

SYDNEYBOYS HIGH SCHOOL
 MoORE PARK, SURRY HILLS

2004

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Extension 2

General Instructions

- Reading time -5 minutes.
- Working time -3 hours.
- Write using black or blue pen.
- Board approved calculators may be used
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in $\mathbf{3}$ sections.
Section A (Questions 1-3), Section B (Questions 4-5) and Section C (Questions 6-8).
- Start each section in a NEW answer booklet.

Total Marks - 120 Marks

- Attempt Sections A - C
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 120
Attempt Questions 1 - 8
All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Question 1 (15 marks)
(a) Evaluate
(i) $\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{4-x^{2}}}$

1
(ii) $\int_{0}^{1} \sqrt{4-x^{2}} d x$

1
(iii) $\int_{-1}^{2} x \sqrt{2-x} d x$
(b) Evaluate
(i) $\int_{1}^{2} \frac{e^{2 x}}{e^{x}-1} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{1}{4+5 \sin x} d x$
(c) (i) If $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{2 n} x d x, n \geq 0$, show that $I_{n}+I_{n-1}=\frac{1}{2 n-1}$
(ii) Hence, evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x$
(d) Evaluate $\int_{1}^{e} x \ln \left(x^{2}\right) d x$
(a) (i) Sketch on the same axes the graphs

$$
y=x+3 \text { and } y=2|x| .
$$

(ii) Hence or otherwise:
(α) \quad Solve for $x, 2|x|<x+3$.
(β) Sketch the curve $y=\frac{2|x|}{x+3}$.
(b) Let $f(x)=\frac{3}{x-1}$.

On separate diagrams sketch the graphs of the following:
(i) $\quad y=f(|x|)$
(ii) $y^{2}=f(x)$
(iii) $y=e^{f(x)}$

SECTION A continued

Question 3 (15 marks)
Marks
(a)

$$
\text { If } z=-1+i \sqrt{3} \text { and } w=2 \operatorname{cis} \frac{\pi}{6}
$$

(i) Find $|z|$.
(ii) $\arg z$.
(iii) Express z in the form $r \operatorname{cis} \theta$.
(iv) Express $z^{6} \div w^{3}$ in the form $r \operatorname{cis} \theta$.
(b) (i) Express $\sqrt{5-12 i}$ in the form $a+i b$.
(ii) Hence describe the locus of the point which represents z on the Argand diagram if

$$
\left|z^{2}-5+12 i\right|=|z-3+2 i|
$$

(c) The origin and the points representing the complex numbers z, $\frac{1}{z}$ and $z+\frac{1}{z}$ are joined to form a quadrilateral.
Write down the conditions for z so that the quadrilateral will be
(i) a rhombus;
(ii) a square.
(d) (i) Find the equation and sketch the locus of z if

$$
|z-i|=\operatorname{Im}(z)
$$

(ii) Find the least value of $\arg z$ in (i) above.

END OF SECTION A

SECTION B (Use a SEPARATE writing booklet)

Question 4 (15 marks)
(a) $\quad 3-i$ is a zero of $P(z)=z^{3}-4 z^{2}-2 z+m$, where m is a real number.

Find m.
(b) If α, β and γ are the roots of $x^{3}+p x+q=0$, find a cubic equation whose roots are α^{2}, β^{2} and γ^{2}.
(c) Given a real polynomial $Q(x)$, show that if α is a root of $Q(x)-x=0$, then α is also a root of $Q(Q(x))-x=0$.
(d) Use the following identity to answer the following questions.

$$
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

(i) Solve $16 x^{5}-20 x^{3}+5 x=0$
(ii) Hence show that

$$
\cos \frac{\pi}{10} \cos \frac{3 \pi}{10} \cos \frac{7 \pi}{10} \cos \frac{9 \pi}{10}=\frac{5}{16}
$$

SECTION B continued

Question 5 (15 marks)
(a) Let $z=\cos \theta+i \sin \theta$, show that
(i) $z^{n}+z^{-n}=2 \cos n \theta$
(ii) $z^{n}-z^{-n}=2 i \sin n \theta$
(b) (i) Show that for any integer k that
$\left[z-\left(\cos \frac{k \pi}{4}+i \sin \frac{k \pi}{4}\right)\right]\left[z-\left(\cos \frac{(8-k) \pi}{4}+i \sin \frac{(8-k) \pi}{4}\right)\right]=z^{2}$.
(ii) Hence simplify the following products
(α) $\left[z-\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right]\left[z-\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)\right]$
(β) $\left[z-\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)\right]\left[z-\left(\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)\right]$
(c) Using the results of (b) above, factorise $z^{4}+1$ into 2 real quadratic factors.
(d)

Using (a) and (c) above, prove the identity

$$
\cos 2 \theta=2 \cos ^{2} \theta-1
$$

(e)

The complex numbers $z=x+i y, z_{1}=-x+i y$ and $z_{2}=-\frac{2}{z}$ are represented by the points P, P_{1} and P_{2} in the Argand diagram respectively.
(i) Show that O, P_{1} and P_{2} are collinear where O is the origin.
(ii) Show that $O P_{1} \times O P_{2}=2$

END OF SECTION B

SECTION C (Use a SEPARATE writing booklet)

Question 6 (15 marks)
(a) A particle of mass m is projected vertically upwards with a velocity of $u \mathrm{~ms}^{-1}$, with air resistance proportional to its velocity.
(i) Show that after a time t seconds, the height above the ground is

$$
x_{1}=\frac{g+k u}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k},
$$

where k is a constant and g is the acceleration due to gravity.
(ii) At the same time another particle of mass m is released from rest, from a height h metres vertically above the first particle. You may assume that at time t seconds, its distance from the ground is given by:

$$
x_{2}=h+\frac{g}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}
$$

Show that the two particles will meet at time T where

$$
T=\frac{1}{k} \ln \left(\frac{u}{u-k h}\right)
$$

(b) A vehicle of mass m moves in a straight line subject to a resistance $P+Q v^{2}$, where v is the speed and P and Q are constants with $Q>0$.
(i) Form an equation of motion for the acceleration of the vehicle.
(ii) Hence show that if $P=0$, the distance required to slow down from speed $\frac{3 U}{2}$ to speed U is $\frac{m}{Q} \ln \left(\frac{3}{2}\right)$.
(iii) Also show that if $P>0$, the distance required to stop from speed U is given by

$$
D=\lambda \ln \left(1+k U^{2}\right)
$$

where k and λ are constants

SECTION C continued

The diagram above shows a solid with a trapezoidal base EDTH of length b metres.
The front end $H T S R$ is a square with side length a metres.
The back is the pentagon $A B C D E$ which consists of the rectangle $A C D E$ with length $2 a$ metres and width a metres, surmounted by the equilateral triangle $A B C$.

Consider a slice of the solid, parallel to the front and the back, with face formed by both the trapezium $K L M N$ and the rectangle $K N Q P$, which has thickness Δx and is at a distance x metres from $H T$.
(i) Show that the height, $B W$, of the equilateral triangle $A B C$ is $\sqrt{3} a \quad 2$ metres.

(ii) Given that the perpendicular height of the trapezium $K L M N$ is h metres ie $V U=h$, use the similar triangles $B W F$ and $V U F$, in the Top View, to find h in terms of a, b and x.
(iii) Given that the triangles $B L M$ and $B R S$ are similar, show that

$$
L M=\frac{a(b-x)}{b}
$$

(iv) Using the cross section of the base, find the length of $P Q$ in terms of a, b and x.
(v) Find the volume of the solid.

SECTION C continued

Question 8 (15 marks)
(a)

$$
\text { If } a>0, b>0 \text { and } a+b=t \text { show that }
$$

$$
\frac{1}{a}+\frac{1}{b} \geq \frac{4}{t}
$$

(b) There are $n(n>1)$ different boxes each of which can hold up to $n+2$ books. Find the probability that:
(i) No box is empty when n different books are put into the boxes at random.
(ii) Exactly one box is empty when n different books are put into the boxes at random.
(iii) No box is empty when $n+1$ different books are put into the boxes at random.
(iv) No box is empty when $n+2$ different books are put into the boxes at random.
(c) $\quad P Q R S$ is a cyclic quadrilateral such that the sides $P Q, Q R, R S$ and $S P$ touch a circle at A, B, C and D respectively.

Prove that:
(i) $A C$ is perpendicular to $B D$.
(ii) Let the midpoints of $A B, B C, C D$ and $D A$ be E, F, G and H 3 respectively.
Show that E, F, G and H lie on a circle.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0} \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics
 Extension 2

Sample Solutions

Section	Marker
A	Mr Hespe
B	Mr Kourtesis
C	Mr Parker

Section A

$$
\begin{aligned}
1(a)(i) I & =\left[\sin ^{-1} x / 2\right]_{0}^{\sqrt{3}}, \\
& =\pi / 3 .
\end{aligned}
$$

(ii) $I=\int_{0}^{\pi / 6} 4 \cos ^{2} \theta d \theta$, put $x=2 \sin \theta \quad x=1, \theta=\pi / 6$ $=2 \int_{0}^{\pi / 6}(1+\cos 2 \theta) d \theta$, $=2\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 6}$,

$$
=\frac{\pi}{3}+\frac{\sqrt{3}}{2}
$$

(iii) $I=\int_{0}^{3}(2-\mu) \mu^{1 / 2} d u$,

$$
\text { put } \mu=2-x \quad x=-1, \mu=3
$$

$$
=\int_{0}^{3}\left(2 \mu^{1 / 2}-\mu^{3 / 2}\right) d \mu,
$$

$$
d u=-d x \quad x=2, u=0
$$

$$
\begin{aligned}
& =\left[\frac{4 u^{3 / 2}}{3}-\frac{2 u^{5 / 2}}{5}\right]_{0}^{3} \\
& =4 \sqrt{3}-\frac{18 \sqrt{3}}{5}, \\
& =\frac{2 \sqrt{3}}{5} .
\end{aligned}
$$

$1(b)(i) I=\int_{e-1}^{e^{2}-1} \frac{1+\mu}{\mu} d \mu, \quad$ put $\mu=e^{x}-1 \quad x=1, \mu=e-1$

$$
\begin{aligned}
& \left.\quad e^{-1} \ln u+\mu\right]_{e-1}^{e^{2}-1}, \quad d u=e^{2} d x \quad x=2, \\
& =\ln \left(e^{2}-1\right)+e^{2}-1-\ln (e-1)(e-1), \\
& =e^{2}-e+\ln (e+1) .
\end{aligned}
$$

(ii)

$$
\begin{array}{rlr}
I & =\int_{0}^{1} \frac{1}{4+5 \times \frac{2 t}{1+t^{2}}} \times \frac{2 d t}{1+t^{2}}, & \text { put } t=\tan \frac{x}{2} \\
& =\int_{0}^{1} \frac{d t}{2+2 t^{2}+5 t}, & i e \frac{1}{2} \sec ^{2} \frac{x}{2} \\
& =\int_{0}^{1} \frac{d t}{(2 t+1)(t+2)}, & x=\frac{2 d t}{1+t^{2}} \\
& x=\frac{t}{2}, & t=1
\end{array}
$$

Now, $\frac{1}{(2 t+1)(t+2)}=\frac{A}{2 t+1}+\frac{B^{2}}{t+2}$
$1=A(t+2)+B(2 t+1)$
$L e+t=-1 / 2,3 A / 2=1, \quad A=2 / 3$

$$
t=-2,-3 B=1, \quad B=-1 / 3
$$

So, $I=\frac{1}{3} \int_{0}^{1}\left(\frac{2}{2 t+1}-\frac{1}{t+2}\right) d t$,

$$
=\frac{1}{3}[\ln (2 t+1)-\ln (t+2)]_{0}^{1},
$$

$$
=\frac{1}{3}\left\{\ln \frac{3}{1}-\ln \frac{3}{2}\right\},
$$

$$
=\frac{\ln 2}{3}
$$

(c) (i)

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 4}\left(\tan ^{2} x\right)^{n} d x, \\
& =\int_{0}^{\pi / 4}\left(\tan ^{2} x\right)^{x-1}\left(\sec ^{2} x-1\right) d x, \\
& =\int_{0}^{\pi / 4} \tan ^{2 x-2} x d \tan x-I_{n-1}, \\
I_{n}+I_{n-1} & =\left[\frac{\tan ^{2 x-1} x}{2 x-1}\right]_{0}^{\pi / 4}, \\
& =\frac{1}{2 x-1}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
I_{3} & =\frac{1}{5}-I_{2}, \\
I_{2} & =\frac{1}{3}-I_{1}=\frac{1}{3}-\int_{0}^{\pi / 4} \tan ^{2} x d x \\
& =1 / 3-\int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =\frac{1}{3}-[\tan x-x]_{0}^{\pi / 4}, \\
& =\frac{1}{3}-1+\pi / 4 . \\
\therefore I_{3} & =\frac{1}{5}+\frac{2}{3}-\pi / 4, \\
& =\frac{13}{15}-\frac{\pi}{4} .
\end{aligned}
$$

1(d) $I=\left[x^{2} \ln x\right]_{1}^{e}-\int_{1}^{e} x d x$,

$$
\begin{array}{ll}
\mu=\ln \left(x^{2}\right) & v^{\prime}=x \\
\mu^{\prime}=\frac{2}{x} & v=x^{2} 2
\end{array}
$$

$=e^{2}-0-\left[\frac{x^{2}}{2}\right]_{1}^{e}$,
$=e^{2}-\frac{e^{2}}{2}+\frac{1}{2}$,

$$
=\frac{e^{2}+1}{2} .
$$

(ii)(A) From the graph $-1<x<3$
(阝) If $x<0, \quad y=\frac{-2 x}{x+3}=-2+\frac{6}{x+3}$,

(i)

(ii)

(iii)

$$
\begin{aligned}
3(\text { a) (i) }|z| & =\sqrt{1+3}, \\
& =2 \\
\text { (ii) arg } z & =\tan ^{-1}\left(\frac{\sqrt{3}}{-1}\right), \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

(iii) $z=2 \operatorname{cis} 2 \pi / 3$

$$
\text { (iv) } z^{6} \div w^{3}=\frac{2^{6}}{2^{3}}<6\left(6 \times \frac{2 \pi}{3}-3 \times \frac{\pi}{6}\right)
$$

$$
\begin{aligned}
& =2^{3} \\
& =8 \operatorname{cis}(7 \pi / 2) a \operatorname{cis}(-\pi / 2)
\end{aligned}
$$

$$
=-8 i .
$$

$(b)(i)$

$$
\begin{aligned}
5-12 i & =a^{2}+2 a b i-b^{2} \\
a^{2}+b^{2} & =13 \\
a^{2}-b^{2} & =5 \\
a b & =-6 \\
2 a^{2} & =18 \\
a & = \pm 3 \\
b & =\mp 2 \\
\therefore \sqrt{5-12 i} & = \pm(3-2 i)
\end{aligned}
$$

$3(b)$ (ii)

$$
\begin{aligned}
& z^{2}-(5-12 i)=z^{2}-(3-2 i)^{2} \\
&=(z+3-2 i)(z-3+2 i) \\
&|z+3-2 i||z-3+2 i|=\mid z-3+2 i
\end{aligned}
$$

Lo locur of J is a cicle cente $(-3,2)$, radius 1 .

$$
|z|=\left|\frac{1}{3}\right| \text { for a rhomber }
$$

$$
x y_{1} z=\operatorname{ras} \theta
$$

$$
n^{2}=1
$$

$\hat{\hat{l}}=1$ (tating twe root)

$$
\begin{aligned}
& \text { (iu) } \pm i z \therefore|z| \\
&=\frac{\pi}{z} \\
& \theta \pm \pi / 2=-\theta+m \pi \\
& 2 \theta= \pm \pi / 2+n \pi \\
& \theta= \pm \pi / 4, \pm 3 \pi / 4
\end{aligned}
$$

$$
\therefore \text { Condition are }|z|=1
$$

$$
\arg z= \pm \pi / 4, \pm 3 \pi / 4 \text {. }
$$

$$
\text { (d)(i) } \begin{aligned}
L x t y=x & +i y \\
\sqrt{x^{2}+(y-1)^{2}} & =y \\
x^{2}+y^{2}-2 y+1 & =y^{2} \\
x^{2} & =2 y
\end{aligned}
$$

$$
\begin{aligned}
x^{2} & =2 y-1 \\
& =4\left(\frac{1}{2}\right)(y-1 / 2)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y=\frac{x^{2}+1}{2} \text {, parabola } \\
& y=m x, \text { tangent } \\
& m x=\frac{x^{2}+1}{2} \\
& x^{2}-2 m x+1=0 \\
& \Delta=0 \text { at } \operatorname{tangent} \\
& 4 m^{2}-4=0 \\
& m= \pm 1 \\
& \alpha=\pi / 4,3 \pi / 4
\end{aligned}
$$

\therefore Minimum argument $\pi / 4$.

Section B
Question 4
(a)

$$
\begin{aligned}
P(3-i)= & (3-i)^{3}-4(3-i)^{2}-2(3-i)+m=0 \\
= & 18-26 i-32+24 i-6+2 i+m=0 \\
& \Rightarrow(m-20)+i(0)=0 \\
& \therefore m=20
\end{aligned}
$$

(b) Required equation is $P(\sqrt{x})=(\sqrt{x})^{3}+p \sqrt{x}+q=0$
ie $x \sqrt{x}+p \sqrt{x}=-q$

$$
\begin{aligned}
& \Rightarrow[x \sqrt{x}+p \sqrt{x}]^{2}=[-q]^{2} \\
& \therefore x^{3}+2 p x^{2}+p^{2} x-q^{2}=0
\end{aligned}
$$

(c) $1 f \alpha$ is a root $\Rightarrow Q(\alpha)-\alpha=0$

$$
i \theta(\alpha)=\alpha
$$

$$
\text { Now } Q[\theta(x)]-\alpha=Q[\alpha]-\alpha] \text { using } Q(\alpha)=\alpha
$$

(d) (i) let $x=\cos \theta \Rightarrow \cos 5 \theta=16 x^{5}-20 x^{3}+5 x=0$

Now $\cos 5 \theta=0$

$$
\begin{aligned}
\Rightarrow 5 \theta & =2 k \pi \pm \frac{\pi}{2} \\
\theta & =\frac{2 k \pi}{5} \pm \frac{\pi}{10}
\end{aligned}
$$

using $\theta=\frac{2 k \pi}{5}+\frac{\pi}{10}$
when $k=0, \theta=\frac{\pi}{10}$

$$
\begin{aligned}
& k=0, \theta=\frac{\pi}{10} \\
& k=1, \theta=\frac{\pi}{2} \\
& k=-1, \theta=-\frac{3 \pi}{10} \\
& k=2, \theta=\frac{9 \pi}{10} \\
& k=-2, \theta=-\frac{7 \pi}{10}
\end{aligned}
$$

Now roots of $16 x^{5}-20 x^{3}+5 x=0$
are of the form $x=\cos \theta$ ie $x=\cos \frac{\pi}{10}, \cos \frac{\pi}{2}, \cos \left(-\frac{3 \pi}{10}\right)$

$$
\cos \frac{9 \pi}{10}, \cos \left(-\frac{7 \pi}{10}\right)
$$

\Rightarrow Poet, one $\cos \frac{\pi}{10}, \cos \frac{3 \pi}{10}, \cos \frac{9 \pi}{10}, \cos \frac{7 \pi}{10}, \cos \frac{\pi}{2}$
(ii)

$$
\begin{aligned}
& 16 x^{4}-20 x^{2}+5=0 \text { has } 100 t
\end{aligned}
$$

Question 5

(a) $z^{n}=\cos (n \theta)+i \sin (n \theta)-(A)$
$z^{-n}=\cos (-n \theta)+i \sin (-n \theta)$
$\therefore \quad z^{-n}=\cos (n \theta)-i \sin (n \theta)-(B)$
(i) $z^{n}+z^{-n}=2 \cos n \theta \quad$ (A) $+(B)$
(ii) $z^{n}-z^{-n}=2 i \sin n \theta$ (A)-(B)
(b) (i)
$\left[z^{2}-\operatorname{cis} \frac{k \pi}{4}\right]\left[z-\cos \frac{(8-k) \pi}{4}\right]$.
$=z^{2}-\left[\operatorname{cis} \frac{k \pi}{4}+\operatorname{cis}\left(-\frac{k \pi}{4}\right)\right] z+\left[\right.$ is $\left.\frac{k \pi}{4} \cdot \operatorname{cis}\left(-\frac{k \pi}{4}\right)\right]$
$=z^{2}-2 \cos \frac{k \pi}{4} z+\operatorname{cis} \theta \quad$ (fran (a))
$=z^{2}-2 \cos \frac{k \pi}{4} z+1$

$$
\begin{aligned}
& \text { (i) (e) } \begin{aligned}
\text { (et } k=1 & \sin \text { (i) } \\
\Rightarrow \text { LHS } & =z^{2}-2 z \cos \frac{\pi}{4}+1 \\
& =z^{2}-\frac{2 z}{\sqrt{2}}+1
\end{aligned}
\end{aligned}
$$

(i) let $k=3$ in (i)

$$
\begin{aligned}
\Rightarrow \text { LHS } & =z^{2}-2 z \cos 3 \frac{\pi}{4}+1 \\
& =z^{2}+\frac{2 z}{\sqrt{2}}+1
\end{aligned}
$$

(c) Since non-real zeros recur in rimjugate pains \Rightarrow quadratic factors
$z^{4}+1=\left[z-\cos \frac{\pi}{4}\right]\left[z-\operatorname{cis} \frac{7 \pi}{4}\right]\left[z-\cos \frac{3 \pi}{4}\right]\left[z-\cos \frac{5 \pi}{4}\right]$

$$
=\left[z^{2}-\frac{2}{\sqrt{2}} z+1\right]\left[z^{2}+\frac{2}{\sqrt{2}} z+1\right]
$$

$$
\begin{gathered}
u \operatorname{using} b(i) \\
=\left[z^{2}-\sqrt{2} z+1\right]\left[z^{2}+\sqrt{2} z+1\right]
\end{gathered}
$$

(d) $z^{2}+z^{-2}=2 \cos 2 \theta$

$$
\frac{z^{4}+1}{z^{2}}=2 \cos 2 \theta
$$

$$
z^{4}+1=2 z^{2} \cos 2 \theta
$$

$$
[z+z \sqrt{2}+1][z-2 \sqrt{z}+1]=2 z^{2} \cos 2 \theta
$$

$$
\left[\left(2+\frac{1}{2}\right)+\sqrt{2}\right]\left[\left(2+\frac{1}{2}\right)-\sqrt{2}\right]=2 \cos 2 \theta
$$

$$
[2 \cos \theta+\sqrt{2}][2 \cos \theta-\sqrt{2}]=2 \cos 2 \theta
$$

$$
4 \cos ^{2} \theta-2=2 \cos 2 \theta
$$

$$
2 \cos ^{2} \theta-1=\cos 2 \theta
$$

$\left\lvert\, \begin{aligned} & \text { (e) } \\ & \text { (i) } \operatorname{targ} z=\theta\end{aligned}\right.$
$\therefore \arg z_{1}=\pi-\theta$

$$
\arg z_{2}=\arg \left(-\frac{2}{z}\right)=\arg (-2)-\arg (z)
$$

$$
\Rightarrow \quad \arg z_{2}=\pi-\theta
$$

$$
\arg z_{1}=\arg z_{2}=\pi-\theta
$$

Since $\left|z_{1}\right| \nmid\left|z_{2}\right|$ then $0, p_{1} p_{2}$ collinear
$\left[z_{1}=\left|z_{1}\right| \arg (\pi-\theta) ; z_{2}=\mid z_{2} \operatorname{lorg}(\pi-\theta)\right]$
(ii) $O P_{1}=\sqrt{(-x)^{2}+(y)^{2}}=\sqrt{x^{2}+y^{2}}$

$$
O P_{2}=\sqrt{\left(\frac{-2 x}{x^{2}+y^{2}}\right)^{2}+\left(\frac{2 y}{x^{2}+y^{2}}\right)^{2}}=\frac{2}{\sqrt{x^{2}+y^{2}}}
$$

$\Rightarrow O P_{1} \times O P_{2}=\sqrt{x^{2}+y^{2}} \times \frac{2}{\sqrt{x^{2}+y^{2}}}=2$

$$
\begin{gathered}
\arg z=\theta \\
\arg \left(z_{1}-0\right)=\pi-\theta \\
\left.\arg \left(z_{2}-\theta\right)=\pi-\theta\right\rfloor
\end{gathered}
$$

Section C

(a) With $R \propto v$, to make the algebra easier take $R=m k v$

(i) $m \frac{d v}{d t}=-(m g+m k v)$

$$
\frac{d v}{d t}=-(g+k v) \Rightarrow \frac{d t}{d v}=-\frac{1}{g+k v}=-\frac{1}{k}\left(\frac{k}{g+k v}\right)
$$

$$
\therefore t=-\frac{1}{k} \ln |g+k v|+c_{1}
$$

$$
(t=0, v=u)
$$

$$
c_{1}=\frac{1}{k} \ln |g+k u| \Rightarrow t=-\frac{1}{k} \ln \left|\frac{g+k v}{g+k u}\right|
$$

$$
\therefore \frac{g+k v}{g+k u}=e^{-k t}
$$

$$
\therefore g+k v=(g+k u) e^{-k t} \Rightarrow v=\frac{1}{k}\left[(g+k u) e^{-k t}-g\right]
$$

$$
x=\int \frac{1}{k}\left[(g+k u) e^{-k t}-g\right] d t
$$

$$
=\frac{1}{k}\left[\frac{g+k u}{-k} e^{-k t}-g t\right]+c_{2}
$$

$$
(t=0, x=0)
$$

$$
\therefore c_{2}=\frac{g+k u}{k^{2}}
$$

$$
x=\frac{1}{k}\left[-\frac{g+k u}{k} e^{-k t}-g t\right]+\frac{g+k u}{k^{2}}
$$

$$
=\frac{g+k u}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}
$$

QED
(ii) The two particles meet when $x_{1}=x_{2}$
[NB You are allowed to assume the formula for x_{2} !]
ie $\frac{g+k u}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}=h+\frac{g}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}$
$\therefore \frac{g}{k^{2}}\left(1-e^{-k t}\right)+\frac{u}{k}\left(1-e^{-k t}\right)-\frac{g t}{k}=h+\frac{g}{k^{2}}\left(1-e^{-k t}\right)-\frac{g t}{k}$
$\therefore \frac{u}{k}\left(1-e^{-k t}\right)=h$
$\therefore 1-e^{-k t}=\frac{h k}{u} \Rightarrow e^{-k t}=1-\frac{h k}{u}=\frac{u-h k}{u}$
$\therefore-k t=\ln \left(\frac{u-h k}{u}\right) \Rightarrow k t=\ln \left(\frac{u}{u-h k}\right)$
$\therefore t=\frac{1}{k} \ln \left(\frac{u}{u-h k}\right)$
(b) (i) $m a=m v \frac{d v}{d x}=-\left(P+Q v^{2}\right) \Rightarrow a=v \frac{d v}{d x}=-\frac{1}{m}\left(P+Q v^{2}\right)$
(ii) If $P=0$ then $\frac{d v}{d x}=-\frac{Q}{m} v \Rightarrow \frac{d x}{d v}=-\frac{m}{Q v}$

If we transform the problem so that we take the distance travelled being from $x=0$ (when $v=3 U / 2$) to $x=D$ (when $v=U$) then

$$
\begin{aligned}
& \int_{0}^{D} \frac{d x}{d v} d v=\int_{0}^{D} d x=-\frac{m}{Q} \int_{\frac{3 U}{2}}^{U} \frac{d v}{v} \\
& \therefore D=\left[-\left.\frac{m}{Q} \ln |v|\right|_{\frac{3 U}{2}} ^{U}=-\frac{m}{Q} \ln \left(\frac{U}{\frac{3 U}{2}}\right)=-\frac{m}{Q} \ln \left(\frac{2}{3}\right)=\frac{m}{Q} \ln \left(\frac{3}{2}\right)\right.
\end{aligned}
$$

QED

(iii) If $P>0$ then $\frac{d v}{d x}=-\left(\frac{P+Q v^{2}}{m v}\right) \Rightarrow \frac{d x}{d v}=-\frac{m v}{P+Q v^{2}}$

If we transform the problem so that we take the distance travelled being from $x=0$ (when $v=U$) to $x=D$ (when $v=0$) then

$$
\begin{aligned}
& \int_{0}^{D} \frac{d x}{d v} d v=\int_{0}^{D} d x=-\int_{U}^{0} \frac{m v d v}{P+Q v^{2}}=-\frac{m}{2 Q} \int_{U}^{0} \frac{2 v d v}{P+Q v^{2}} \\
& D=-\frac{m}{2 Q}\left[\ln \left|P+Q v^{2}\right|\right]_{U}^{0}=-\frac{m}{2 Q} \ln \left(\frac{P}{P+Q U^{2}}\right) \\
&=\frac{m}{2 Q} \ln \left(\frac{P+Q U^{2}}{P}\right) \\
&=\frac{m}{2 Q} \ln \left(1+\frac{Q}{P} U^{2}\right) \\
&=\lambda \ln \left(1+k U^{2}\right)
\end{aligned}
$$

where $\lambda=\frac{m}{2 Q}$ and $k=\frac{Q}{P}$
QED
(i)

(ii) \quad Since $\triangle B W F \| \Delta V U F$
$\therefore \frac{V U}{B W}=\frac{U F}{F W} \Rightarrow \frac{h}{\sqrt{3} a}=\frac{x}{b}$
$\therefore h=\frac{a x \sqrt{3}}{b}$
(iii) Since $\triangle B W F\left|\left|\mid \Delta V U F\right.\right.$ then $\frac{V F}{B F}=\frac{V U}{B W}=\frac{h}{\sqrt{3} a}$
$B V=B F-V F$
$\Delta B L M\left|\mid \Delta R F S\right.$ then $\frac{B V}{B F}=\frac{L M}{R S} \Rightarrow \frac{B F-V F}{B F}=\frac{L M}{a}$
$\therefore 1-\frac{V F}{B F}=\frac{L M}{a} \Rightarrow 1-\frac{h}{\sqrt{3} a}=\frac{L M}{a}$
$\therefore 1-\frac{\frac{a x \sqrt{3}}{b}}{\sqrt{3} a}=\frac{L M}{a} \Rightarrow \frac{L M}{a}=1-\frac{x}{b}=\frac{b-x}{b}$
$\therefore L M=\frac{a(b-x)}{b}$
QED
(iv) Clearly when $x=0$ then $P Q=a$ and when $x=b$ then $P Q=2 a$, so given the linear relationship of $P Q$ in terms of x then

$$
P Q-a=\frac{2 a-a}{b}(x-0) \Rightarrow P Q=\frac{a}{b} x+a
$$

Alternative solution

$$
\begin{aligned}
& P Q=a+2 a_{1} \\
& \frac{a_{1}}{a / 2}=\frac{x}{b} \Rightarrow 2 a_{1}=\frac{a}{b} x \\
& \therefore P Q=\frac{a}{b} x+a
\end{aligned}
$$

(v) Area of slice is area of trapezium $K L M N$ and rectangle $K N Q P$

$$
\begin{aligned}
K L M N & =\frac{1}{2} \times \frac{a x \sqrt{3}}{b} \times\left[\frac{a(b-x)}{b}+\frac{a}{b} x+a\right] \\
& =\frac{a^{2} x \sqrt{3}}{b} \\
K N Q P & =a \times\left(\frac{a}{b} x+a\right)=a^{2}\left(\frac{x}{b}+1\right)
\end{aligned}
$$

So cross sectional area is given by

$$
\begin{aligned}
& \frac{a^{2} x \sqrt{3}}{b}+a^{2}\left(\frac{x}{b}+1\right) \\
& =\frac{a^{2} x \sqrt{3}}{b}+a^{2}\left(\frac{x+b}{b}\right) \\
& =\frac{a^{2}[x(1+\sqrt{3})+b]}{b} \\
& =\frac{a^{2}}{b}[x(1+\sqrt{3})+b]
\end{aligned}
$$

So the cross sectional volume is $\frac{a^{2}}{b}[x(1+\sqrt{3})+b] \Delta x$
So the volume, V, is given by $\int_{0}^{b} \frac{a^{2}}{b}[x(1+\sqrt{3})+b] d x$

$$
\begin{aligned}
V & =\frac{a^{2}}{b} \int_{0}^{b}[x(1+\sqrt{3})+b] d x \\
& =\frac{a^{2}}{b}\left[(1+\sqrt{3}) \frac{x^{2}}{2}+b x\right]_{0}^{b} \\
& =\frac{a^{2}}{b}\left[(1+\sqrt{3}) \frac{b^{2}}{2}+b^{2}\right] \\
& =\frac{a^{2} b}{2}(3+\sqrt{3})
\end{aligned}
$$

[NB This is not a solid formed by rotation, so π shouldn't appear in the answer!]
(a)

Method 1	Method 2	
$\frac{1}{a}+\frac{1}{b}-\frac{4}{t}$	$=\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}$	$(\sqrt{a}-\sqrt{b})^{2} \geq 0 \Rightarrow a+b \geq 2 \sqrt{a b}$
	$=\frac{b(a+b)+a(a+b)-4 a b}{a b(a+b)}$	$\therefore \frac{1}{a+b} \leq \frac{1}{2 \sqrt{a b}} \Rightarrow \frac{1}{\sqrt{a b}} \geq \frac{2}{a+b}$
	$=\frac{a^{2}-2 a b+b^{2}}{a b(a+b)}$	Also $\frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{a b}}$
	$=\frac{(a-b)^{2}}{a b(a+b)}$	So $\frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{a b}} \geq \frac{4}{a+b}=\frac{4}{t}$
	≥ 0	
$\therefore \frac{1}{a}+\frac{1}{b} \geq \frac{4}{t}$		

$$
\begin{aligned}
& \text { Assume } \frac{1}{a}+\frac{1}{b}<\frac{4}{t} \\
& \therefore \frac{a+b}{a b}<\frac{4}{t} \\
& \therefore(a+b)^{2}<4 a b \quad(\because t=a+b) \\
& \therefore(a+b)^{2}-4 a b=(a-b)^{2}<0
\end{aligned}
$$

This last statement is clearly a contradiction as $k^{2} \geq 0, k \in \mathbb{R}$
So the original assumption was false

$$
\therefore \frac{1}{a}+\frac{1}{b}<\frac{4}{t}
$$

(b) (i) The total number of different outcomes:

The first book can go in any of n boxes, so there is a total of n^{n} different arrangements.
If there are to be no empty boxes, then the first book can go in any of n boxes, the next book only has $n-1$ boxes and so on. A total of n !
So the probability of no empty box is $\frac{n!}{n^{n}}$
(ii) For exactly one empty box, one box must have 2 books in it.

So we have to pick the empty box, this can be done in n ways.
Then we have to pick the box to have the two books, this can be in done in $n-1$ ways.
Then we have $\binom{n}{2}$ ways of picking the two books that will go in the one box, leaving $(n-2)$! ways of arranging the other books.
A total of $n \times(n-1) \times\binom{ n}{2} \times(n-2)!=\binom{n}{2} n$!
So the probability is $\frac{\binom{n}{2} n!}{n^{n}}$ or $\frac{n(n-1) n!}{2 n^{n}}=\frac{(n-1) n!}{2 n^{n-1}}$
(iii) With $n+1$ books to be distributed, this can be done in n^{n+1} ways because the first book has n boxes, the second book has n boxes and so on until the $(n+1)^{\text {st }}$ book.
With no box to be empty, 1 box must have 2 books in it.
We can choose this book in n ways. We can choose the 2 books in $\binom{n+1}{2}$ ways. The remaining books can be distributed in $(n-1)$! ways.
A total of $n \times\binom{ n+1}{2} \times(n-1)!=\binom{n+1}{2} n!$ ways.
So the probability is $\frac{n!\binom{n+1}{2}}{n^{n+1}}$ or $\frac{n(n+1)!}{2 n^{n+1}}=\frac{(n+1) \text { ! }}{2 n^{n}}$
(iv) With $n+2$ books to be distributed over n boxes this can be done in n^{n+2} ways.
If no box is to be empty there are two cases:
Case 1: $\quad 1$ box has 3 books in it;
Case 2: $\quad 2$ boxes have 2 books in it.

Case 1

Pick the box to have 3 books, this can be done in n ways.
Pick the 3 books, this can be done in $\binom{n+2}{3}$ ways.
The remaining books can be distributed in $(n-1)$! ways.
A total of $\binom{n+2}{3} \times n \times(n-1)$!
ie $\frac{n(n+2)!}{6}$ ways

So a total number of $\frac{(n+2)!}{6}+\frac{n(n-1)(n+2)!}{8}$ ways ie

$$
\frac{4 n(n+2)!+3 n(n-1)(n+2)!}{24}=\frac{n(3 n+1)(n+2)!}{24} \text { ways }
$$

So the probability is $\frac{n(3 n+1)(n+2)!}{24 n^{n+2}}=\frac{(3 n+1)(n+2)!}{24 n^{n+1}}$
(c) (i)

NOT TO SCALE

Let $\angle S=2 x$, then $\angle Q=180-2 x$ ($P Q R S$ is a cyclic quadrilateral)
Also $\triangle S D C$ is isosceles, so $\angle S C D=90-x$.
$\angle D B C=\angle S C D=90-x$ (alternate segment theorem)
Similarly $\triangle S D C$ is isosceles, so $\angle Q A B=x$.
Similarly $\angle B C A=\angle Q A B=x$ (alternate segment theorem)
So $\angle C X B=90^{\circ}$ (angle sum of triangle)
$\therefore A C \perp B D \mathbf{Q E D}$
(c) (ii)

NOT TO SCALE

Lemma: The midpoints of a quadrilateral form a parallelogram

Proof: $A H: H D=A E: E B=1: 1$
$H E \| D B \quad$ (Midpoint Theorem for Triangles)
Similarly $G F\|D B \Rightarrow H E\| F G$
Similarly $H G\|A C \& A C\| E F \Rightarrow H G \| E F$.
$\therefore E F G H$ is a parallelogram. QED
$\because A C \perp B D, H E\|D B \& G F\| D B$ and $H G\|A C \& A C\| E F$
$\therefore \angle H G F=\angle G F E=\angle F E H=\angle E H G=90^{\circ}$
$\therefore E, F, G$ and H are concyclic (All rectangles are concyclic)
QED

