

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILIS

2005
 HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics

Extension 2

General Instructions

- Reading Time - 5 Minutes
- Working time -3 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in

Examiner: C.Kourtesis every question.

Total Marks - 120

- Attempt questions 1 - 8

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Section A

(Start a new answer sheet.)
Question 1. (15 marks)

Marks

(a) Evaluate $\int_{0}^{2} \frac{3}{4+x^{2}} d x$.
(b) Find $\quad \int \cos x \sin ^{4} x d x$.
(c) Use integration by parts to find

$$
\int t e^{-t} d t
$$

(d) (i) Find real numbers a and b such that

$$
\frac{1}{x(\pi-2 x)}=\frac{a}{x}+\frac{b}{\pi-2 x} .
$$

(ii) Hence find

$$
\int \frac{d x}{x(\pi-2 x)}
$$

(e) Evaluate $\int_{-3}^{3}(2-|x|) d x$.
(f) (i) Use the substitution $x=a-t$ to prove that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

(ii) Hence evaluate $\mathbf{2}$

$$
\int_{0}^{\frac{\pi}{2}} \log _{e}(\tan x) d x
$$

Question 2. (15 marks)
(a) If $z=2+i$ and $w=-1+2 i$ find

$$
\operatorname{Im}(z-w)
$$

(b) On an Argand diagram shade the region that is satisfied by both the conditions

$$
\operatorname{Re}(z) \geq 2 \text { and }|z-1| \leq 2 .
$$

(c) If $|z|=2$ and $\arg z=\theta$ determine
(i) $\left|\frac{i}{z^{2}}\right|$
(ii) $\quad \arg \left(\frac{i}{z^{2}}\right)$
(d) If for a complex number z it is given that $\bar{z}=z$ where $z \neq 0$, determine the locus of z.
(e) A complex number z is such that $\arg (z+2)=\frac{\pi}{6}$ and $\arg (z-2)=\frac{2 \pi}{3}$.

Find z, expressing your answer in the form $a+i b$ where a and b are real.
(f) The complex numbers z_{1}, z_{2} and z_{3} are represented in the complex plane by the points P, Q and R respectively. If the line segments $P Q$ and $P R$ have the same length and are perpendicular to one another, prove that:

$$
2 z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2 z_{1}\left(z_{2}+z_{3}\right)
$$

Section B

(Start a new answer sheet.)

Question 3. (15 marks)
(a) If $2-3 i$ is a zero of the polynomial $z^{3}+p z+q$ where p and q are real, find 3 the values of p and q.
(b) If α, β and γ are roots of the equation $x^{3}+6 x+1=0$ find the polynomial equation whose roots are $\alpha \beta, \beta \gamma$ and $\alpha \gamma$.
(c) Consider the function $f(x)=3\left(\frac{x+4}{x}\right)^{2}$.
(i) Show that the curve $y=f(x)$ has a minimum turning point at $x=-4$ and a point of inflexion at $x=-6$.
(ii) Sketch the graph of $y=f(x)$ showing clearly the equations of any asymptotes.
(d) Use mathematical induction to prove that

$$
n!>2^{n} \text { for } n>3 \text { where } n \text { is an integer. }
$$

Question 4 (15 marks)
(a) If $f(x)=\sin x$ for $-\pi \leq x \leq \pi$ draw neat sketches, on separate diagrams, of:
(i) $y=[f(x)]^{2}$
(ii) $y=\frac{1}{f\left(x+\frac{\pi}{2}\right)}$
(iii) $y^{2}=f(x)$
(iv) $y=f(\sqrt{|x|})$

2
(b) Show that the equation of the tangent to the curve $x^{\frac{1}{2}}+y^{\frac{1}{2}}=a^{\frac{1}{2}}$ at the point $P\left(x_{0}, y_{0}\right)$ on the curve is $x x_{o}{ }^{-\frac{1}{2}}+y y_{0}{ }^{-\frac{1}{2}}=a^{\frac{1}{2}}$.
(c) Consider the polynomial $P(x)=x^{5}-a x+1$. By considering turning points 4 on the curve $y=P(x)$, prove that $P(x)=0$ has three distinct roots if $a>5\left(\frac{1}{2}\right)^{\frac{8}{5}}$.

Section C
 (Start a new answer booklet)

Question 5 (15 marks)
(a) A particle of mass m is thrown vertically upward from the origin with initial speed V_{0}. The particle is subject to a resistance equal to $m k v$, where v is its speed and k is a positive constant.
(i) Show that until the particle reaches its highest point the equation of motion is

$$
\ddot{y}=-(k v+g)
$$

where y is its height and g is the acceleration due to gravity.
(ii) Prove that the particle reaches its greatest height in time T given by

$$
k T=\log _{e}\left[1+\frac{k V_{0}}{g}\right]
$$

(iv) If the highest point reached is at a height H above the ground prove that

$$
V_{0}=H k+g T .
$$

(b) If α and β are roots of the equation $z^{2}-2 z+2=0$
(i) find α and β in mod-arg form.
(ii) show that $\alpha^{n}+\beta^{n}=\sqrt{2^{n+2}} \cdot\left[\cos \frac{n \pi}{4}\right]$.

Question 6 (15 marks)
(a) A group of 20 people is to be seated at a long rectangular table, 10 on each

2 side. There are 7 people who wish to sit on one side of the table and 6 people who wish to sit on the other side. How many seating arrangements are possible?
(b) The area enclosed by the curves $y=\sqrt{x}$ and $y=x^{2}$ is rotated about the y axis through one complete revolution. Use the cylindrical shell method to find the volume of the solid that is generated.
(c) The diagram shows a hemi-spherical bowl of radius r. The bowl has been tilted so that its axis is no longer vertical, but at an angle θ to the vertical. At this angle it can hold a volume V of water.

The vertical line from the centre O meets the surface of the water at W and meets the bottom of the bowl at B.

Let P between W and B, and let h be the distance $O P$.
(i) Explain why $V=\int_{r \sin \theta}^{r} \pi\left(r^{2}-h^{2}\right) d h$.
(ii) Hence show $V=\frac{r^{3} \pi}{3}\left(2-3 \sin \theta+\sin ^{3} \theta\right)$.
(d) (i) Show that $x^{4}+y^{4} \geq 2 x^{2} y^{2}$.
(ii) If $P(x, y)$ is any point on the curve $x^{4}+y^{4}=1$ prove that $O P \leq 2^{\frac{1}{4}}$, where O is the origin.

Section D

(Start a new answer booklet)

Question 7 (15 marks)
(a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?
(b) (i) If $t=\tan \theta$, prove that

$$
\tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}}
$$

(ii) If $\tan \theta \tan 4 \theta=1$ deduce that $5 t^{4}-10 t^{2}+1=0$.
(iii) Given that $\theta=\frac{\pi}{10}$ and $\theta=\frac{3 \pi}{10}$ are roots of the equation $\tan \theta \tan 4 \theta=1$, find the exact value of $\tan \frac{\pi}{10}$.
(c)

Two circles intersect at A and B. A line through A cuts the circles at M and N.
The tangents at M and N intersect at C.
(i) Prove that $\angle C M A+\angle C N A=\angle M B N$.
(ii) Prove M, C, N, B are concyclic.

Question 8 (15 marks)
(a)

The diagram above shows the graph of $y=\log _{e} x$ for $1 \leq x \leq n+1$.
(i) By considering the sum of the areas of inner and outer rectangles show that

$$
\ln (n!)<\int_{1}^{n+1} \ln x d x<\ln [(n+1)!]
$$

(ii) Find $\int_{1}^{n+1} \ln x d x$.
(iii) Hence prove that

$$
e^{n}>\frac{(n+1)^{n}}{n!}
$$

(b) If a root of the cubic equation $x^{3}+b x^{2}+c x+d=0$ is equal to the reciprocal of another root, prove that

$$
1+b d=c+d^{2}
$$

This question continues on the next page.
(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A :
(i) $\quad V=U \cot \alpha$
(ii) $t=\frac{U}{g \sin \alpha}$.

This is the end of the paper.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2 x} \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

SYDNEY BOYS HIGH SCHOOL
MoORE PARK, SURRY HILLS

AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12

Mathematics Extension 2

Sample Solutions

Section	Marker
A	PP
B	EC
C	PB
D	DH

Section A

(1) (i) $\int_{0}^{2} \frac{3}{4+x^{2}} d x=\frac{3}{2} \int_{0}^{2} \frac{3}{4+x^{2}} d x$

$$
\begin{aligned}
& =\frac{3}{2}\left[\tan ^{-1}\left(\frac{x}{2}\right)\right]_{0}^{2} \\
& =\frac{3}{2}\left[\tan ^{-1}(1)-0\right] \\
& =\frac{3 \pi}{8}
\end{aligned}
$$

(ii) $\int \cos x \sin ^{4} x d x=\int u^{4} d u \quad[u=\sin x]$

$$
\begin{aligned}
& =\frac{u^{5}}{5}+c \\
& =\frac{\sin ^{5} x}{5}+c
\end{aligned}
$$

$$
\begin{aligned}
& =-t e^{-t}-\int\left(-e^{-t} \times 1\right) d t \\
& =-t e^{-t}+\int e^{-t} d t \\
& =-t e^{-t}-e^{-t}+c
\end{aligned}
$$

(d) (i) $1 \equiv a(\pi-2 x)+b x$

$$
\begin{aligned}
x & =0: \Rightarrow a=\frac{1}{\pi} \\
2 a & =b[\text { coefficients of } x] \\
\therefore b & =\frac{2}{\pi}
\end{aligned}
$$

$$
a=\frac{1}{\pi}, b=\frac{2}{\pi}
$$

(ii) $\int \frac{d x}{x(\pi-2 x)}=\frac{1}{\pi} \int\left(\frac{1}{x}-\frac{-2}{\pi-2 x}\right) d x$

$$
\begin{aligned}
& =\frac{1}{\pi} \ln x-\frac{1}{\pi} \ln (\pi-2 x)+c \\
& =\frac{1}{\pi} \ln \left(\frac{x}{\pi-2 x}\right)+c
\end{aligned}
$$

(e) $\int_{-3}^{3}(2-|x|) d x=2 \int_{0}^{3}(2-|x|) d x$ [Q2-|x| is even]

$$
\begin{aligned}
& =2 \int_{0}^{3}(2-x) d x \\
& =2\left[2 x-\frac{1}{2} x^{2}\right]_{0}^{3} \\
& =2\left[6-\frac{9}{2}\right] \\
& =3
\end{aligned}
$$

$$
\left[\mathrm{Q}_{2}-|x|=2-x, x>0\right]
$$

(f) (i) $x=a-t \Rightarrow d x=-d t$

$$
x=0 \Rightarrow t=a
$$

$$
x=a \Rightarrow t=0
$$

$$
\int_{0}^{a} f(x) d x=\int_{a}^{0} f(a-t)(-d t)
$$

$$
=\int_{0}^{a} f(a-t) d t
$$

$$
\left[\mathrm{Q} \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right]
$$

$$
=\int_{0}^{a} f(a-x) d x \quad[\text { Q choice of variable irrelevant }]
$$

(ii) $\quad I=\int_{0}^{\frac{\pi}{2}} \ln (\tan x) d x$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \ln \left(\tan \left(\frac{\pi}{2}-x\right)\right) d x \\
& =\int_{0}^{\frac{\pi}{2}} \ln (\cot x) d x \\
2 I & =\int_{0}^{\frac{\pi}{2}} \ln (\tan x) d x+\int_{0}^{\frac{\pi}{2}} \ln (\cot x) d x \\
& =\int_{0}^{\frac{\pi}{2}}[\ln (\tan x)+\ln (\cot x)] d x \\
& =\int_{0}^{\frac{\pi}{2}} \ln 1 d x \\
& =0 \\
\therefore & 2 I=0 \\
\therefore I & =0 \\
\therefore & \int_{0}^{\frac{\pi}{2}} \ln (\tan x) d x=0
\end{aligned}
$$

(2) (a) $z=2+i, w=-1+2 i$
$\therefore z-w=3-i$
$\therefore \operatorname{Im}(z-w)=-1$
(b)

(c) (i) $\left|\frac{i}{z^{2}}\right|=\frac{|i|}{|z|^{2}}=\frac{1}{4}$
(ii) $\quad \arg \left(\frac{i}{z^{2}}\right)=\arg i-\arg \left(z^{2}\right)$
$=\frac{\pi}{2}-2 \arg z$
$=\frac{\pi}{2}-2 \theta$
(d) $z=\bar{z} \Rightarrow z$ is purely real

So the locus is $y=0$, except $x=0$.
Alternatively:
Let $z=x+i y,(z \neq 0)$
$\therefore \bar{z}=x-i y$
$\therefore z=\bar{z} \Rightarrow x+i y=x-i y$
$\therefore 2 i y=0 \Rightarrow y=0$
$\therefore z$ is a purely real number excluding 0
(e) $\arg (z+2)=\frac{\pi}{6}, \arg (z-2)=\frac{2 \pi}{3}$.
z is represented by the point C, the intersection of the two rays.

Alternatively

$$
\begin{aligned}
& B C=4 \cos 60^{\circ}=2 \\
& C H=2 \sin 60^{\circ}=\sqrt{3} \\
& B H=2 \cos 60^{\circ}=1 \\
& \therefore z=1+i \sqrt{3}
\end{aligned}
$$

(f)

Section B

(d) Let $S(n)$ be the proposition
that $n!>2^{n} \quad n>3$.
$n \in z^{+}$.
For $\quad \dot{m}=4$
$4!=24>2^{4}=16$
$\therefore \quad s(4)$ is true
Assume $s(k)$ is true.
Prove true for $\mu=k+1$.

$$
(k+1)!=(k+1) k!
$$

$$
>(k+1) \cdot 2^{k}
$$

$\because k>3$, then $k+1>4$

$$
\begin{aligned}
& >4 \cdot 2^{k} \\
& >2^{k+1}
\end{aligned}
$$

Question (4).

$$
\begin{aligned}
& y=\sin x, \quad-\pi \leq x \leqslant \pi \\
& \text { (i) } \begin{aligned}
y & =\sin ^{2} x \\
& =\frac{1}{2}(1-\cos 2 x)
\end{aligned}
\end{aligned}
$$

(ii) $\quad y=\frac{1}{\sin \left(x+\frac{\pi}{2}\right)}=\frac{1}{\cos x}$.

(iii)

$$
\begin{aligned}
& y^{2}=\sin x \\
& y= \pm \sqrt{\sin x}
\end{aligned}
$$

(IV)

and divide both sides of (1)

$$
\text { by } x_{0}^{\frac{1}{2}} y_{0} \frac{1}{2} \text { we have. }
$$

$$
\bar{x}_{0}^{1 / 2} x+y_{0}^{-1 / 2} y=a^{\frac{1}{2}}
$$

$$
\begin{aligned}
& \text { (b) } x^{\frac{1}{2}}+y^{\frac{1}{2}}=a^{\frac{1}{2}} \\
& \therefore \frac{1}{2} x^{-1 / 2}+\frac{1}{2} y^{-1 / 2} \cdot \frac{d y}{d x}=0 \text {. } \\
& \therefore \frac{d y}{d x}=-\frac{x^{-1 / 2}}{y^{-1 / 2}}=-\sqrt{\frac{y}{x}} . \\
& \begin{array}{l}
\left.\frac{d y}{d x}\right|_{\substack{x=x_{0} \\
y=y_{0} \\
\text { Equation of tot. }}}=-\sqrt{\frac{y_{0}}{x_{0}}} .
\end{array} \\
& y-y_{0}=\frac{-y_{0}^{1 / 2}}{x_{0}{ }^{1 / 2}}\left(x-x_{0}\right) \\
& \therefore x_{0}^{\frac{1}{2}} y-x_{0}^{1 / 2} y_{0}=x_{0} y_{0}^{\frac{1}{2}}-x y_{0}^{\frac{1}{2}} \text {. } \\
& \begin{array}{l}
\Rightarrow y_{0}^{\frac{1}{2}} x+x_{0}^{\frac{1}{2}} y=x_{0}^{\frac{1}{2}} y_{0}^{\frac{1}{2}}\left(y_{0}^{\frac{1}{2}}+x_{0}^{\frac{1}{2}}\right) \\
\because\left(x_{0} y_{0}\right) \text { is on the curve (1) }
\end{array} \\
& \Rightarrow \quad x_{0}^{\frac{1}{2}}+y_{0}^{\frac{1}{2}}=a^{\frac{1}{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& p(x)=x^{5}-a x+1 \\
& p^{\prime}(x)=5 x^{4}-a \\
& p^{\prime \prime}(x)=20 x^{3}
\end{aligned}
$$

Stationary pts when

$$
\begin{aligned}
& 5 x^{4}-a=0 \\
& x^{4}=\frac{a}{5}
\end{aligned}
$$

$$
x= \pm\left(\frac{a}{5}\right)^{\frac{1}{4}}
$$

For $x=\left(\frac{a}{5}\right)^{\frac{1}{4}}, p^{\prime \prime}\left[\left(\frac{a}{a}\right)^{\frac{1}{4}}\right]>0$ the opposite sides of the x-axis
For $x=-\left(\frac{a}{5}\right)^{\frac{1}{4}}, p^{\prime \prime}\left[-\left(\frac{a}{5}\right)^{\frac{1}{4}}\right]<0$

$$
\begin{aligned}
& \text { When } x=\left(\frac{a}{5}\right)^{\frac{1}{4}}, y=\left(\frac{a}{5}\right)^{5 / 4}-a\left(\frac{a}{5}\right)^{\frac{1}{4}}+1 \\
& \therefore y=1-\left(\frac{4 a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{5}}
\end{aligned}
$$

the opposite sides of the x -
\Rightarrow The product of the y^{\prime} s <0

$$
\begin{aligned}
& \text { For } x=-\left(\frac{a}{5}\right)^{\frac{1}{4}} \\
& y=1+\left(\frac{4 a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{2}}
\end{aligned}
$$

For three distinct real roots, the curve cuts the x-axis in 3 points.

$$
x \longrightarrow \infty \quad p(x) \longrightarrow \infty(>0)
$$

and the turning points are on
$\therefore\left[1+\left(\frac{4 a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{4}}\right]\left[\left(1-\left(\frac{4 a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{4}}\right]<0\right.$

$$
1-\frac{16 a^{2}}{25}\left(\frac{a}{5}\right)^{\frac{1}{2}}<0
$$

$$
\frac{16 a^{5 / 2}}{5^{5 / 2}}>1 \Rightarrow a^{5 / 2}>\left(\frac{5 \cdot 5}{2^{4}}\right)
$$

$$
\therefore \quad a>\left(\frac{5^{5 / 2}}{2^{4}}\right)^{2 / 5}=\left[\frac{5^{1}}{2^{8 / 5}}\right]
$$

$$
\begin{equation*}
\Rightarrow \quad a>5\left(\frac{1}{2}\right)^{\frac{8}{5}} \tag{4}
\end{equation*}
$$

Section C
Questions

$$
\begin{aligned}
& \therefore \ddot{y}=-(k v+g) \text {. }
\end{aligned}
$$

(1)

$$
\begin{aligned}
\ddot{y}=\frac{d v}{d t}= & -(k v+g) \\
\therefore \cdot d t & =-(k v+g)^{-1} d v \\
\int_{0}^{T} 1 \cdot d t & =-\int_{V_{0}}^{0}(k v+g)^{-1} d v . \\
T & =\int_{0}^{v_{0}}(k v+g)^{-1} d v . \\
& =\int_{0}^{v_{0}} \frac{1}{k v+g} d v . \\
& =\frac{1}{k}[\ln (k v+g)]_{0}^{V_{0}} \\
& =\frac{1}{k}\left(\ln \left(k V_{0}+g\right)-\ln g\right) \\
& =\frac{1}{k} \ln \left(k \frac{(k+g}{g}\right) \\
\therefore \mid k T & \left.=\ln \left(1+\frac{k V_{0}}{g}\right) \right\rvert\,
\end{aligned}
$$

(III)

$$
\begin{aligned}
& v \cdot \frac{d v}{d y}=-(k v+g) \\
& \therefore \frac{d v}{d y}=-\left(\frac{k v+g}{v}\right) \\
& d y=\frac{-v \cdot d v}{k v+g} \text {. } \\
& =-\frac{1}{n}\left(\frac{k v+g-g}{n v+g}\right) d v . \\
& \int_{0}^{1+} \cdot 1 \cdot d y=-\frac{1}{k} \int_{v_{0}}^{0} \frac{k v+g-g}{k v+g} d v . \\
& \therefore H=\frac{1}{k} \int_{0}^{v_{0}}\left(1-\frac{g}{k v+g}\right) d r . \\
& =\frac{1}{k}\left[\int_{0}^{v_{0}} 1 \cdot d r-\int_{0}^{v_{0}} \frac{g}{k v+g} d r\right] \\
& =\frac{1}{k}\left[[v]_{0}^{v_{0}}-\left[\frac{g}{k} \ln (k v+g)\right]_{0}^{v_{0}}\right] \\
& =\frac{1}{k}\left[V_{0}-\frac{g}{k}\left(\ln \left(k V_{0}+g\right)-\ln g\right)\right] \\
& k H=V_{0}-\frac{g}{k} \ln \frac{k v_{0}+g}{g} \\
& =V_{0}-\frac{g}{k} k T \quad \operatorname{finar}(11) \\
& =V_{0}-g T \\
& \therefore \quad V_{0}=k H+g T
\end{aligned}
$$

(b) (1) $z=\frac{2 \pm \sqrt{4-8}}{2}$.

$$
\begin{aligned}
& =\frac{2 E 2 i}{2} \\
& =1 t i \\
& =\sqrt{2} \text { is } \pm \frac{\pi}{4}
\end{aligned}
$$

$$
\therefore \alpha, \beta \text { are } \sqrt{2} \operatorname{cis} \pm \frac{\pi}{4}
$$

(11)

$$
\begin{aligned}
\alpha^{n}+\beta^{2} & =\left(\sqrt{2} \operatorname{lis} \frac{\pi}{4}\right)^{n}+\left(\sqrt{2} \operatorname{cis} \frac{-\pi}{4}\right)^{n} \\
& =(\sqrt{2})^{n}\left[\sin \frac{n \pi}{4}+\operatorname{cis} \frac{-n \pi}{4}\right] \\
& =(\sqrt{2})^{n}\left(2 \cos \frac{n \pi}{4}\right)\left(\begin{array}{c}
N B \\
z+\bar{z}=2 R_{z}
\end{array}\right] \\
& =2^{\frac{1}{2} n+1} \cos \frac{n \pi}{4} \\
& =2^{\frac{n+2}{2}} \cos \frac{n \pi}{4} \\
\therefore \alpha^{n}+\beta^{n} & =\sqrt{\alpha^{n+2}} \operatorname{cis} \frac{n \pi}{4} .
\end{aligned}
$$

Question 6.
a
${ }^{10} p_{7} \times{ }^{10} p_{6} \times 7!$ (Whir is the same as

$$
\left.\binom{10}{7} \times\binom{ 0}{6} \times(7!)^{2} \times 6!\right)
$$

b

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=0}^{1} 2 \pi x\left(\sqrt{x-x^{2}}\right) \delta x . \\
& =2 \pi \int_{0}^{1}\left(x^{3 / 2}-x^{3}\right) d x . \\
& =2 \pi \cdot\left[\frac{2}{5} x^{5 / 2}-\frac{x^{4}}{4}\right]_{0}^{1} \\
& =2 \pi\left(\frac{2}{5}-\frac{1}{4}\right) \\
& =2 \pi \times \frac{3}{20} \\
& =\frac{3 \pi}{10} x^{3}
\end{aligned}
$$

(c) (1)

$$
\begin{aligned}
& \text { NB } \frac{O W}{r}=\sin \theta \\
& O=O=r \sin \theta \\
& \operatorname{and} O B=r
\end{aligned}
$$

Consiato che slice at P.

$$
\begin{aligned}
\delta V= & \pi R^{2} \cdot f h \\
\therefore V & =\lim _{\delta h \rightarrow 0} \sum_{h=r}^{h=r} \cdot \pi R^{2} \delta h \\
& =\pi \int_{\sin \theta}^{r} R^{2} \cdot d h \\
& =\pi \int_{r \sin \theta}^{r}\left(r^{2}-h^{2}\right) \cdot d h
\end{aligned}
$$

(11) $V=\pi\left[r^{2} h-\frac{h^{3}}{3}\right]_{-\sin \theta}^{r}$

$$
\begin{aligned}
& =\pi\left[r^{3}-r^{3}-\left(r^{3} \sin \theta-\frac{r^{3} \sin ^{3} \theta}{3}\right)\right] \\
& =\pi\left[\frac{2 r^{3}}{3}-r^{3} \sin \theta+r^{3} \frac{\sin ^{3} \theta}{3}\right] \\
& =\frac{\pi r^{3}}{3}\left(2-3 \sin \theta+\sin ^{3} \theta\right)
\end{aligned}
$$

(d) (i) nan $\left(x^{2}-y^{2}\right)^{2} \geqslant 0$.

$$
\begin{aligned}
& x^{4}-2 x^{2} y^{2}+y^{4} \geqslant 0 \\
& \therefore\left|x^{4}+y^{4} \geqslant 2 x^{2} y^{2}\right|
\end{aligned}
$$

(II) sow $O P=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& \therefore O P^{4}=\left(x^{2}+y^{2}\right)^{2} \\
&=x^{4}+y^{4}+2 x^{2} y^{2} \\
& \leqslant x^{4}+y^{4}+x^{4}+y^{4}(\text { par } \\
& \leqslant 2 . \quad\left(x^{4}+y^{4}=1\right) \\
& \therefore \text { lon } \leqslant 2^{\frac{1}{4}} \text { ! }
\end{aligned}
$$

Section D

7. (a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?

$$
\text { Solution: } \begin{aligned}
\frac{5^{4} \times 4^{4} \times 3^{4} \times 2^{4} \times 1^{4}}{5!} & =(5!)^{3} \\
& =1728000
\end{aligned}
$$

(b) i. If $t=\tan \theta$, prove that

$$
\tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}}
$$

$$
\text { Solution: L.H.S. } \begin{aligned}
& =\frac{2 \times \tan 2 \theta}{1-(\tan 2 \theta)^{2}} \\
& =\frac{2 \times \frac{2 t}{1-t^{2}}}{1-\left(\frac{2 t}{1-t^{2}}\right)^{2}} \\
& =\frac{4\left(1-t^{2}\right)}{\left(1-t^{2}\right)^{2}-4 t^{2}} \\
& =\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}} \\
& =\text { R.H.S. }
\end{aligned}
$$

ii. If $\tan \theta \tan 4 \theta=1$, deduce that $5 t^{4}-10 t^{2}+1=0$.

$$
\text { Solution: } \begin{aligned}
t \times \frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}} & =1 \\
4 t^{2}-4 t^{4} & =1-6 t^{2}+t^{4} \\
5 t^{4}-10 t^{2}+1 & =0
\end{aligned}
$$

iii. Given that $\theta=\frac{\pi}{10}$ and $\theta=\frac{3 \pi}{10}$ are roots of the equation $\tan \theta \tan 4 \theta=1$, find the exact value of $\tan \frac{\pi}{10}$.

Solution: Using the quadratic formula, $t^{2}=\frac{10 \pm \sqrt{100-20}}{10}$,

$$
=\frac{5 \pm 2 \sqrt{5}}{5}
$$

i.e., $t=\sqrt{\frac{5 \pm \sqrt{5}}{5}}$ as $\tan \frac{\pi}{10}, \tan \frac{3 \pi}{10}>0$.

Now, as $\tan \frac{\pi}{10}<\tan \frac{3 \pi}{10}, \tan \frac{\pi}{10}=\sqrt{\frac{5-\sqrt{5}}{5}}$.
(c)

i. Prove that $\angle C M A+\angle C N A=\angle M B N$.

Solution: Join $A B$.
$\angle C M A=\angle M B A$ (angle in alternate segment), $\angle C N A=\angle A B N$ (angle in alternate segment),
$\therefore \angle C M A+\angle C N A=\angle M B A+\angle A B N$, $=\angle M B N$.
ii. Prove M, C, N, B are concyclic.

Solution: $\angle C M A+\angle C N A+\angle M C N=180^{\circ}$ (angle sum of $\triangle C M N$), $\therefore \angle M B N+\angle M C N=180^{\circ}$.
So $M C N B$ is a cyclic quadrilateral (opposite angles supplementary).
8. (a)

The diagram above shows the graph of $y=\log _{e} x$ for $1 \leq x \leq n+1$.
i. By considering the sum of the areas of inner and outer rectangles, show that

$$
\ln (n!)<\int_{1}^{n+1} \ln x d x<\ln ((n+1)!)
$$

$$
\text { Solution: Sum inner rectangles } \begin{aligned}
& =\sum_{x=1}^{n} \ln x \times 1, \\
& =\ln 1+\ln 2+\ln 3+\cdots+\ln n, \\
& =\ln n! \\
\text { Sum outer rectangles } & =\sum_{x=2}^{n+1} \ln x \times 1, \text { or } \sum_{x=1}^{n} \ln (x+1) \times 1, \\
& =\ln 2+\ln 3+\ln 4+\cdots+\ln (n+1), \\
& =\ln (n+1)! \\
\therefore \ln n!<\int_{1}^{n+1} \ln x d x & <\ln (n+1)!
\end{aligned}
$$

ii. Find $\int_{1}^{n+1} \ln x d x$.

$$
\text { Solution: } \begin{array}{rlrr}
\mathrm{I} & =\int_{1}^{n+1} \ln x \times 1 d x, & u=\ln x & v^{\prime}=1 \\
& =[x \ln x]_{1}^{n+1}-\int_{1}^{n+1} d x, & u^{\prime}=\frac{1}{x} & v=x \\
& =(n+1) \ln (n+1)-0-[x]_{1}^{n+1}, & & \\
& =(n+1) \ln (n+1)-(n+1-1), & & \\
& =(n+1) \ln (n+1)-n . & &
\end{array}
$$

iii. Hence prove that

$$
e^{n}>\frac{(n+1)^{n}}{n!}
$$

Solution: From i., $\ln (n+1)!>\int_{1}^{n+1} \ln x d x$.

$$
\begin{aligned}
\therefore \ln (n+1)! & >\ln (n+1)^{n+1}-n . \\
n & >\ln \frac{(n+1)^{n+1}}{(n+1)!}, \\
& >\ln \frac{(n+1)^{n}}{n!} . \\
\therefore e^{n} & >\frac{(n+1)^{n}}{n!} .
\end{aligned}
$$

(b) If a root of the cubic equation $x^{3}+b x^{2}+c x+d=0$ is equal to the reciprocal of another root, prove that

$$
1+b d=c+d^{2}
$$

Solution: Let the roots be $\alpha, \frac{1}{\alpha}, \beta$.

Method 1:

$\begin{aligned} \alpha \times \frac{1}{\alpha} \times \beta & =-d, \\ \beta & =-d .\end{aligned}$
Substitute in the equation for the root β :

$$
\begin{aligned}
-d^{3}+b d^{2}-c d+d & =0 \\
c d+d^{3} & =b d^{2}+d
\end{aligned}
$$

Divide by $d \quad(d \neq 0)$,

$$
c+d^{2}=b d+1
$$

Method 2:

$$
\begin{aligned}
\alpha+\frac{1}{\alpha}+\beta & =-b, \\
1+\alpha \beta+\frac{\beta}{\alpha} & =c \\
\beta & =-d . \\
\therefore \alpha+\frac{1}{\alpha}-d & =-b \ldots(1) \\
1-\alpha d-\frac{d}{\alpha} & =c \ldots \\
1-c & =d\left(\alpha+\frac{1}{\alpha}\right), \\
\therefore \alpha+\frac{1}{\alpha} & =\frac{1-c}{d} .
\end{aligned}
$$

Sub. in [1], $\frac{1-c}{d}-d=-b$,

$$
\begin{aligned}
1-c-d^{2} & =-b d \\
\text { i.e., } 1+b d & =c+d^{2} .
\end{aligned}
$$

(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A :
i. $V=U \cot \alpha$

Solution:

$$
\begin{gathered}
\ddot{x}=0 \\
\dot{x}=U \cos \alpha \quad \ddot{y}=-g \\
\text { At } A, U \cos \alpha=V \sin \alpha-g t \\
\quad \text { i.e., } V=U \cot \alpha
\end{gathered}
$$

ii. $t=\frac{U}{g \sin \alpha}$

Solution: At $A, \dot{y}=-V \cos \alpha$ (now heading downwards), i.e., $-U \cot \alpha \times \cos \alpha=U \sin \alpha-g t$,

$$
\begin{aligned}
g t & =U \sin \alpha+U \frac{\cos \alpha}{\sin \alpha} \cdot \cos \alpha \\
& =U\left(\frac{\sin ^{2} \alpha+\cos ^{2} \alpha}{\sin \alpha}\right) . \\
\therefore t & =\frac{U}{g \sin \alpha} .
\end{aligned}
$$

