \ln \left(\frac{u}{u - kh} \right)$$

- (b) A vehicle of mass *m* moves in a straight line subject to a resistance $P + Qv^2$, where *v* is the speed and *P* and *Q* are constants with Q > 0.
 - (i) Form an equation of motion for the acceleration of the vehicle.
 - (ii) Hence show that if P = 0, the distance required to slow down from speed $\frac{3U}{2}$ to speed U is $\frac{m}{Q} \ln\left(\frac{3}{2}\right)$.
 - (iii) Also show that if P > 0, the distance required to stop from speed *U* is given by 3

$$D = \lambda \ln \left(1 + k U^2 \right)$$

where *k* and λ are constants

Marks

4

3

The diagram above shows a solid with a trapezoidal base *EDTH* of length *b* metres.

The front end *HTSR* is a square with side length *a* metres.

The back is the pentagon ABCDE which consists of the rectangle ACDE with length 2a metres and width a metres, surmounted by the equilateral triangle ABC.

Consider a slice of the solid, parallel to the front and the back, with face formed by both the trapezium *KLMN* and the rectangle *KNQP*, which has thickness Δx and is at a distance *x* metres from *HT*.

Question 7 continued on page 9

(i) Show that the height, *BW*, of the equilateral triangle *ABC* is $\sqrt{3}a$ 2 metres.

(ii) Given that the perpendicular height of the trapezium *KLMN* is h 3 metres ie VU = h, use the similar triangles *BWF* and *VUF*, in the Top View, to find h in terms of a, b and x.

(iii) Given that the triangles *BLM* and *BRS* are similar, show that
$$LM = \frac{a(b-x)}{b}$$

- (iv) Using the cross section of the base, find the length of PQ in terms of a, b and x.
- (v) Find the volume of the solid.

Question 8 starts on page 10

3

4

SECTION C continued

Question 8 (15 marks)			Marks
(a)		If $a > 0$, $b > 0$ and $a + b = t$ show that $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{t}$	3
(b)		There are $n (n > 1)$ different boxes each of which can hold up to $n+2$ books. Find the probability that:	
	(i)	No box is empty when <i>n</i> different books are put into the boxes at random.	1
	(ii)	Exactly one box is empty when n different books are put into the boxes at random.	2
	(iii)	No box is empty when $n+1$ different books are put into the boxes at random.	2
	(iv)	No box is empty when $n+2$ different books are put into the boxes at random.	2
(c)		<i>PQRS</i> is a cyclic quadrilateral such that the sides <i>PQ</i> , <i>QR</i> , <i>RS</i> and <i>SP</i> touch a circle at <i>A</i> , <i>B</i> , <i>C</i> and <i>D</i> respectively.	
		Prove that:	
	(i)	AC is perpendicular to BD.	2
	(ii)	Let the midpoints of <i>AB</i> , <i>BC</i> , <i>CD</i> and <i>DA</i> be <i>E</i> , <i>F</i> , <i>G</i> and <i>H</i> respectively. Show that <i>E</i> , <i>F</i> , <i>G</i> and <i>H</i> lie on a circle.	3

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

Sample Solutions

Section	Marker
А	Mr Hespe
В	Mr Kourtesis
С	Mr Parker

 $1(a)(i) I = \left[sin^{-1} \frac{z_{2}}{2} \right]_{0}^{\sqrt{3}},$ $= \frac{\pi}{3}.$ (ii) $I = \int_{0}^{\pi/2} \frac{\pi}{20} d\theta, \quad \text{put } x = 2 \sin \theta \quad x = 1, \theta = \frac{\pi}{6}.$ (iii) $I = \int_{0}^{\pi/2} \frac{4}{\cos^2 \theta} d\theta, \quad \text{put } x = 2 \cos \theta d\theta \quad x = 0, \theta = 0.$ $= 2 \int_{0}^{\pi/6} (1+\cos 2\Theta) d\Theta,$ $= 2 \left[\Theta + \frac{\sin 2\Theta}{2} \right]_{0}^{\pi/6},$ $= \frac{\pi}{3} + \frac{\sqrt{3}}{2}$ $\begin{array}{c} (iii) \ I = \int_{0}^{3} (2-n) \ n^{1/2} dn, \quad put \ n = 2-x \quad x = -1, \ n = 3 \\ & dn = -dx \quad x = 2, \ n = 0 \\ & = \int_{0}^{3} (2n^{1/2} - n^{3/2}) dn, \end{array}$ $= \left[\frac{4u^{3/2}}{3} - \frac{2u^{5/2}}{5}\right]^3,$ $= 4\sqrt{3} - \frac{18\sqrt{3}}{5},$ = 2/3

 $1 (b)(i) I = \int_{e^{-1}}^{e^{2}-1} \frac{1+u}{u} du, \quad put u = e^{2}-1 \quad x = 1, \quad u = e^{-1}$ $e^{-1} \qquad du = e^{2} de \quad x = 2, \quad u = e^{2}-1$ $= \left[\int_{u} u + u \right]_{e^{-1}}^{e^{2}-1}, \quad u = e^{-1}$ $= \ln (e^{2} - i) + e^{2} - i - \ln (e - i) (e - i),$ $= e^{2} - e + \ln(e+1).$ (ii) $I = \int_{0}^{1} \frac{1}{4+5\pi \frac{2\pi}{1+\pi^{2}}} \times \frac{2dt}{1+\pi^{2}}, \quad put \ t = \tan \frac{\pi}{2}$ $= \int_{0}^{1} \frac{dt}{4+5\pi^{2}} \times \frac{2dt}{1+\pi^{2}}, \quad dt = \frac{1}{2} \sec^{2} \frac{\pi}{2} d\pi$ $= \int_{0}^{1} \frac{dt}{2+2\pi^{2}+5\pi^{2}}, \quad i = \frac{2}{1+\pi^{2}}$ $= \int_{0}^{1} \frac{dt}{(2\pi^{2}+1)(\pi^{2}+2)} \times \frac{\pi}{2} \frac{\pi}{2} \frac{1}{\pi^{2}} t = 1$ Now, $\frac{1}{(2\pi^{2}+1)(\pi^{2}+2)} = \frac{A}{2\pi^{2}+1} + \frac{B}{2\pi^{2}} \frac{1}{\pi^{2}} t = 1$ Now, $\frac{1}{(2\pi^{2}+1)(\pi^{2}+2)} = \frac{A}{2\pi^{2}+1} + \frac{B}{2\pi^{2}} \frac{1}{\pi^{2}} t = 1$ $\int_{0}^{1} \frac{dt}{(2\pi^{2}+1)(\pi^{2}+2)} = \frac{A}{2\pi^{2}+1} + \frac{B}{2\pi^{2}} \frac{1}{\pi^{2}} \frac{1}{$ $\mathcal{A}_{o, I} = \frac{1}{3} \int \left(\frac{2}{2 \mathcal{A} + 1} - \frac{1}{\mathcal{A} + 2} \right) dt,$ $=\frac{1}{3}\left[\ln(2t+1)-\ln(t+2)\right],$ $=\frac{1}{3}\left\{ ln\frac{3}{7}-ln\frac{3}{2}\right\} ,$ $= \frac{\ln 2}{3} .$ (c)(i) $I_{n} = \int_{0}^{\pi/4} (\tan^{2} x)^{n} dx$ $= \int_{0}^{\frac{1}{4}} (tan^{2}x)^{n-1} (sec^{2}x - 1) dx,$ $= \int_{-1}^{\pi/4} \tan^{2n-2} x \, d \, \tan x \, - \, I_{n-1} \, ,$ $I_m + I_m = \int \frac{4am^{2m-1}}{2\pi - 1} \int_{-\infty}^{\pi/4}$ $= \frac{1}{2\alpha - 1}$ $(ii) I_3 = \frac{1}{5} - I_2, \qquad T_4$ $I_2 = \frac{1}{5} - I_1 = \frac{1}{5} - \int_0^{T_4} tan^2 x \, dx$ $= \frac{1}{3} - \int \frac{\pi}{4} (\sec^2 x - 1) dx$

 $3(a)(i) |3| = \sqrt{1+3},$ = 2.(ii) arg $3 = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right),$ $= 2\pi,$ 3(iii) $3 = 2 \operatorname{cis} 2\pi/3,$ (iii) $3^{6} \div \omega^{3} = \frac{2}{2^{3}} \operatorname{cis} \left(6 \times \frac{2\pi}{3} - 3 \times \frac{\pi}{6}\right),$ $= 8 \operatorname{cis} (\frac{7\pi}{2}) \text{ or } 8 \operatorname{cis} (-\frac{7\pi}{2}),$ $= -8\lambda.$ (b)(i) $5^{-} 12i = a^{2} + 2abi - b^{2},$ $a^{2} + b^{2} = 13$ $a^2 + b^2 = 13$ $a^2 - b^2 = 5$ ab =-6 $2a^2 = 18$ a = ±3 $b = \mp 2$ $\int \sqrt{5 - 12i} = \pm (3 - 2i)$

 $\frac{3(k)(ii)}{|3^{2}-(5-12i)|} = 3^{2}-(3-2i)^{2}$ =(3+3-2i)(3-3+2i)(3+3-2i)(So loans of 3 is a circle centre (-3,2), radius 1. (c)(i) $\frac{g_{n}}{3}$, $\frac{g_{n}}{3}$ 0 ± 1/2 = - 0 + nT $20 = \frac{\pm 7}{2} + mT$ $0 = \frac{\pm 7}{4}, \pm \frac{37}{4}$: Conditions are |z| = 1arg $z = \frac{\pm 7}{4}, \frac{\pm 37}{4}$. (d)(i) z t z = x + iy $\sqrt{x^2 + (y - 1)^2} = -y$ $x^2 + y^2 - 2zy + 1 = -y^2$ $x^2 = -2zy - 1$ $= -4 \binom{y^2}{2} (y - \frac{y_2}{2})$ u_N 5 X

(ii) $y = \frac{z^2 + 1}{2}$, parabola y = mx, tangeut $mx = \frac{x^2 + 1}{2}$ $x^2 - 2mx + 1 = 0$ $\Delta = 0 \text{ at tangent} \\ 4m^2 - 4 = 0$ $m = \pm 1$ $\chi = \pi/4, 3\pi/4$ $\therefore Minimum argument \pi/4.$

Section B

$$\begin{array}{c} \underbrace{\operatorname{Gaussian} \mathbf{\mu}}_{(\alpha)} & P(3-i) = (3-i)^3 - 4(3-i)^2 - 2(3-i) + m = 0 \\ & = 18 - 26i - 32 + 24i - 6 + 2i + m = 0 \\ \Rightarrow & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \vdots & (m - 20) + i(0) = 0 \\ & \Rightarrow & (m - 20)^3 + p + p^3 \times -q^3 = 0 \\ & \vdots & (1 + p + x)^2 = -q^3 = 0 \\ & \vdots & (1 + p + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^2 = -q^3 = 0 \\ & \vdots & (1 + q + x)^3 = \frac{1}{2} + \frac{1}{10} \quad \text{unden} \quad k = 0, \ p = \frac{1}{10} \\ & k = 1, \ p = -\frac{3}{10} \\ & k = 1, \ p = -\frac{3}{10} \\ & k = 1, \ p = -\frac{3}{10} \\ & k = 1, \ p = -\frac{3}{10} \\ & k = 2k + \frac{1}{10} \\ & k$$

Question 5 (a) $z^n = cos(n\theta) + isin(n\theta) - (A)$ $z^{-n} = \omega_{-}(-n\theta) + i\sin(-n\theta)$ $z^{-n} = \cos(n\theta) - i\sin(n\theta) - (B)$ (i) $z^{n} + z^{-n} = 2\cos n\theta$ (A)+(B) (i) $z^{n} - z^{-n} = 2i \sin n\theta$ (A)-(B) (b(i)

$$\begin{bmatrix} z^{2} - z i s k \pi \\ 4 \end{bmatrix} \begin{bmatrix} z - c i s (\frac{8 - k}{4}) \pi \\ - z^{2} - \begin{bmatrix} c i s k \pi \\ 4 \end{bmatrix} + c i s (-le \pi) \end{bmatrix} z + \begin{bmatrix} i i s k \pi \\ 4 \end{bmatrix} \cdot c i s (-k \pi) \end{bmatrix}$$

$$= z^{2} - 2 c s k \pi z + c i s 0 \quad (from (a))$$

$$= z^{2} - 2 c s k \pi z + 1 \quad (i)$$

$$(a) det | k = 1 \quad in \quad (i)$$

$$\Rightarrow LHS = z^{2} - 2z c s \pi + 1$$

$$= z^{2} - 2z + 1 \quad (i)$$

$$\Rightarrow LHS = z^{2} - 2z c s \pi + 1$$

$$= z^{2} - 2z c s^{3} \pi + 1$$

$$= z^{2} + 2z c s^{3} \pi + 1$$

(c) Since non-real zeros occur in

$$\lim_{x \to 1} \sup_{y \to 1} \sup_{z \to 1} \sum_{z \to 1} \sup_{z \to 1} \sum_{z \to 1}$$

(e)
(i) bit arg
$$z = \theta$$

 \therefore arg $z_1 = \pi - \theta$
 $arg z_1 = arg(-\frac{\lambda}{z_1}) = arg(-\lambda) - arg(z)$
 \Rightarrow $arg z_1 = \pi - \theta$
 $arg z_1 = arg z_2 = \pi - \theta$
Since $|z_1| \neq |z_2|$ then $0, \beta, \beta, collinear$
 $[z_1 = |z_1| arg(\pi - \theta); z_2 = |z_1| arg(\pi - \theta)]$
(ii) $OP_1 = \sqrt{(x^2 + (y)^2} = \sqrt{x^2 + y^2}$
 $OP_2 = \sqrt{(-\frac{2x}{x^2 + y^2})^2 + (\frac{2y}{x^2 + y^2})^2} = \frac{2}{\sqrt{x^2 + y^2}}$
 $\Rightarrow OP_1 \times OP_2 = \sqrt{x^2 + y^2} \times \frac{2}{\sqrt{x^2 + y^2}} = 2$
 $P_1(z_1)$
 $P_1(z_1)$
 $P_2(z_2)$
 $P_1(z_2)$
 $P_2(z_2)$
 $P_1(z_1)$
 $P_2(z_2)$
 $P_1(z_1)$
 $P_2(z_2)$
 $P_1(z_1)$
 $P_2(z_2)$
 $P_1(z_1)$
 $P_2(z_2)$
 $P_1(z_2)$
 $P_2(z_2)$
 $P_2($

 $\begin{bmatrix} z + \mathbf{z} [z + 1] [z - 2 \overline{z} z + 1] = 2 \overline{z}^{2} \cos 2\theta \\ [(1 + \frac{1}{z}) + \overline{z}] [(1 + \frac{1}{z}) - \overline{z}] = 2 \cos 2\theta \\ [2 \cos \theta + \overline{z}] [2 \cos \theta - \overline{z}] = 2 \cos 2\theta \\ 4 \cos^{2} \theta - 2 = 2 \cos 2\theta \end{bmatrix}$

$$2\omega^2 \Theta - 1 = \omega 2 \Theta$$

Section C

With $R \propto v$, to make the algebra easier take R = mkv $mg \downarrow mkv$ (i) $m\frac{dv}{dt} = -(mg + mkv)$ $\frac{dv}{dt} = -(g+kv) \Rightarrow \frac{dt}{dv} = -\frac{1}{g+kv} = -\frac{1}{k} \left(\frac{k}{g+kv}\right)$ $\therefore t = -\frac{1}{k} \ln \left| g + kv \right| + c_1$ (t=0, v=u) $c_1 = \frac{1}{k} \ln \left| g + ku \right| \Longrightarrow t = -\frac{1}{k} \ln \left| \frac{g + kv}{g + ku} \right|$ $\therefore \frac{g+kv}{g+ku} = e^{-kt}$ $\therefore g + kv = (g + ku)e^{-kt} \Longrightarrow v = \frac{1}{k} \left[(g + ku)e^{-kt} - g \right]$ $x = \int \frac{1}{k} \Big[(g + ku) e^{-kt} - g \Big] dt$ $=\frac{1}{k}\left[\frac{g+ku}{-k}e^{-kt}-gt\right]+c_{2}$ (t=0, x=0) $\therefore c_2 = \frac{g + ku}{L^2}$ $x = \frac{1}{k} \left[-\frac{g+ku}{k} e^{-kt} - gt \right] + \frac{g+ku}{k^2}$ $=\frac{g+ku}{k^2}\left(1-e^{-kt}\right)-\frac{gt}{k}$

QED

Q6

(a)

(ii) The two particles meet when $x_1 = x_2$

[**NB** You are allowed to assume the formula for x_2 !]

ie
$$\frac{g+ku}{k^2}(1-e^{-kt}) - \frac{gt}{k} = h + \frac{g}{k^2}(1-e^{-kt}) - \frac{gt}{k}$$

 $\therefore \frac{g}{k^2}(1-e^{-kt}) + \frac{u}{k}(1-e^{-kt}) - \frac{gt}{k} = h + \frac{g}{k^2}(1-e^{-kt}) - \frac{gt}{k}$

$$\therefore \frac{u}{k} (1 - e^{-kt}) = h$$

$$\therefore 1 - e^{-kt} = \frac{hk}{u} \Rightarrow e^{-kt} = 1 - \frac{hk}{u} = \frac{u - hk}{u}$$

$$\therefore -kt = \ln\left(\frac{u - hk}{u}\right) \Rightarrow kt = \ln\left(\frac{u}{u - hk}\right)$$

$$\therefore t = \frac{1}{k} \ln\left(\frac{u}{u - hk}\right)$$

(b) (i)
$$ma = mv \frac{dv}{dx} = -(P + Qv^2) \Rightarrow a = v \frac{dv}{dx} = -\frac{1}{m}(P + Qv^2)$$

(ii) If $P = 0$ then $\frac{dv}{dx} = -\frac{Q}{m}v \Rightarrow \frac{dx}{dv} = -\frac{m}{Qv}$

If we transform the problem so that we take the *distance travelled* being from x = 0 (when v = 3U/2) to x = D (when v = U) then

$$\int_{0}^{D} \frac{dx}{dv} dv = \int_{0}^{D} dx = -\frac{m}{Q} \int_{\frac{3U}{2}}^{U} \frac{dv}{v}$$

$$\therefore D = \left[-\frac{m}{Q} \ln |v| \right]_{\frac{3U}{2}}^{U} = -\frac{m}{Q} \ln \left(\frac{U}{\frac{3U}{2}} \right) = -\frac{m}{Q} \ln \left(\frac{2}{3} \right) = \frac{m}{Q} \ln \left(\frac{3}{2} \right)$$

QED

•

(iii) If
$$P > 0$$
 then $\frac{dv}{dx} = -\left(\frac{P + Qv^2}{mv}\right) \Rightarrow \frac{dx}{dv} = -\frac{mv}{P + Qv^2}$

If we transform the problem so that we take the *distance travelled* being from x = 0 (when v = U) to x = D (when v = 0) then

$$\int_{0}^{D} \frac{dx}{dv} dv = \int_{0}^{D} dx = -\int_{U}^{0} \frac{mvdv}{P+Qv^{2}} = -\frac{m}{2Q} \int_{U}^{0} \frac{2vdv}{P+Qv^{2}}$$
$$D = -\frac{m}{2Q} \left[\ln \left| P + Qv^{2} \right| \right]_{U}^{0} = -\frac{m}{2Q} \ln \left(\frac{P}{P+QU^{2}} \right)$$
$$= \frac{m}{2Q} \ln \left(\frac{P+QU^{2}}{P} \right)$$
$$= \frac{m}{2Q} \ln \left(1 + \frac{Q}{P}U^{2} \right)$$
$$= \lambda \ln \left(1 + kU^{2} \right)$$
where $\lambda = \frac{m}{2Q}$ and $k = \frac{Q}{P}$
QED

(ii) Since
$$\Delta BWF \parallel\mid \Delta VUF$$

 $\therefore \frac{VU}{BW} = \frac{UF}{FW} \Rightarrow \frac{h}{\sqrt{3}a} = \frac{x}{b}$
 $\therefore h = \frac{ax\sqrt{3}}{b}$

(iii) Since
$$\Delta BWF \parallel \Delta VUF$$
 then $\frac{VF}{BF} = \frac{VU}{BW} = \frac{h}{\sqrt{3}a}$
 $BV = BF - VF$
 $\Delta BLM \parallel \Delta RFS$ then $\frac{BV}{BF} = \frac{LM}{RS} \Rightarrow \frac{BF - VF}{BF} = \frac{LM}{a}$
 $\therefore 1 - \frac{VF}{BF} = \frac{LM}{a} \Rightarrow 1 - \frac{h}{\sqrt{3}a} = \frac{LM}{a}$
 $\therefore 1 - \frac{\frac{ax\sqrt{3}}{b}}{\sqrt{3}a} = \frac{LM}{a} \Rightarrow \frac{LM}{a} = 1 - \frac{x}{b} = \frac{b - x}{b}$
 $\therefore LM = \frac{a(b - x)}{b}$
QED

(iv) **Clearly** when x = 0 then PQ = a and when x = b then PQ = 2a, so given the linear relationship of PQ in terms of x then

$$PQ - a = \frac{2a - a}{b} (x - 0) \Longrightarrow PQ = \frac{a}{b} x + a$$

Alternative solution

$$PQ = a + 2a_1$$

$$a = \frac{a}{a_1}$$

$$a_1 = \frac{x}{b} \Rightarrow 2a_1 = \frac{a}{b}x$$

$$\therefore PQ = \frac{a}{b}x + a$$

Q7

(i)

(v) Area of slice is area of trapezium KLMN and rectangle KNQP

$$KLMN = \frac{1}{2} \times \frac{ax\sqrt{3}}{b} \times \left[\frac{a(b-x)}{b} + \frac{a}{b}x + a\right]$$
$$= \frac{a^2x\sqrt{3}}{b}$$
$$KNQP = a \times \left(\frac{a}{b}x + a\right) = a^2 \left(\frac{x}{b} + 1\right)$$
So cross sectional area is given by
$$a^2x\sqrt{3} = a \left(\frac{x}{b} - \frac{a}{b}\right)$$

$$\frac{a^2 x \sqrt{3}}{b} + a^2 \left(\frac{x}{b} + 1\right)$$
$$= \frac{a^2 x \sqrt{3}}{b} + a^2 \left(\frac{x+b}{b}\right)$$
$$= \frac{a^2 \left[x\left(1+\sqrt{3}\right)+b\right]}{b}$$
$$= \frac{a^2}{b} \left[x\left(1+\sqrt{3}\right)+b\right]$$

So the cross sectional volume is $\frac{a^2}{b} \Big[x \Big(1 + \sqrt{3} \Big) + b \Big] \Delta x$ So the volume, *V*, is given by $\int_0^b \frac{a^2}{b} \Big[x \Big(1 + \sqrt{3} \Big) + b \Big] dx$

$$V = \frac{a^2}{b} \int_0^b \left[x \left(1 + \sqrt{3} \right) + b \right] dx$$
$$= \frac{a^2}{b} \left[\left(1 + \sqrt{3} \right) \frac{x^2}{2} + bx \right]_0^b$$
$$= \frac{a^2}{b} \left[\left(1 + \sqrt{3} \right) \frac{b^2}{2} + b^2 \right]$$
$$= \frac{a^2 b}{2} \left(3 + \sqrt{3} \right)$$

[**NB** This is not a solid formed by rotation, so π shouldn't appear in the answer!]

(a)	Method 1	Method 2
(a)	Method 1 $\frac{1}{a} + \frac{1}{b} - \frac{4}{t} = \frac{1}{a} + \frac{1}{b} - \frac{4}{a+b}$ $= \frac{b(a+b) + a(a+b) - 4ab}{ab(a+b)}$ $= \frac{a^2 - 2ab + b^2}{ab(a+b)}$ $= \frac{(a-b)^2}{ab(a+b)}$ ≥ 0	Method 2 $\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0 \Rightarrow a + b \ge 2\sqrt{ab}$ $\therefore \frac{1}{a+b} \le \frac{1}{2\sqrt{ab}} \Rightarrow \frac{1}{\sqrt{ab}} \ge \frac{2}{a+b}$ Also $\frac{1}{a} + \frac{1}{b} \ge \frac{2}{\sqrt{ab}}$ So $\frac{1}{a} + \frac{1}{b} \ge \frac{2}{\sqrt{ab}} \ge \frac{4}{a+b} = \frac{4}{t}$
	$\therefore \frac{1}{a} + \frac{1}{b} \ge \frac{4}{t}$	

Method 3 (reductio ad absurdum)

Assume
$$\frac{1}{a} + \frac{1}{b} < \frac{4}{t}$$

 $\therefore \frac{a+b}{ab} < \frac{4}{t}$
 $\therefore (a+b)^2 < 4ab \qquad (\because t = a+b)$
 $\therefore (a+b)^2 - 4ab = (a-b)^2 < 0$

This last statement is clearly a contradiction as $k^2 \ge 0, k \in \mathbb{R}$

So the original assumption was false

$$\therefore \frac{1}{a} + \frac{1}{b} < \frac{4}{t}$$

Q8

(b) (i) The total number of different outcomes: The first book can go in any of *n* boxes, so there is a total of n^n

different arrangements. If there are to be no empty boxes, then the first book can go in any of *n* boxes, the next book only has n-1 boxes and so on. A total of n!

So the probability of no empty box is $\frac{n!}{n^n}$

(ii) For exactly one empty box, one box must have 2 books in it. So we have to pick the empty box, this can be done in n ways. Then we have to pick the box to have the two books, this can be in done in n-1 ways.

Then we have $\binom{n}{2}$ ways of picking the two books that will go in

the one box, leaving (n-2)! ways of arranging the other books.

A total of
$$n \times (n-1) \times \binom{n}{2} \times (n-2)! = \binom{n}{2} n!$$

So the probability is $\frac{\binom{n}{2}n!}{n^n}$ or $\frac{n(n-1)n!}{2n^n} = \frac{(n-1)n!}{2n^{n-1}}$

(iii) With n+1 books to be distributed, this can be done in n^{n+1} ways because the first book has n boxes, the second book has n boxes and so on until the $(n+1)^{st}$ book.

With no box to be empty, 1 box must have 2 books in it. We can choose this book in *n* ways. We can choose the 2 books in $\binom{n+1}{2}$ ways. The remaining books can be distributed in (n-1)!

ways.

A total of
$$n \times {\binom{n+1}{2}} \times (n-1)! = {\binom{n+1}{2}} n!$$
 ways.
So the probability is $\frac{n! {\binom{n+1}{2}}}{n^{n+1}}$ or $\frac{n(n+1)!}{2n^{n+1}} = \frac{(n+1)!}{2n^n}$

(iv) With n+2 books to be distributed over n boxes this can be done in n^{n+2} ways.

If no box is to be empty there are two cases:

Case 1: 1 box has 3 books in it;

Case 2: 2 boxes have 2 books in it.

Case 1	Case 2	
Pick the box to have 3 books, this	Pick the 2 boxes to have the 2 books	
can be done in <i>n</i> ways.	(n)	
Pick the 3 books, this can be done	this can be done in a ways. Pick	
in $\binom{n+2}{3}$ ways. The remaining books can be distributed in $(n-1)!$ ways. A total of $\binom{n+2}{3} \times n \times (n-1)!$ ie $\frac{n(n+2)!}{6}$ ways	2 books to go into the first of these boxes ie $\binom{n+2}{2}$ ways, then two books to go into the second box ie $\binom{n}{2}$ ways. Then the remaining books to be distributed in $(n-2)!$ ways. A total of $\binom{n}{2}^2 \times \binom{n+2}{2} \times (n-2)!$ ie $\frac{n(n-1)(n+2)!}{8}$ ways	
So a total number of $\frac{(n+2)!}{6} + \frac{n(n-1)(n+2)!}{8}$ ways ie		
4n(n+2)!+3n(n-1)(n+2)	2)! $n(3n+1)(n+2)!$	
24	$=$ $\frac{1}{24}$ ways	

So the probability is
$$\frac{n(3n+1)(n+2)!}{24n^{n+2}} = \frac{(3n+1)(n+2)!}{24n^{n+1}}$$

NOT TO SCALE

Let $\angle S = 2x$, then $\angle Q = 180 - 2x$ (*PQRS* is a cyclic quadrilateral) Also $\triangle SDC$ is isosceles, so $\angle SCD = 90 - x$. $\angle DBC = \angle SCD = 90 - x$ (alternate segment theorem) Similarly $\triangle SDC$ is isosceles, so $\angle QAB = x$. Similarly $\angle BCA = \angle QAB = x$ (alternate segment theorem) So $\angle CXB = 90^{\circ}$ (angle sum of triangle) $\therefore AC \perp BD$ **QED**

Lemma: The midpoints of a quadrilateral form a parallelogram

Proof: AH : HD = AE : EB = 1:1 $HE \parallel DB$ (Midpoint Theorem for Triangles) Similarly $GF \parallel DB \Rightarrow HE \parallel FG$ Similarly $HG \parallel AC \& AC \parallel EF \Rightarrow HG \parallel EF$. $\therefore EFGH$ is a parallelogram. **QED**

 $\therefore AC \perp BD, HE \parallel DB \& GF \parallel DB \text{ and } HG \parallel AC \& AC \parallel EF$ $\therefore \angle HGF = \angle GFE = \angle FEH = \angle EHG = 90^{\circ}$ $\therefore E, F, G \text{ and } H \text{ are concyclic (All rectangles are concyclic)}$