

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 HIGHER SCHOOL CERTIFICATE

TRIAL PAPER

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time 3 Hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 120

• Attempt questions 1 – 8

Examiner: C.Kourtesis

<u>NOTE</u>: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate examination paper for this subject.

Section A (Start a new answer sheet.)

Question 1. (15 marks)

(a) Evaluate
$$\int_0^2 \frac{3}{4+x^2} dx.$$
 Marks 2

(b) Find
$$\int \cos x \sin^4 x \, dx$$
. 1

(c) Use integration by parts to find

$$\int t e^{-t} dt$$
.

(d) (i) Find real numbers *a* and *b* such that

$$\frac{1}{x(\pi-2x)} = \frac{a}{x} + \frac{b}{\pi-2x} \,.$$

(ii) Hence find

$$\int \frac{dx}{x(\pi-2x)}.$$

(e) Evaluate
$$\int_{-3}^{3} (2 - |x|) dx$$
. 2

(f) (i) Use the substitution
$$x = a - t$$
 to prove that 2

$$\int_0^a f(x)dx = \int_0^a f(a-x)dx.$$

$$\int_0^{\frac{\pi}{2}} \log_e(\tan x) dx$$

SHS 2005 Extension 2 Trial HSC

2

2

2

2

Question 2. (15 marks)

(a) If z = 2 + i and w = -1 + 2i find 2 $\operatorname{Im}(z-w).$ (b) On an Argand diagram shade the region that is satisfied by both the 2 conditions $\operatorname{Re}(z) \ge 2$ and $|z-1| \le 2$. If |z| = 2 and $\arg z = \theta$ determine 3 (c) (ii) $\arg\left(\frac{i}{z^2}\right)$ (i) $\frac{i}{z^2}$ If for a complex number z it is given that $\overline{z} = z$ where $z \neq 0$, determine the (d) 2 locus of z. 3 A complex number z is such that $\arg(z+2) = \frac{\pi}{6}$ and $\arg(z-2) = \frac{2\pi}{3}$. (e)

Find z, expressing your answer in the form a + ib where a and b are real.

(f) The complex numbers z_1 , z_2 and z_3 are represented in the complex plane by 3 the points P, Q and R respectively. If the line segments PQ and PR have the same length and are perpendicular to one another, prove that:

$$2z_1^2 + z_2^2 + z_3^2 = 2z_1(z_2 + z_3)$$

Section B (Start a new answer sheet.)

Question 3. (15 marks)

(a)	If 2 - the v	- 3 <i>i</i> is a zero of the polynomial $z^3 + pz + q$ where <i>p</i> and <i>q</i> are real, find alues of <i>p</i> and <i>q</i> .	Marks 3
(b)	If α equation	, β and γ are roots of the equation $x^3 + 6x + 1 = 0$ find the polynomial tion whose roots are $\alpha\beta$, $\beta\gamma$ and $\alpha\gamma$.	2
(c)	Cons	ider the function $f(x) = 3\left(\frac{x+4}{x}\right)^2$.	
	(i)	Show that the curve $y = f(x)$ has a minimum turning point at $x = -4$ and a point of inflexion at $x = -6$.	5
	(ii)	Sketch the graph of $y = f(x)$ showing clearly the equations of any asymptotes.	2

(d) Use mathematical induction to prove that

 $n! > 2^n$ for n > 3 where *n* is an integer.

3

Question 4 (15 marks)

(a) If $f(x) = \sin x$ for $-\pi \le x \le \pi$ draw neat sketches, on separate diagrams, of:

(i)
$$y = [f(x)]^2$$
 2

(ii)
$$y = \frac{1}{f\left(x + \frac{\pi}{2}\right)}$$

(iii) $y^2 = f(x)$ 2

(iv)
$$y = f\left(\sqrt{|x|}\right)$$
 2

- (b) Show that the equation of the tangent to the curve $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$ at the point **3** $P(x_0, y_0)$ on the curve is $xx_o^{-\frac{1}{2}} + yy_0^{-\frac{1}{2}} = a^{\frac{1}{2}}$.
- (c) Consider the polynomial $P(x) = x^5 ax + 1$. By considering turning points 4 on the curve y = P(x), prove that P(x) = 0 has three distinct roots if

$$a > 5\left(\frac{1}{2}\right)^{\frac{8}{5}}.$$

Section C (Start a new answer booklet)

Question 5 (15 marks)

Marks A particle of mass *m* is thrown vertically upward from the origin with initial (a) speed V_0 . The particle is subject to a resistance equal to *mkv*, where *v* is its speed and k is a positive constant. 1 Show that until the particle reaches its highest point the equation of (i) motion is $\ddot{\mathbf{y}} = -(k\mathbf{v} + g)$ where *y* is its height and *g* is the acceleration due to gravity. Prove that the particle reaches its greatest height in time T given by (ii) 4 $kT = \log_e \left[1 + \frac{kV_0}{g} \right].$ If the highest point reached is at a height *H* above the ground prove (iv) 4 that

$$V_0 = Hk + gT \; .$$

- If α and β are roots of the equation $z^2 2z + 2 = 0$ (b)
 - 3 find α and β in mod-arg form. (i)

(ii) show that
$$\alpha^n + \beta^n = \sqrt{2^{n+2}} \cdot \left[\cos \frac{n\pi}{4} \right].$$
 3

Question 6 (15 marks)

- (a) A group of 20 people is to be seated at a long rectangular table, 10 on each side. There are 7 people who wish to sit on one side of the table and 6 people who wish to sit on the other side. How many seating arrangements are possible?
- The area enclosed by the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the y axis (b) through one complete revolution. Use the cylindrical shell method to find the volume of the solid that is generated.
- (c) The diagram shows a hemi-spherical bowl of radius r. The bowl has been tilted so that its axis is no longer vertical, but at an angle θ to the vertical. At this angle it can hold a volume V of water.

The vertical line from the centre O meets the surface of the v and meets the bottom of Let P between W and B, the distance *OP*.

(i) Explain why
$$V = \int_{r\sin\theta}^{r} \pi (r^2 - h^2) dh$$
.

(ii) Hence show
$$V = \frac{r^3 \pi}{3} (2 - 3\sin\theta + \sin^3\theta).$$
 2

(i) Show that
$$x^4 + y^4 \ge 2x^2y^2$$
.

If P(x, y) is any point on the curve $x^4 + y^4 = 1$ prove that $OP \le 2^{\frac{1}{4}}$, (ii) 3 where *O* is the origin.

2

3

3

2

Section D (Start a new answer booklet)

Question 7 (15 marks)

(a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?

(b) (i) If $t = \tan \theta$, prove that

$$\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}.$$

(ii) If
$$\tan \theta \tan 4\theta = 1$$
 deduce that $5t^4 - 10t^2 + 1 = 0$. 2

(iii) Given that $\theta = \frac{\pi}{10}$ and $\theta = \frac{3\pi}{10}$ are roots of the equation $4 \tan \theta \tan 4\theta = 1$, find the exact value of $\tan \frac{\pi}{10}$.

(c)

Two circles intersect at A and B. A line through A cuts the circles at M and N. 5 The tangents at M and N intersect at C.

- (i) Prove that $\angle CMA + \angle CNA = \angle MBN$.
- (ii) Prove *M*, *C*, *N*, *B* are concyclic.

2

Question 8 (15 marks)

(a)

The diagram above shows the graph of $y = \log_e x$ for $1 \le x \le n+1$.

(i) By considering the sum of the areas of inner and outer rectangles show that

$$\ln(n!) < \int_{1}^{n+1} \ln x \, dx < \ln[(n+1)!]$$

- (ii) Find $\int_{1}^{n+1} \ln x \, dx$.
- (iii) Hence prove that

$$e^n > \frac{\left(n+1\right)^n}{n!}$$

(b) If a root of the cubic equation $x^3 + bx^2 + cx + d = 0$ is equal to the reciprocal of another root, prove that 3

$$1+bd = c+d^2.$$

This question continues on the next page.

(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If *t* is the time in seconds at any instant, show that when the stone is at *A*:

(i)
$$V = U \cot \alpha$$

(ii)
$$t = \frac{U}{g\sin\alpha}$$
.

This is the end of the paper.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

AUGUST 2005

Trial Higher School Certificate Examination

YEAR 12

Mathematics Extension 2 Sample Solutions

Section	Marker
Α	PP
В	EC
С	PB
D	DH

Section A

(1) (i)
$$\int_{0}^{2} \frac{3}{4+x^{2}} dx = \frac{3}{2} \int_{0}^{2} \frac{3}{4+x^{2}} dx$$
$$= \frac{3}{2} \left[\tan^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2}$$
$$= \frac{3}{2} \left[\tan^{-1} \left(1 \right) - 0 \right]$$
$$= \frac{3\pi}{8}$$

(ii)
$$\int \cos x \sin^4 x dx = \int u^4 du \quad \left[u = \sin x \right]$$
$$= \frac{u^5}{5} + c$$
$$= \frac{\sin^5 x}{5} + c$$
(iii)
$$\int \mathbf{t} \mathbf{e}^{-t} dt = fg - \int fg' dt$$

(iii)
$$\int \underbrace{\mathfrak{k}}_{g} \underbrace{\mathfrak{e}}_{f'}^{r} dt = fg - \int fg' dt$$
$$= -te^{-t} - \int (-e^{-t} \times 1) dt$$
$$= -te^{-t} + \int e^{-t} dt$$
$$= -te^{-t} - e^{-t} + c$$

(d) (i)
$$1 \equiv a(\pi - 2x) + bx$$

 $x = 0 \Rightarrow a = \frac{1}{\pi}$
 $2a = b$ [coefficients of x]
 $\therefore b = \frac{2}{\pi}$

$$a = \frac{1}{\pi}, b = \frac{2}{\pi}$$

(ii)
$$\int \frac{dx}{x(\pi - 2x)} = \frac{1}{\pi} \int \left(\frac{1}{x} - \frac{-2}{\pi - 2x}\right) dx$$
$$= \frac{1}{\pi} \ln x - \frac{1}{\pi} \ln \left(\pi - 2x\right) + c$$
$$= \frac{1}{\pi} \ln \left(\frac{x}{\pi - 2x}\right) + c$$

(e)
$$\int_{-3}^{3} (2 - |x|) dx = 2 \int_{0}^{3} (2 - |x|) dx$$
 $[Q 2 - |x| \text{ is even}]$
 $= 2 \int_{0}^{3} (2 - x) dx$ $[Q 2 - |x| = 2 - x, x > 0]$
 $= 2 \left[2x - \frac{1}{2}x^{2} \right]_{0}^{3}$
 $= 2 \left[6 - \frac{9}{2} \right]$
 $= 3$

(f) (i)
$$x = a - t \Rightarrow dx = -dt$$

 $x = 0 \Rightarrow t = a$
 $x = a \Rightarrow t = 0$
 $\int_{0}^{a} f(x) dx = \int_{a}^{0} f(a - t)(-dt)$
 $= \int_{0}^{a} f(a - t) dt$ $\left[Q \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \right]$
 $= \int_{0}^{a} f(a - x) dx$ [Q choice of variable irrelevant]

(ii)
$$I = \int_{0}^{\frac{\pi}{2}} \ln(\tan x) dx$$
$$= \int_{0}^{\frac{\pi}{2}} \ln\left(\tan\left(\frac{\pi}{2} - x\right)\right) dx$$
$$= \int_{0}^{\frac{\pi}{2}} \ln(\cot x) dx$$
$$2I = \int_{0}^{\frac{\pi}{2}} \ln(\tan x) dx + \int_{0}^{\frac{\pi}{2}} \ln(\cot x) dx$$
$$= \int_{0}^{\frac{\pi}{2}} \left[\ln(\tan x) + \ln(\cot x)\right] dx$$
$$= \int_{0}^{\frac{\pi}{2}} \ln 1 dx$$
$$= 0$$
$$\therefore I = 0$$
$$\therefore \int_{0}^{\frac{\pi}{2}} \ln(\tan x) dx = 0$$

(2) (a)
$$z = 2 + i, w = -1 + 2i$$

 $\therefore z - w = 3 - i$
 $\therefore \operatorname{Im}(z - w) = -1$

(b)

(d) $z = \overline{z} \Rightarrow z$ is purely real So the locus is y = 0, except x = 0. Alternatively: Let $z = x + iy, (z \neq 0)$ $\therefore \overline{z} = x - iy$ $\therefore z = \overline{z} \Rightarrow x + iy = x - iy$ $\therefore 2iy = 0 \Rightarrow y = 0$ $\therefore z$ is a purely real number excluding 0

(e)
$$\arg(z+2) = \frac{\pi}{6}, \arg(z-2) = \frac{2\pi}{3}.$$

z is represented by the point C, the intersection of the two rays.

$$\therefore z = 1 + i\sqrt{3}$$

(f)

Section B

(d)
$$\lfloor z + S(x) \rfloor = 4 = propendent
+h_{A} + \underline{x} \rfloor > 2^{A} = N > 5.$$

 $k \in \mathbb{Z}^{+}.$
There $A = 4$
 $4 \mid z \neq z \neq z^{A} = 16$
 $\vdots \quad S(4) \mid i \mid t + u = 2$
 $frequestion = S(k) \mid i \mid t + u = 2$
 $frequestion = frequest | t + u = 2$
 $frequestion = frequest | t + u = 2$
 $(i) \quad y = s(k+1) \geq 2^{K}.$
 $\vdots \quad k > 3, \quad t + u = u, \quad k+1 > 4$
 $\Rightarrow \quad z \cdot 2^{K+1}$
 $= \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(ii) $y = s(n \times x)$
 $y = s(n \times x)$
 $f = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iii) $y = s(n \times x)$
 $y = \pm \sqrt{s(n \times x)}$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(1 - 4\pi^{2} \times 2\right)$
 $\sum x_{2}^{-1} + y_{2} = \frac{1}{2} \left(x_{2} + x_{2}^{-1}\right)$
 $\therefore x_{2}^{-1} + y_{3} = x_{3} = \frac{1}{2} \left(x_{3} - x_{3} + x_{3}^{-1}\right)$
 $\therefore x_{2}^{-1} + y_{3} = x_{3} = \frac{1}{2} \left(x_{3} - x_{3} + x_{3}^{-1}\right)$
 $\therefore x_{3}^{-1} + y_{3} = x_{3} = \frac{1}{2} \left(x_{3} - x_{3} + x_{3}^{-1}\right)$
(iv) $\frac{1}{2} = \frac{1}{2} \left(x_{3} - x_{3} + y_{3} + y_{3} + x_{3} + y_{3} + y_{3} + y_{3} + x_{3} + y_{3} +$

(c)

$$p(x) = x^{5} - ax + 1$$

$$p'(x) = 5x^{4} - a$$

$$p''(x) = 20x^{3}$$

$$5 + a + 10nary p + s \ blen$$

$$5x^{4} - a = o$$

$$x^{4} = \frac{a}{5}$$

$$x = \pm \left(\frac{a}{5}\right)^{\frac{1}{4}}$$

$$For three distinct real roots, the curve cuts the x-axis in 3 points.
$$x = \pm \left(\frac{a}{5}\right)^{\frac{1}{4}}$$

$$For \chi = \left(\frac{a}{5}\right)^{\frac{1}{4}}, p''\left[\left(\frac{a}{5}\right)^{\frac{1}{4}}\right] > o$$

$$For \chi = \left(\frac{a}{5}\right)^{\frac{1}{4}}, p''\left[\left(\frac{a}{5}\right)^{\frac{1}{4}}\right] > o$$

$$For \chi = -\left(\frac{a}{5}\right)^{\frac{1}{4}}, p''\left[\left(-\frac{a}{5}\right)^{\frac{1}{4}}\right] < o$$

$$\left[1 + \left(\frac{4a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{4}}\right] \left[\left(1 - \left(\frac{4a}{5}\right)\left(\frac{a}{5}\right)^{\frac{1}{4}}\right] < o$$

$$\left[1 - \frac{(ba^{5}/a)}{5^{5/2}} > 1\right] > a^{5/2} > \left(\frac{5}{2^{4}}\right)$$

$$\frac{16a^{5/2}}{5^{5/2}} > 1 = a^{5/2} > \left(\frac{5}{2^{4}}\right)^{\frac{2}{5}} = \left[\frac{5}{2^{4}5}\right]$$

$$\Rightarrow a > 5 \left(\frac{1}{2}\right)^{\frac{2}{5}} = \left[4\right]$$$$

Section C

$$\begin{aligned} (f_{VBSTYONS}) \\ (a) (i) min''_{ij} = -mkv - miny & f & \psi \\ mi''_{ij} = -(kv + g) \\ (i') & i''_{j} = olv = -(kv + g) \\ (i') & i''_{j} = olv = -(kv + g) \\ dv \\ \int dt = -(kv + g) dv \\ \int i.dt = -\int (kv + g) dv \\ T = \int (kv + g) dv \\ T = \int (kv + g) dv \\ = \int (kv + g) dv \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g) \int (kv + g) \int (kv + g) \\ = \int (kv + g) \int (kv + g)$$

$$(11) \quad \sqrt{dv} = -(kv+q)$$

$$(11) \quad \sqrt{dv} = -(kv+q)$$

$$\frac{dv}{dv} = -\frac{(kv+q)}{v}$$

$$\frac{dv}{dv} = \frac{-v\cdot dv}{kv+q}$$

$$= -\frac{1}{k} \left(\frac{kv+q-q}{kv+q} \right) dv$$

$$\int_{0}^{t} 1 \cdot dy = -\frac{1}{k} \int_{0}^{v} \frac{kv+q-q}{kv+q} dv$$

$$\int_{0}^{t} 0 \cdot dy = \frac{1}{k} \int_{0}^{v} (1 - \frac{q}{kv+q}) dv$$

$$= \frac{1}{k} \left[\int_{0}^{v} 1 \cdot dv - \int_{0}^{q} \frac{q}{kv+q} \right]$$

$$= \frac{1}{k} \left[\left[v \right]_{0}^{v_{0}} - \left[\frac{q}{k} \int_{0}^{v} dv \right] \right]$$

$$= \frac{1}{k} \left[v_{0} - \frac{q}{k} \int_{0}^{v} dv \right]$$

$$k H = V_{0} - \frac{q}{k} \int_{0}^{v} dv + \frac{1}{g}$$

$$= V_{0} - \frac{q}{k} \int_{0}^{v} dv + \frac{1}{g}$$

(b) (i)
$$\frac{3}{2} = \frac{2 \pm \sqrt{4-8}}{2}$$

 $= \frac{3 \pm 2i}{2}$
 $= \frac{1}{2} \pm i$
 $= \sqrt{2} \text{ (ii) } \pm \frac{\pi}{4}$
(i) $\frac{\pi}{2} + \beta^{n} = (\sqrt{2} \text{ (ii) } \frac{\pi}{4})^{n} + (\sqrt{2} \text{ (ii) } -\frac{\pi}{4})^{n}$
 $= (\sqrt{2})^{n} \left[\text{ (ii) } \frac{\pi\pi}{4} + \text{ (ii) } -\frac{\pi\pi}{4} \right]$
 $= (\sqrt{2})^{n} \left(2 \text{ (io) } \frac{\pi\pi}{4} + \text{ (ii) } -\frac{\pi\pi}{4} \right]$
 $= 2^{\frac{1}{2}m+1} \text{ (io) } \frac{\pi\pi}{4}$
 $= 2^{\frac{1}{2}m+1} \text{ (io) } \frac{\pi\pi}{4}$
 $= 2^{\frac{1}{2}m+1} \text{ (io) } \frac{\pi\pi}{4}$

QUESTION 6.

$$(\mathcal{A} (1) \quad \mathcal{M} \mathcal{M} (x^{-} q^{r}) \stackrel{\sim}{=} 0.$$

$$x^{4} - 2x q^{r} + q^{4} \stackrel{\sim}{=} 0$$

$$\therefore / 2^{4} + q^{4} \stackrel{\sim}{=} 2x^{r} q^{r} / 1$$

$$(11) \quad \mathcal{M} \mathcal{M} \quad OP = \sqrt{x^{r} + q^{r}}$$

$$\therefore OP^{4} = (x^{r} + q^{r})^{a}$$

$$= x^{4} + q^{4} + 2x^{r} q^{r}$$

$$\leq x^{4} + q^{4} + x^{4} + q^{4} (\mathcal{M} + x^{2} + q^{4})$$

$$\leq 2. (x^{4} - q^{4} = 1)$$

$$\therefore / OP \leq 2^{\frac{4}{4}}$$

Section D

7. (a) How many sets of 5 quartets (groups of four musicians) can be formed from 5 violinists, 5 viola players, 5 cellists, and 5 pianists if each quartet is to consist of one player of each instrument?

Solution:	$5^4 \times 4^4 \times 3^4 \times 2^4 \times 1^4$	_	$(51)^3$
Controlli	5!		(0.) ,
		=	1728000.

(b) i. If $t = \tan \theta$, prove that

$$\tan 4\theta = \frac{4t(1-t^2)}{1-6t^2+t^4}.$$

Solution: L.H.S. =
$$\frac{2 \times \tan 2\theta}{1 - (\tan 2\theta)^2}$$
,
= $\frac{2 \times \frac{2t}{1-t^2}}{1 - (\frac{2t}{1-t^2})^2}$,
= $\frac{4t(1-t^2)}{(1-t^2)^2 - 4t^2}$,
= $\frac{4t(1-t^2)}{1-6t^2 + t^4}$,
= R.H.S.

ii. If $\tan \theta \tan 4\theta = 1$, deduce that $5t^4 - 10t^2 + 1 = 0$.

iii. Given that $\theta = \frac{\pi}{10}$ and $\theta = \frac{3\pi}{10}$ are roots of the equation $\tan \theta \tan 4\theta = 1$, find the exact value of $\tan \frac{\pi}{10}$.

Solution: Using the quadratic formula,
$$t^2 = \frac{10 \pm \sqrt{100 - 20}}{10}$$
,
 $= \frac{5 \pm 2\sqrt{5}}{5}$.
i.e., $t = \sqrt{\frac{5 \pm \sqrt{5}}{5}}$ as $\tan \frac{\pi}{10}$, $\tan \frac{3\pi}{10} > 0$.
Now, as $\tan \frac{\pi}{10} < \tan \frac{3\pi}{10}$, $\tan \frac{\pi}{10} = \sqrt{\frac{5 - \sqrt{5}}{5}}$.

Two circles intersect at A and B. A line through A cuts the circles at M and N. The tangents at Mand N intersect at C.

Solution: Join AB. $\angle CMA = \angle MBA$ (angle in alternate segment), $\angle CNA = \angle ABN$ (angle in alternate segment), $\therefore \angle CMA + \angle CNA = \angle MBA + \angle ABN$, $= \angle MBN$.

ii. Prove M, C, N, B are concyclic.

 $\begin{array}{l} \mbox{Solution: } \angle CMA + \angle CNA + \angle MCN = 180^\circ \mbox{ (angle sum of } \triangle CMN), \\ \therefore \ \angle MBN + \angle MCN = 180^\circ. \\ \mbox{So } MCNB \mbox{ is a cyclic quadrilateral (opposite angles supplementary).} \end{array}$

8. (a)

The diagram above shows the graph of $y = \log_e x$ for $1 \le x \le n + 1$.

i. By considering the sum of the areas of inner and outer rectangles, show that

$$\ln(n!) < \int_{1}^{n+1} \ln x \, dx < \ln((n+1)!)$$

Solution: Sum inner rectangles = $\sum_{x=1}^{n} \ln x \times 1,$ = $\ln 1 + \ln 2 + \ln 3 + \dots + \ln n,$ = $\ln n!$ Sum outer rectangles = $\sum_{x=2}^{n+1} \ln x \times 1, \text{ or } \sum_{x=1}^{n} \ln(x+1) \times 1,$ = $\ln 2 + \ln 3 + \ln 4 + \dots + \ln(n+1),$ = $\ln(n+1)!$ $\therefore \ln n! < \int_{1}^{n+1} \ln x \, dx < \ln(n+1)!$

ii. Find $\int_1^{n+1} \ln x \, dx$.

Solution:
$$\begin{split} \mathbf{I} &= \int_{1}^{n+1} \ln x \times 1 \, dx, & u = \ln x \quad v' = 1 \\ &= [x \ln x]_{1}^{n+1} - \int_{1}^{n+1} dx, & u' = \frac{1}{x} \quad v = x \\ &= (n+1) \ln(n+1) - 0 - [x]_{1}^{n+1}, & u' = \frac{1}{x} \quad v = x \\ &= (n+1) \ln(n+1) - (n+1-1), \\ &= (n+1) \ln(n+1) - n. \end{split}$$

iii. Hence prove that

$$e^n > \frac{(n+1)^n}{n!}$$

Solution: From i.,
$$\ln(n+1)! > \int_{1}^{n+1} \ln x \, dx$$
.
 $\therefore \ln(n+1)! > \ln(n+1)^{n+1} - n$.
 $n > \ln \frac{(n+1)^{n+1}}{(n+1)!},$
 $> \ln \frac{(n+1)^n}{n!}.$
 $\therefore e^n > \frac{(n+1)^n}{n!}.$

(b) If a root of the cubic equation $x^3 + bx^2 + cx + d = 0$ is equal to the reciprocal of another root, prove that

$$1 + bd = c + d^2.$$

Solution: Let the roots be α , $\frac{1}{\alpha}$, β . Method 1: $\alpha \times \frac{1}{\alpha} \times \beta = -d$, $\beta = -d$. Substitute in the equation for the root β : $\begin{aligned} -d^3 + bd^2 - cd + d &= 0, \\ cd + d^3 &= bd^2 + d. \\ \text{Divide by } d & (d \neq 0), \\ c + d^2 &= bd + 1. \end{aligned}$ Method 2: $\begin{aligned} \alpha + \frac{1}{\alpha} + \beta &= -b, \\ 1 + \alpha\beta + \frac{\beta}{\alpha} &= c, \\ \beta &= -d. \end{aligned}$ $\therefore \alpha + \frac{1}{\alpha} - d &= -b \dots \boxed{1}$ $1 - \alpha d - \frac{d}{\alpha} &= c \dots \boxed{2}$ $1 - c &= d(\alpha + \frac{1}{\alpha}), \\ \therefore \alpha + \frac{1}{\alpha} &= \frac{1 - c}{d}. \end{aligned}$ Sub. in $\boxed{1}, \frac{1 - c}{d} - d &= -b, \\ 1 - c - d^2 &= -bd, \\ i.e., 1 + bd &= c + d^2. \end{aligned}$

(c) A stone is projected from a point O on a horizontal plane at an angle of elevation α and with initial velocity U metres per second. The stone reaches a point A in its trajectory, and at that instant it is moving in a direction perpendicular to the angle of projection with speed V metres per second.

Air resistance is neglected throughout the motion and g is the acceleration due to gravity.

If t is the time in seconds at any instant, show that when the stone is at A:

i. $V = U \cot \alpha$

$$\begin{split} \ddot{x} &= 0 \qquad \ddot{y} = -g \\ \dot{x} &= U\cos\alpha \qquad \dot{y} = U\sin\alpha - gt \\ \text{At } A, \ U\cos\alpha = V\sin\alpha, \\ i.e., \ V &= U\cot\alpha \end{split}$$

ii.
$$t &= \frac{U}{g\sin\alpha}$$

Solution: At $A, \dot{y} = -V\cos\alpha$ (now heading downwards),
 $i.e., \ -U\cot\alpha \times \cos\alpha = U\sin\alpha - gt, \\ gt &= U\sin\alpha + U\frac{\cos\alpha}{\sin\alpha} \cdot \cos\alpha, \\ &= U\left(\frac{\sin^2\alpha + \cos^2\alpha}{\sin\alpha}\right). \\ \therefore \ t &= \frac{U}{g\sin\alpha}. \end{split}$