

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

General Instructions

- Reading time -5 minutes.
- Working time -3 hours. •
- Write using black or blue pen. •
- Board approved calculators may be • used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.
 - Section A (Questions 1 2), Section B (Questions 3 - 4) Section C (Questions 5 - 6)
 - Section **D** (Questions 7-8).

2

Start each NEW section in a separate answer booklet.

Total Marks - 120 Marks

- Attempt Sections A D
- All questions are of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 120 Attempt Questions 1 - 8 All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Question 1 (15 marks)

(a) By first completing the square, evaluate the following integrals (i) $\int_{-1}^{0} \frac{dx}{\sqrt{3-2x-x^{2}}}$ (ii) $\int_{0}^{1} \sqrt{x(1-x)} dx$ 2

Marks

1

2

2

2

2

(b)

Integrate the expressions below

(i)
$$\int \frac{1}{x \ln x} dx$$

(ii)
$$\int x \ln x \, dx$$

(iii)
$$\int \frac{x+1}{x^2+x+1} dx$$

(c)

Use the technique of *integration by parts* to evaluate $\int_{-\infty}^{\frac{1}{2}} \cos^{-1} x \, dx$

(d) (i) Find real numbers A, B, and C so that

$$\frac{10}{(3+x)(1+x^2)} = \frac{A}{3+x} + \frac{Bx+C}{1+x^2}$$
for all $x \neq -3$

(ii) Use part (i) above and the substitution $t = \tan \theta$ to find

 $\int \frac{10d\theta}{3+\tan\theta}$

SECTION A continued

Que	Question 2 (15 marks)				
(a)	(i) (ii)	Write the complex number $-\sqrt{3} + i$ in modulus-argument form. Hence, use de Moivre's Theorem to find $(-\sqrt{3} + i)^{10}$ in the form $a + ib$, for real values a and b .	1 2		
(b)	(i) (ii) (iii)	Sketch each of the following regions on separate Argand diagrams $-1 < \operatorname{Re}(z) < 2$ and $0 < \operatorname{Im}(z) < 3$ $z\overline{z} - (1-i)z - (1+i)\overline{z} < 2$ $0 < \operatorname{arg}[(1-i)z] < \frac{\pi}{6}$	2 2 2		
(c)	(i) (ii)	Find the square roots of the complex number $-3+4i$ Find the roots of the quadratic equation $x^2 - (4-2i)x + (6-8i) = 0$	2 2		
(d)	(i) (ii)	The locus of a point <i>P</i> , which moves in the complex plane, is represented by the equation $ z - (3 + 4i) = 5$ Sketch the locus of the point <i>P</i> . Find the modulus of <i>z</i> when $\arg z = \tan^{-1}(\frac{1}{2})$.	2 2		
Ques	stion 3	SECTION B (Use a SEPARATE writing booklet) (15 marks)			
(a)		Find a cubic equation with roots α , β and γ such that $\alpha\beta\gamma = 5$ $\alpha + \beta + \gamma = 7$ $\alpha^{2} + \beta^{2} + \gamma^{2} = 29$	3		
(b)		The polynomial $P(x)$ is defined by $P(x) = x^4 + Ax^2 + B$, where A and B are real positive numbers.			
	(i) (ii)	Explain why $P(x)$ has no real zeroes. If two of the zeroes of $P(x)$ are <i>ib</i> and <i>-id</i> where <i>b</i> and <i>d</i> are real show that: $b^4 + d^4 = A^2 - 2B$	2 4		
(c)		Given that $f(x) = x^3 - 3ax + b$, where a and b are real numbers then:			
	(i) (ii)	Show that $y = f(x)$ has turning points if $a > 0$, and find their coordinates. Show that $f(x)$ has three distinct real zeroes if $b^2 < 4a^3$.	3 3		

Show that f(x) has three distinct real zeroes if $b^2 < 4a^3$. (ii)

Marks

3

2

2

The sketch above shows the parabola y = f(x), where

$$f(x) = \frac{1}{5}(x-1)(x-5).$$

Without any use of calculus, draw careful sketches of the following curves, showing all intercepts, asymptotes and turning points.

NB The vertex of the parabola is at $\left(3, -\frac{4}{5}\right)$.

(i)
$$y = \frac{1}{f(x)}$$

(ii) $y = [f(x)]^2$
(iii) $y = \tan^{-1}[f(x)]$
3

(iv)
$$y = f(\ln x)$$

(b)

- Suppose the function f(x) = O(x) + E(x), where O(x) is odd and E(x) is even.
 - (i) By considering f(-x), find an expression for O(x) in terms of f.
 - (ii) Hence write down O(x) when $f(x) = e^x$.

SECTION C starts on page 5

SECTION C (Use a SEPARATE writing booklet)

Question 5 (15 marks)

(i)

(a)

A pipe-clamp is made of two identical pieces. Each piece has a circular base of radius *r* units and the other face is curved so as to fit flush against the pipe held between the two pieces.

The pipe also has a radius of r units.

A vertical slice, of thickness Δx , taken x units from the centre of the base is in the shape of a rectangle with one side in the circular base and of height necessary to reach the cylindrical pipe as shown in the diagram below:

$$h = r - \sqrt{r^2 - x^2}$$

- (ii) Show that the volume, ΔV , of such a slice is given by $\Delta V \approx \left[2r\sqrt{r^2 - x^2} - 2(r^2 - x^2)\right]\Delta x$
- (iii) Hence, find by integration, the volume of ONE piece of the pipe-clamp.
- (b) (i) Show that the volume, ΔV , of a right cylindrical shell of height *H*, with inner radius *r* and thickness Δr is given by the formula

$$\Delta V = 2\pi r H \Delta r$$

where Δr is sufficiently small so that $(\Delta r)^2$ may be neglected.

(b) (ii) A metal umbrella base is formed by rotating the area enclosed between x=1, x=3, y=0 and y=4-xabout the y-axis as shown.

Using the method of cylindrical shells, find the volume of the umbrella base.

3

3

3

SECTION C continued

Question 6 (15 marks)

(a)		A point T moves so that the sum of its distances from the point $(-2,0)$ and	
		(2,0), on a Cartesian plane, is 6 units.	
	(i)	Show that the locus of T is an ellipse \mathcal{F} with the equation	2
		$\frac{x^2}{9} + \frac{y^2}{5} = 1$	
	(ii)	Find the equation of the auxiliary circle, <i>A</i> , of <i>E</i> .	1
	(iii)	Find the eccentricity, coordinates of the foci and the equations of the directrices of the ellipse, \mathcal{Z}	2
	(iv)	Draw a neat sketch, showing the ellipse and its auxiliary circle.	1
	(v)	A line parallel to the y-axis meets the positive x-axis at N and the curves \mathscr{B} and \mathscr{A} at P and Q respectively.	1
		Given the coordinates $N(3\cos\theta, 0)$, find the coordinates of P and Q (where P and Q are in the first quadrant).	
	(vi)	Find the equations of the tangents at P and Q .	2
	(vii)	If R is the point of intersection of the tangents at P and Q: (α) Show that R lies on the major axis of \mathcal{E} .	2
		(β) Prove that the product of the lengths <i>ON</i> and <i>OR</i> is independent of the positions of <i>P</i> and <i>Q</i> on the curves.	2
(b)		Given p red balls and m yellow balls, where $p - m + 1 > 0$, arranged in a row. Show that the number of ways of arranging them so that no two yellow balls appear together is given by:	2

$^{p+1}C_m$

SECTION D starts on page 7

SECTION D (Use a SEPARATE writing booklet)

Question 7 (15 marks) Show that $z^5 + 1 = (z+1)(z^4 - z^3 + z^2 - z + 1)$ (i) If z is a solution to $z^5 + 1 = 0$ where $z \neq -1$, prove that $1 + z^2 + z^4 = z + z^3$. (ii)

Hence show that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$ (iii)

(b)

(a)

For integer values of k where k = 0, 1, 2, ... define I_k as follows:

$$I_k = \int_0^{\frac{\pi}{2}} \cos^k x \, dx$$

- Express I_{k+2} in terms of k and I_k . (i)
- Hence find an expression for I_{2n} , where n = 0, 1, 2, ...(ii)

(c)

In $\triangle ABC$, in the diagram on the right, AB = AC.

Produce CA to P and AB to Q so that AP = BQ.

- Show that $\angle OAP = \angle OBQ$. (i)
- Prove that A, P, Q and O, the centre of circle ABC, are concyclic. (ii)

Question 8 (15 marks)

(i)

A particle is projected vertically upwards in a resisting medium where the (a) resistance varies as the square of the velocity and k is the constant of variation. If the velocity of projection is $v_0 \tan \alpha$,

Show that the maximum height, *H*, reached is given by:

$$H = \frac{1}{2k} \ln \left(\frac{g + kv_0^2 \tan^2 \alpha}{g} \right)$$

- (ii) Show that the particle returns to the point of projection with velocity $v_0 \sin \alpha$ given that v_0 is the terminal velocity.
- Show that the time of ascent is $\frac{v_0 \alpha}{\rho}$ (iii)
- Show that the time of descent is $\frac{v_0}{g} \ln(\sec \alpha + \tan \alpha)$ (iv)
- (b) Prove by induction that, for all integers *n* where n > 1, that

$$\frac{4^n}{n+1} < \frac{(2n)!}{\left(n!\right)^2}$$

End of paper

Page 7 of 8

Marks

1

1

3

2

2

3

3

3

4

3

2

 $=\frac{1}{4}\int_{-E}^{\frac{E}{2}}\cos^{2}\theta d\theta$ $1)a)i)\int_{-1}^{0}\frac{dn}{(3-2n-n^2)}$ ("since even) $=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos^{2}\theta d\theta$ = $\int_{-1}^{0} \frac{dn}{(-1)^2 + 2\kappa + 1} + 4$ $=\frac{1}{4}\int_{-\frac{1}{2}}^{\frac{1}{2}}(1+\cos 2\theta)d\theta$ $\int_{-1}^{0} \frac{dx}{\sqrt{4-(x+1)^2}}$ $=\frac{1}{4}\left[0+\frac{1}{2}\sin^2\theta\right]^{\frac{1}{2}}$ $= \left[\sin\left(\frac{x+1}{2}\right) \right]$ $= \sin^{-1}(\frac{1}{2}) - \sin^{-1}(0)$ = 1 = 1 OR let $u = x - \frac{1}{2}$ $ii) \int \sqrt{x-n^2} dx$ du = 1 = $\int \int -(\chi^2 \kappa + \frac{1}{4}) + \frac{1}{4} d\kappa$ dr=dy when x=1, $u=\frac{1}{2}$ $= \int_{-1}^{1} \int_{-\frac{1}{4}}^{\frac{1}{4}} - (x - \frac{1}{2})^{2} dn$ $x = 0, u = -\frac{1}{2}$ $= \int_{-\frac{1}{4}}^{\frac{1}{2}} \frac{1}{4} - u^2 du$ let x-1= 1 sin Ce $\frac{dK}{\sqrt{A}} = \frac{1}{2} \cos \Theta$ Area of semicircle radius 5 du = 1 cosOdO when n = 1, $O = \frac{\pi}{2}$ $=\frac{1}{2}\pi\left(\frac{1}{2}\right)$ x=0, 0=-T $=\frac{T}{8}$ $= \int_{-\pi}^{\frac{1}{2}} \frac{1}{4} - \frac{1}{4} \sin^2 \theta = \frac{1}{2} \cos \theta d \theta$ $=\frac{1}{4}\int_{-1}^{\frac{1}{2}}\sqrt{1-sh^{2}\theta} \cos\theta d\theta$

b) i) $\int \frac{1}{\pi \ln \pi} d\pi$ $=\int \frac{(\frac{1}{n})}{\ln n} dn$ $= \ln(\ln x) + C$ ii) $\int x \ln x \, dx$ $u = \ln x, \quad v = x$ $u' = \frac{1}{2}, \quad v = x^2$ $= \frac{\pi^2 \ln x}{2} - \int \frac{x}{2} dt$ $=\frac{\pi^2}{2}/n\pi-\frac{\pi^2}{4}+C$ $\frac{1}{1} \int \frac{x+1}{x^2+x+1} dx$ $= \frac{1}{2} \int \frac{2n+1}{n^2+n+1} dn + \frac{1}{2} \int \frac{dn}{n^2+n+1}$ $= \frac{1}{2} \ln \left(n^2 + n + 1 \right) + \frac{1}{2} \int \frac{dn}{\left(n^2 + n + \frac{1}{4} \right) + \frac{3}{4}}$ $= \frac{1}{2} \ln \left(x^{2} + x + 1 \right) + \frac{1}{2} \int \frac{dm}{\frac{3}{4} + \left(x + \frac{1}{2} \right)^{2}}$ $= \frac{1}{2} \left(n \left(n^{2} + n + 1 \right) + \frac{1}{2} \cdot \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \right)$ + C $= \frac{1}{2} \ln \left(n^{2} + n + 1 \right) + \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2n + 1}{\sqrt{5}} \right) + C$

 $c) \int^{2} l cos x dx$ equate coefficients of n2 0 = 1 + BB = -1 $u = \cos x \qquad v' = 1$ $u' = \frac{-1}{\sqrt{1 - x^2}} \quad e^{-1} v = x$ equate constants 10 = 1 + 3C $= \left[\varkappa \cos^{-1} \varkappa \right]_{0}^{\frac{1}{2}} + \int_{\sqrt{1-\varkappa^{2}}}^{\frac{1}{2}} \varkappa$ 3C=9 C=3 kt u= 1-n2 $\frac{11}{3 + tan 0}$ JI+t² 0 ť du = -2x The $t = term \theta$ $dt = sec^2 \theta$ $d\theta$ du = du -221 when $\chi = \frac{1}{2}$, $u = \frac{3}{4}$ $\chi = 0$, u = 1do = dit sec20 $= \frac{1}{2} \cos^{3}\left(\frac{L}{2}\right) - 0 + \int \frac{n}{\sqrt{u}} \frac{du}{-2n}$ $d\theta = \cos^2 \theta dt$ $d\theta = \frac{dt}{1+7^2}$ $=\frac{1}{2}\cdot\frac{\pi}{3}=\frac{1}{2}\int u^{-\frac{1}{2}} du$ $= \int \frac{10}{3+t} \frac{dt}{1+t^2} usihg(i)$ $=\frac{\pi}{6}-\frac{1}{2}\left[2u^{\frac{1}{2}}\right]^{\frac{3}{4}}$ $= \int \frac{dt}{3+t} + \int \frac{-t+3}{1+t^2} dt$ $=\frac{\pi}{6}-\frac{1}{2}\left[2\sqrt{3}-2\right]$ $= \int \frac{dt}{3tt} - \frac{1}{2} \int \frac{2t}{1+t^2} dt + \frac{3}{1+t^2} \int \frac{dt}{1+t^2} dt$ $=\frac{11}{6}+\frac{2-\sqrt{3}}{2}$ = $\ln(3+t) - \frac{1}{2}\ln(1+t^2) + 3 \tan(t+c)$ = ln(3+tand) - t/n (1+tand)+30+C $\frac{d}{(3+\chi)(1+\chi^2)} = \frac{A}{3+\chi} + \frac{B\chi + C}{1+\chi^2}$ $10 = A(1+x^2) + (Bn+C)(3+x)$ when x=-3 10 = 10AA=1

2 a)i) |z| a $|z| = \sqrt{(-53)^2 + (1)^2}$ 14 $\frac{1}{\sqrt{5}}$ + $\frac{1}{\sqrt{5}}$ + $\frac{1}{\sqrt{5}}$ + $\frac{1}{\sqrt{5}}$ $\chi = \frac{\pi}{4}$ Q = SII $-\sqrt{3}+i=2(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6})$ ii) $(-53+i) = \int 2(\cos \frac{5\pi}{6} + i\sin \frac{5\pi}{6})$ = 210 (cos 50T + is in 50T = 1024 (cos = + is in =) $= 1024(\frac{1}{2}+\frac{1}{3}i)$ 512+512530 b)i) let 2=x+iy -1 < Re(z) < 2 0 < lm(z) < 3-1 < Re(x+iy) < 2 0 < lm(x+iy) < 3-1 < x < 2 0 < y < 3

[i] let 2 = xtig zz-(1-i)z-(1+i)z<2 (x+iy)(x-iy) - (1-i)(x+iy) - (1+i)(x-iy) < 2 $x^{2}+y^{2} - (x+iy-ix+y) - (x-iy+ix+y) < 2$ $x^{2}+y^{2}-x-iy+ix-y - x+iy - ix-y < 2$ $x^2 - 2x + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 < 2 + 1 + y^2 - 2y + 1 + y^2 + y^2 + + y$ $(n-1)^{2} + (y-1)^{2} < 4$ iii) $0 < \arg\left[(1-i)z\right] < \frac{\pi}{6}$ I when two complex numbers are multiplied together The argument of the resulting complex number is the sum of the individual arguments ///// $\arg(1-i) = -\frac{11}{4}$ Q. let z=r(cos Q +isin Q) arg(z) = 0 $0 < \arg \left[(1-i)^2 \right] < \frac{\pi}{6}$ $\frac{\pi}{L} \in O < \frac{S\Pi}{12}$

c) i) let J-3+4i = x+iy where x & y are real. $-3+4i = \pi^2 - y^2 + 2\pi yi$ equating real & imaginary points 22-y2=-3 - 2 x y = 4 ____2 rearrange 2 $y = \frac{2}{x} - \frac{2a}{2a}$ sub (20) into () $2^{2} - \left(\frac{2}{\pi}\right)^{2} = -3$ $\frac{2}{2} - \frac{4}{3} = -3$ $y^{4} - 4 = -32e^{2}$ $x + 3x^2 - 4 = 0$ $(x^2+4)(x^2-1)=0$ $x^{2} = -4$ $x^{2} = 1$ But $x^2 \neq -4$ since $x = \pm 1$ x is real. sub into (2a) when x = 1 x = -1 $y = 2 \qquad y = -2$ i 1+2i & -1-2i are the square roots of -3+4i. ie + (1+2i) are the square roots of -3+4i

 $x^{2} - (4 - 2i)x + (6 - 8i) = 0$ $x = \frac{-bt}{b^2-4ac}$ $z = 4 - 2i' \pm \sqrt{(-(4 - 2i))^2 + 4(1)(6 - 8i)}$ 2(1) $x = 4 - 2i \pm \sqrt{16 - 16i - 4 - 24 + 32i}$ $x = 4 - 2i \pm \sqrt{-12 + 16i}$ n= 4-2i ± 25-3+4i x= 2-it J-3+4i from(i) $x = 2 - i \pm (1 + 2i)$ x = 2 - i + 1 + 2i or x = 2 - i - 1 - 2i2c= 1-3i x = 3 + iThe roots are 3+i \$ 1-3i 781 d) i) |z - (3 + 4i)| = 5is a circle centre (3,4) (3,4) radius 5. 4 Atam (12) -2

ii) $Q = tan(\frac{1}{2})$ $(x-3)^2 + (y-4)^2 = 25$ (2) for Q = f () $y = \frac{x}{2}$ sub () into (2) $(x-3)^2 + (\frac{x}{2}-4)^2 = 25$ $x^2 - 6x + 9 + x^2 - 4x + 16 = 25$ $4n^2 - 24n + 36 + n^2 - 16n + 64 = 100$ 5x2-40x+100=100 5x(x-8)=0 x=0 x=8 sub into (1) $y=0 \qquad y=4.$ -25 The line y= x intersects the circle (x-3) 2r (y-4) at (0,0) and (8,4). $|z| = \sqrt{8^2 + 4^2}$ = 164+16 = (80 = 455

QUISSITON 3.

 $x^{3} - S_{1}x^{7} + S_{1}x - S_{3} = 0$ (A). a, Let the polynomial be now S, = + B+g=7. 53 = 5 $S_{1}^{2} = (d+\beta+\gamma)^{2} = d^{2}+\beta^{2}+\gamma^{2}+2(d\beta+d\gamma+\beta\gamma)$ ie. S, ~= ~+ /32+y2+ 252. $49 = 29 + 2S_2$ $\cdot : S_{\gamma} = 10 \cdot$. . (A) becames. (x 3-7x +10x - 5 = 0) P(x) = x + Ax + B where A and B are pointrie らつ xt an Ax Clearly Pars & B .: Parso ane par non-negative) . P(c) 70. .. no real zenn. HOTE & There who treated Par as a quadrate struggled to gain marks. * Other approaches, commonly used, included calculus to pind that B is the minimum value. (In since the coefficients are near, by the conjugate nost theseen, the pour nosts are; ± ib x ± id. : $x^{4} + Ax^{2} + B = (x + ib)(x - ib)(x + id)(x - id)$ = (x+b)(x+d) $= \chi^{\mu} + (b^{\gamma} + d^{\gamma}) \chi^{\gamma} + b^{\gamma} d^{\gamma}$ $b^{\vee} + d^{\vee} = A$ equating $b^{\nu}A^{\nu} = B$

 $men b^{+} + a^{+} = (b^{+} + a^{+})^{-} = a b^{+} a^{+}$ $- . | b^{+} + a^{+} = A^{-} - 2B.|$ NOTE. There never several atthe ways of doing this equation . < (1) for = 23-3az+b for = 3-2-3 a. For turning pts for = 0 rie 3(~2²−a) = 0. x² = a $\chi = \pm \sqrt{a}$. . . turning fts evit if zis real re. a>o} (NB. to again that is pouline therefore. a >0 is not assuring the question as acked) f(Va)= ava-3ava+b = b-2ara. $\Rightarrow f \in Ja = -a Ja + 3a Ja + b$ = b+2ava . . turning parts at (/a, 6-2a /a) and (-la, b+dala)

Ja: For the distinct meal zero f (Va) and f (- Va) need to be opposite in sign. re. for x ferral < 0. (b+2a/a)(b+2a/a) < 0. 6²-4a³ <0 - . 15 x 4a?

QUESTION 4.

NB anemens required zeros, turning fts, interests and asymptotics

(b) (1)
$$MW f(x) = Q_{x1} + E(x), -(1)$$

 $\forall f(x) = O(x_1 + E(x), (NB, O(x_1) = -O(x)))$
 $ie f(-x_1 = -O(e_1) + E(x_1, -E(x_1))) = O(x_1)$
 $\forall E(e_x) = E(x_1), -(1)$
 $\forall E(e_x) = E(x_1), -(1)$
 $f(x_1 - f(-x_1) = 2, O(x))$
 $\vdots O(e_1) = f(e_x) - f(e_x))$
 $= \frac{1}{2} O(e_1) = \frac{1}{2} O(e_2)$

QUESTION 5

(ii)
$$\Delta V = Vol. of slice$$

$$\Delta x = 2yh \Delta x$$

$$\Delta V = 2yh \Delta x$$

$$= 2\sqrt{(r^2 - x^2)} [r - \sqrt{r^2 - x^2}] \Delta x$$
ii $\Delta V = [2r \sqrt{r^2 - x^2} - 2(r^2 - x^2)] \Delta x$
(ii) $V = [2r \sqrt{r^2 - x^2} - 2(r^2 - x^2)] \Delta x$
(iii) $V = 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

$$= 2\sqrt{(2r \sqrt{r^2 - x^2} - 2r^2 + 2x^2)} \Delta x$$

(i) by inner radius of shell = r
outer radius of shell = r +
$$\Delta r$$

(i) $\Delta V = Vet.$ of shell

$$= \left[\pi (r + \Delta r)^{2} - \pi r^{2}\right] H$$

$$= \pi \left[r^{2} + 2r\Delta r + (\Delta r)^{2} - r^{2}\right] H$$

$$\Delta V = 2\pi r H \Delta r$$

$$\Delta V = 2\pi r \chi \Delta x$$

$$= 2\pi \int_{1}^{3} x (4 - x) dx$$

$$= 2\pi \left[2x^{2} - \frac{2x^{3}}{3}\right]_{1}^{3}$$

$$= 2\pi \left[(8 - 9) - (2 - \frac{4}{3})\right]$$

$$= 2\pi r \times \frac{22}{3} = 44\pi \text{ mig}^{3}$$

.

(a)
$$\frac{4}{5}S'(-2,0) = S(2,0) = T(X,Y)$$

(i) $TS' + TS = 6$
 $\sqrt{(x+x)^{2}+y^{2}} + \sqrt{(x-2)^{2}+y^{2}} = 6$
Squaring, rearranging, squaring
 $\Rightarrow \frac{x^{2}}{q} + \frac{y^{2}}{5} = 1$
(ii) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i)
 $\Rightarrow \frac{x^{2}}{q} + \frac{y^{2}}{5} = 1$
(ii) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (i) $2x \cos \theta + \frac{y}{5} \sin \theta = 1$ (ii) $5 = q(1 - e^{2})$ $p = \frac{1}{2}$
For $i(\pm a_{0}, 0)$ is $(\pm 2, 0)$
Directrices $x = \pm a \Rightarrow \pm \frac{\pm q}{2} = x$
(iv) $\frac{1}{2} + \frac{y^{2}}{2} = \frac{1}{2}$
(iv) $\frac{1}{2} + \frac{y^{2}}{2} = \frac{1}{2}$
(iv) $\frac{1}{2} + \frac{y^{2}}{2} = \frac{1}{2}$
 $For i(\pm a_{0}, 0)$ is $(\pm 2, 0)$
Directrices $x = \pm a \Rightarrow \pm \frac{\pm q}{2} = x$
(iv) $\frac{1}{2} + \frac{y^{2}}{2} = \frac{1}{2}$
(iv)

2006 Mathematics Extension 2 Trial HSC: Solutions Part D

(a) (i) Show that
$$z^5 + 1 = (z+1)(z^4 - z^3 + z^2 - z + 1)$$
.
Solution: R.H.S. = $z(z^4 - z^3 + z^2 - z + 1) + (z^4 - z^3 + z^2 - z + 1)$
= $(z^5 - z^4 + z^3 - z^2 + z) + (z^4 - z^3 + z^2 - z + 1)$
= $z^5 + 1$

= L.H.S.

(ii) If z is a solution to
$$z^5 + 1 = 0$$
 where $z \neq -1$, prove that $1 + z^2 + z^4 = z + z^3$
Solution: $(z+1)(z^4 - z^3 + z^2 - z + 1) = 0$ but $z \neq -1$,
 $\therefore z^4 - z^3 + z^2 - z + 1 = 0$.
Hence $1 + z^2 + z^4 = z + z^3$.

(iii) Hence show that
$$\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$$
.

7.

Solution: From the diagram Im if $z^5 = -1$ $z = \operatorname{cis} \pm \frac{\pi}{5}, \operatorname{cis} \pm \frac{3\pi}{5}, -1$ · Re Method 1: We take $z = \operatorname{cis} \frac{\pi}{5}$. $1 + z^{2} + z^{4} = z + z^{3} \text{ from (ii)},$ $\frac{1}{z^{2}} + 1 + z^{2} = \frac{1}{z} + z,$ $2\cos\frac{2\pi}{5} + 1 = 2\cos\frac{\pi}{5},$ $2\cos\frac{\pi}{5} - 2\cos\frac{2\pi}{5} = 1,$ $2\cos\frac{\pi}{5} + 2\cos\frac{3\pi}{5} = 1,$ $\therefore \quad \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}.$ Method 2: We consider the roots of $z^4 - z^3 + z^2 - z + 1 = 0$ from (ii), taken one-at-a-time, $cis \frac{\pi}{5} + cis \frac{-\pi}{5} + cis \frac{3\pi}{5} + cis \frac{-3\pi}{5} = 1.$ But $z + \overline{z} = 2\Re \mathfrak{e}(z)$, so $\operatorname{cis} \frac{\pi}{5} + \operatorname{cis} \frac{-\pi}{5} = 2 \cos \frac{\pi}{5}$ etc. $\therefore \ 2\cos\frac{\pi}{5} + 2\cos\frac{3\pi}{5} = 1,$ and $\cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$.

3

1

(b) For integer values of k where k = 0, 1, 2, ... define I_k as follows:

$$I_k = \int_0^{\frac{\pi}{2}} \cos^k x \, dx$$

(i) Express I_{k+2} in terms of k and I_k .

Solution: $u = \cos^{k+1} \qquad v' = \cos x$ $u' = (k+1)(-\sin x)\cos^{k} x \qquad v = \sin x$ $I_{k+2} = \int_{0}^{\frac{\pi}{2}} \cos^{k+1} x \cdot \cos x \, dx,$ $= \left[\sin x \cos^{k+1} x\right]_{0}^{\frac{\pi}{2}} + (k+1) \int_{0}^{\frac{\pi}{2}} \sin^{2} x \cdot \cos^{k} x \, dx,$ $= 0 + (k+1) \int_{0}^{\frac{\pi}{2}} \left(\cos^{k} x - \cos^{k+2} x\right) \, dx,$ $= (k+1)I_{k} - (k+1)I_{k+2},$ $(k+2)I_{k+2} = (k+1)I_{k},$ $I_{k+2} = \left(\frac{k+1}{k+2}\right)I_{k}.$

(ii) Hence find an expression for I_{2n} , where n = 0, 1, 2, ...

Solution:
$$I_0 = \int_0^{\frac{\pi}{2}} dx = I_{2\times 0}$$
 i.e. $n = 0$,
 $= \frac{\pi}{2}$.
 $I_2 = I_{0+2} = I_{2\times 1}$ *i.e.* $n = 1$,
 $= \frac{1}{2} \cdot I_0$,
 $= \frac{1}{2} \cdot \frac{\pi}{2}$.
 $I_4 = I_{2+2} = I_{2\times 2}$ *i.e.* $n = 2$,
 $= \frac{3}{4} \cdot I_2$,
 $= \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$.
 $I_6 = I_{4+2} = I_{2\times 3}$ *i.e.* $n = 3$,
 $= \frac{5}{6} \cdot I_4$,
 $= \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$,
 $= \frac{6}{6} \cdot \frac{5}{6} \cdot \frac{4}{4} \cdot \frac{3}{4} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$,
 $= \frac{1}{2^6} \cdot \frac{6!}{(3!)^2} \cdot \frac{\pi}{2}$.
 $I_{2n} = \frac{1}{2^{2n}} \cdot \frac{(2n)!}{(n!)^2} \cdot \frac{\pi}{2}$.

2

(c) In $\triangle ABC$, in the diagram on the right, AB = AC.

Produce
$$CA$$
 to P and AB to Q so that $AP = BQ$.

3

3

(i) Show that $\angle OAP = \angle OBQ$.

Solution: In $\triangle s AOC$, AOB, AC = AB (data), OA = OB = OC (equal radii), $\therefore \triangle AOC \equiv \triangle AOB$ (SSS), $\angle OAC = \angle OBA$ (corresp. $\angle s$ in congruent $\triangle s$), $\angle OAP + \angle OAC = 180^{\circ} (= \angle PAC)$, $\angle OBQ + \angle OBA = 180^{\circ} (= \angle ABQ)$, $\therefore \angle OAP = \angle OBQ$.

(ii) Prove that A, P, Q, and O, the centre of the circle, ABC are concyclic.

Solution: In \triangle s OAP, OBQ, AP = BQ (data), $\angle OAP = \angle OBQ$ (shown above), OA = OB (equal radii), $\therefore \triangle OAP \equiv \triangle OBQ$ (SAS), $\angle APO = \angle BQO$ (corresp. \angle s in congruent \triangle s), $\angle BQO = \angle AQO$ (common), $\therefore \angle APO = \angle AQO$ $\therefore A, P, Q$, and O are concyclic (equal angles subtended by the chord AO).

- 8. (a) A particle is projected **vertically** upwards in a resisting medium where the resistance varies as the square of the velovity and k is the constant of variation. If the velocity of projection is $v_0 \tan \alpha$,
 - (i) Show that the maximum height, H, reached is given by:

(ii) Show that the particle returns to the point of projection with velocity $v_0 \sin \alpha$ given that v_0 is the terminal velocity.

$$\frac{1}{2k}\ln\left(\frac{g+kv_0^2\tan^2\alpha}{g}\right) = \frac{1}{2k}\ln\left(\frac{g}{g-kv^2}\right)$$

So,
$$\frac{g+kv_0^2\tan^2\alpha}{g} = \frac{g}{g-kv^2},$$

3

$$1 + \frac{kv_0^2}{g} \cdot \tan^2 \alpha = \frac{1}{1 - \frac{k}{g}v^2},$$

$$1 + \tan^2 \alpha = \frac{1}{1 - \frac{v^2}{v_0^2}},$$

$$\frac{\sec^2 \alpha}{v_0^2} = \frac{1}{v_0^2 - v^2},$$

$$v_0^2 - v^2 = v_0^2 \cos^2 \alpha,$$

$$= v_0^2 - v_0^2 \sin^2 \alpha,$$

$$v = v_0 \sin \alpha.$$

(iii) Show that the time of ascent is $\frac{v_0\alpha}{g}$

Solution: From part (i),

$$\begin{split} \ddot{x} &= -(g + kv^2), \\ \frac{dv}{dt} &= -(g + kv^2). \\ \int_0^T dt &= -\int_u^0 \frac{dv}{g + kv^2}, \\ &= \frac{1}{k} \int_0^{v_0 \tan \alpha} \frac{dv}{v_0^2 + v^2}, \text{ using } \frac{g}{k} = v_0^2 \text{ from (ii)}, \\ T &= \frac{1}{k} \cdot \frac{1}{v_0} \left[\tan^{-1} \frac{v}{v_0} \right]_0^{v_0 \tan \alpha}, \\ &= \frac{1}{kv_0} \tan^{-1} \tan \alpha, \end{split}$$

 \therefore time of ascent,

$$T = \frac{\alpha}{kv_0}, \quad \text{but } k = \frac{g}{v_0^2},$$
$$= \frac{\alpha}{v_0} \cdot \frac{v_0^2}{g},$$
$$= \frac{v_0 \alpha}{g}.$$

(iv) Show that the time of descent is $\frac{v_0}{g} \ln(\sec \alpha + \tan \alpha)$.

Solution:

$$\begin{array}{c}
\ddot{x} = kv^{2} - g, \\
\frac{dv}{dt} = kv^{2} - g, \\
\int_{0}^{T} dt = \int_{0}^{-v_{0}\sin\alpha} \frac{dv}{kv^{2} - g}, \\
= \frac{1}{k} \int_{0}^{-v_{0}\sin\alpha} \frac{dv}{v^{2} - v_{0}^{2}}. \\
\end{array}$$

$$\begin{array}{c}
\frac{1}{v^{2} - v_{0}^{2}} \equiv \frac{A}{v + v_{0}} + \frac{B}{v - v_{0}}, \\
1 \equiv A(v - v_{0}) + B(v + v_{0}). \\
\text{Put } v = v_{0}, \qquad B = \frac{1}{2v_{0}}, \\
\text{put } v = -v_{0}, \qquad A = -\frac{1}{2v_{0}}. \\
\text{Then, } T = \frac{1}{2kv_{0}} \int_{0}^{-v_{0}\sin\alpha} \left(\frac{1}{v - v_{0}} - \frac{1}{v + v_{0}}\right) dv, \\
= \frac{1}{2kv_{0}} \left[\ln(v - v_{0}) - \ln(v + v_{0})\right]_{0}^{-v_{0}\sin\alpha}, \\
= \frac{1}{2kv_{0}} \left\{\ln\left(\frac{-v_{0}\sin\alpha - v_{0}}{-v_{0}}\right) - \ln\left(\frac{v_{0} - v_{0}\sin\alpha}{v_{0}}\right)\right\}, \\
= \frac{1}{2kv_{0}} \ln\left\{\left(\frac{\sin\alpha + 1}{1 - \sin\alpha}\right) \cdot \left(\frac{1 + \sin\alpha}{1 + \sin\alpha}\right)\right\}, \\
= \frac{1}{kv_{0}} \ln\sqrt{(\sec\alpha + \tan\alpha)^{2}}, \\
= \frac{1}{kv_{0}} \ln(\sec\alpha + \tan\alpha). \\
\end{array}$$

Solution: Test for $n = 2$: L.H.S. $= \frac{4^2}{3}$, R.H.S. $= \frac{4!}{(2!)^2}$, $= 5\frac{1}{3}$. $= 6$. \therefore True for $n = 2$.
Now, assume true for $n = k \ge 2$,
<i>i.e.</i> $\frac{4^k}{k+1} < \frac{(2k)!}{(k!)^2}$
Then testfor $n = k + 1$,
<i>i.e.</i> $\frac{4^{k+1}}{k+2} < \frac{(2k+2)!}{((k+1)!)^2}$
L.H.S. = $\frac{4.4^k}{k+1} \times \frac{k+1}{k+2}$, $< \frac{(2k)!}{(k!)^2} \times \frac{4(k+1)}{k+2}$ by the assumption, $< \frac{(2k+2)!}{((k+1)!)^2} \times \frac{(k+1)^2}{(2k+2)(2k+1)} \times \frac{4(k+1)}{(k+2)}$, $< \frac{(2k+2)!}{((k+1)!)^2} \times \frac{(2k^2+4k+2)}{(2k^2+5k+2)}$, $< \frac{(2k+2)!}{((k+1)!)^2} \times \left(1 - \frac{k}{2k^2+5k+2}\right)$, $< \frac{(2k+2)!}{((k+1)!)^2}$ as $\left(1 - \frac{k}{2k^2+5k+2}\right) < 1$.
Alternatively, R.H.S. = $\frac{(2k)!}{(k!)^2} \times \frac{(2k+2)(2k+1)!}{(k+1)^2}$, $> \frac{4^k}{k+1} \times \frac{2(2k+1)!}{(k+1)}$ by the assumption, $> \frac{4^{k+1}}{k+2} \times \frac{(k+2)!}{4(k+1)} \times \frac{2(2k+1)!}{(k+1)}$, $> \frac{4^{k+1}}{k+2} \times \frac{(2k^2+5k+2)!}{(2k^2+4k+2)}$, $> \frac{4^{k+1}}{k+2} \times \left(1 + \frac{k}{2k^2+4k+2}\right)$, $> \frac{4^{k+1}}{k+2}$ as $\left(1 + \frac{k}{2k^2+4k+2}\right) > 1$. \therefore The statement is true for $n = k + 1$ if true for $n = k$. As true for $n = 2$, so true for $n = 3, 4, \ldots$ and so on for all natural numbers
n > 1.