

SYDNEYBOYS HIGHSCHOOL
 moore park, surry hills

2006

TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

Extension 2

General Instructions

- Reading time -5 minutes.
- Working time -3 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in $\mathbf{3}$ sections.
Section A (Questions 1-2),
Section B (Questions 3-4)
Section C (Questions 5-6)
Section D (Questions 7-8).
- Start each NEW section in a separate answer booklet.

Total Marks - 120 Marks

- Attempt Sections A - D
- All questions are of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks - 120
Attempt Questions 1-8
All questions are of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Question 1 (15 marks)
(a) By first completing the square, evaluate the following integrals
(i) $\int_{-1}^{0} \frac{d x}{\sqrt{3-2 x-x^{2}}}$

2
(ii) $\int_{0}^{1} \sqrt{x(1-x)} d x$
(b) Integrate the expressions below
(i) $\int \frac{1}{x \ln x} d x$
(ii) $\int x \ln x d x$
(iii) $\int \frac{x+1}{x^{2}+x+1} d x$
(c) Use the technique of integration by parts to evaluate

$$
\int_{0}^{\frac{1}{2}} \cos ^{-1} x d x
$$

(d) (i) Find real numbers A, B, and C so that

$$
\frac{10}{(3+x)\left(1+x^{2}\right)}=\frac{A}{3+x}+\frac{B x+C}{1+x^{2}}
$$

for all $x \neq-3$
(ii) Use part (i) above and the substitution $t=\tan \theta$ to find

$$
\int \frac{10 d \theta}{3+\tan \theta}
$$

SECTION A continued

Question 2 (15 marks)
(a) (i) Write the complex number $-\sqrt{3}+i$ in modulus-argument form.
(ii) Hence, use de Moivre's Theorem to find $(-\sqrt{3}+i)^{10}$ in the form $a+i b$, for real values a and b.
(b) Sketch each of the following regions on separate Argand diagrams
(i) $-1<\operatorname{Re}(z)<2$ and $0<\operatorname{Im}(z)<3$
(ii) $z \bar{z}-(1-i) z-(1+i) \bar{z}<2$
(iii) $0<\arg [(1-i) z]<\frac{\pi}{6}$
(c) (i) Find the square roots of the complex number $-3+4 i$
(ii) Find the roots of the quadratic equation $x^{2}-(4-2 i) x+(6-8 i)=0$
(d) The locus of a point P, which moves in the complex plane, is represented by the equation $|z-(3+4 i)|=5$
(i) Sketch the locus of the point P.
(ii) Find the modulus of z when $\arg z=\tan ^{-1}\left(\frac{1}{2}\right)$.

SECTION B (Use a SEPARATE writing booklet)

Question 3 (15 marks)
(a) Find a cubic equation with roots α, β and γ such that

$$
\left.\begin{array}{rl}
\alpha \beta \gamma & =5 \\
\alpha+\beta+\gamma & =7 \\
\alpha^{2}+\beta^{2}+\gamma^{2} & =29
\end{array}\right\}
$$

(b) The polynomial $P(x)$ is defined by $P(x)=x^{4}+A x^{2}+B$, where A and B are real positive numbers.
(i) Explain why $P(x)$ has no real zeroes.
(ii) If two of the zeroes of $P(x)$ are $i b$ and -id where b and d are real show that:

$$
b^{4}+d^{4}=A^{2}-2 B
$$

(c) Given that $f(x)=x^{3}-3 a x+b$, where a and b are real numbers then:
(i) Show that $y=f(x)$ has turning points if $a>0$, and find their coordinates. 3
(ii) Show that $f(x)$ has three distinct real zeroes if $b^{2}<4 a^{3}$. 3

Question 4 (15 marks)
(a)

The sketch above shows the parabola $y=f(x)$, where

$$
f(x)=\frac{1}{5}(x-1)(x-5)
$$

Without any use of calculus, draw careful sketches of the following curves, showing all intercepts, asymptotes and turning points.
NB The vertex of the parabola is at $\left(3,-\frac{4}{5}\right)$.
(i) $y=\frac{1}{f(x)}$
(ii) $y=[f(x)]^{2}$
(iii) $y=\tan ^{-1}[f(x)]$
(iv) $y=f(\ln x)$
(b) Suppose the function $f(x)=O(x)+E(x)$, where $O(x)$ is odd and $E(x)$ is even.
(i) By considering $f(-x)$, find an expression for $O(x)$ in terms of f.
(ii) Hence write down $O(x)$ when $f(x)=e^{x}$.

SECTION C (Use a SEPARATE writing booklet)

Question 5 (15 marks)
(a) A pipe-clamp is made of two identical pieces. Each piece has a circular base of radius r units and the other face is curved so as to fit flush against the pipe held between the two pieces.

The pipe also has a radius of r units.

A vertical slice, of thickness Δx, taken x units from the centre of the base is in the shape of a rectangle with one side in the circular base and of height necessary to reach the cylindrical pipe as shown in the diagram below:

(i) Show that the height of the slice taken x units from O is given by

$$
h=r-\sqrt{r^{2}-x^{2}}
$$

(ii) Show that the volume, ΔV, of such a slice is given by

$$
\Delta V \approx\left[2 r \sqrt{r^{2}-x^{2}}-2\left(r^{2}-x^{2}\right)\right] \Delta x
$$

(iii) Hence, find by integration, the volume of ONE piece of the pipe-clamp.
(b) (i) Show that the volume, ΔV, of a right cylindrical shell of height H, with inner radius r and thickness Δr is given by the formula

$$
\Delta V=2 \pi r H \Delta r
$$

where Δr is sufficiently small so that $(\Delta r)^{2}$ may be neglected.
(b) (ii) A metal umbrella base is formed by rotating the area enclosed between $x=1, x=3, y=0$ and $y=4-x$ about the y-axis as shown.

Using the method of cylindrical shells, find the volume of the umbrella base.

SECTION C continued

Question 6 (15 marks)
(a) A point T moves so that the sum of its distances from the point $(-2,0)$ and $(2,0)$, on a Cartesian plane, is 6 units.
(i) Show that the locus of T is an ellipse $\mathbb{\Phi}^{\text {with }}$ the equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{5}=1
$$

(ii) Find the equation of the auxiliary circle, \mathcal{E}, of

1
(iii) Find the eccentricity, coordinates of the foci and the equations of the directrices of the ellipse,
(iv) Draw a neat sketch, showing the ellipse and its auxiliary circle.
(v) A line parallel to the y-axis meets the positive x-axis at N and the curves $\mathscr{E}_{\text {and }}$
\mathscr{G} at P and Q respectively.
Given the coordinates $N(3 \cos \theta, 0)$, find the coordinates of P and Q (where P and Q are in the first quadrant).
(vi) Find the equations of the tangents at P and Q.
(vii) If R is the point of intersection of the tangents at P and Q :
(α) Show that R lies on the major axis of \boldsymbol{E}°.
(β) Prove that the product of the lengths $O N$ and $O R$ is independent of the positions of P and Q on the curves.
(b) Given p red balls and m yellow balls, where $p-m+1>0$, arranged in a row.

Show that the number of ways of arranging them so that no two yellow balls appear together is given by:

$$
{ }^{p+1} C_{m}
$$

SECTION D starts on page 7

SECTION D (Use a SEPARATE writing booklet)

Question 7 (15 marks)

Marks

(a) (i) Show that $z^{5}+1=(z+1)\left(z^{4}-z^{3}+z^{2}-z+1\right)$
(ii) If z is a solution to $z^{5}+1=0$ where $z \neq-1$, prove that $1+z^{2}+z^{4}=z+z^{3}$.
(iii) Hence show that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}$
(b) For integer values of k where $k=0,1,2, \ldots$ define I_{k} as follows:

$$
I_{k}=\int_{0}^{\frac{\pi}{2}} \cos ^{k} x d x
$$

(i) Express I_{k+2} in terms of k and I_{k}.
(ii) Hence find an expression for $I_{2 n}$, where $n=0,1,2, \ldots$
(c) In $\triangle A B C$, in the diagram on the right, $A B=A C$.

Produce $C A$ to P and $A B$ to Q so that $A P=B Q$.

(i) Show that $\angle O A P=\angle O B Q$.
(ii) Prove that A, P, Q and O, the centre of circle $A B C$, are concyclic.

Question 8 (15 marks)
(a) A particle is projected vertically upwards in a resisting medium where the resistance varies as the square of the velocity and k is the constant of variation. If the velocity of projection is $\nu_{0} \tan \alpha$,
(i) Show that the maximum height, H, reached is given by:
$H=\frac{1}{2 k} \ln \left(\frac{g+k v_{0}^{2} \tan ^{2} \alpha}{g}\right)$
(ii) Show that the particle returns to the point of projection with velocity $\nu_{0} \sin \alpha$ given that v_{0} is the terminal velocity.
(iii) Show that the time of ascent is $\frac{v_{0} \alpha}{g}$
(iv) Show that the time of descent is $\frac{\nu_{0}}{g} \ln (\sec \alpha+\tan \alpha)$
(b) Prove by induction that, for all integers n where $n>1$, that

$$
\frac{4^{n}}{n+1}<\frac{(2 n)!}{(n!)^{2}}
$$

End of paper

1) ali)

$$
\begin{aligned}
& \int_{-1}^{0} \frac{d x}{\sqrt{3-2 x-x^{2}}} \\
= & \int_{-1}^{0} \frac{d x}{\sqrt{-\left(x^{2}+2 x+1\right)+4}} \\
= & \int_{-1}^{0} \frac{d x}{\sqrt{4-(x+1)^{2}}} \\
= & {\left[\sin ^{-1}\left(\frac{x+1}{2}\right)\right]_{-1}^{0} } \\
= & \sin ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}(0) \\
= & \frac{\pi}{6}
\end{aligned}
$$

$$
\text { ii) } \begin{array}{r}
\int_{0}^{1} \sqrt{x-x^{2}} d x \\
=\int_{0}^{1} \sqrt{-\left(x^{2}-x+\frac{1}{4}\right)+\frac{1}{4}} d x \\
=\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}} d x \\
\text { let } x-\frac{1}{2}=\frac{1}{2} \sin \theta \\
\frac{d x}{d \theta}=\frac{1}{2} \cos \theta \\
d x=\frac{1}{2} \cos \theta d \theta \\
\text { when } x=1, \theta=\frac{\pi}{2} \\
x=0, \theta=-\frac{\pi}{2} \\
=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\frac{1}{4}-\frac{1}{4} \sin ^{2} \theta} \cdot \frac{1}{2} \cos \theta d \theta \\
=
\end{array}
$$

$$
\begin{aligned}
& =\frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \\
& =\frac{1}{4} \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{4}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{4}\left[\frac{\pi}{2}\right] \\
& =\frac{\pi}{8}
\end{aligned}
$$

(since even)

OR
let $u=x-\frac{1}{2}$

$$
\frac{d u}{d x}=1
$$

$$
d x=d y
$$

when $x=1, u=\frac{1}{2}$

$$
x=0, u=-\frac{1}{2}
$$

$=\int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\frac{1}{4}-u^{2}} d u$
Area of semicircle radius $\frac{1}{2}$.

$$
\begin{aligned}
& =\frac{1}{2} \pi\left(\frac{1}{2}\right)^{2} \\
& =\frac{\pi}{8}
\end{aligned}
$$

b) i)

$$
\text { i) } \begin{aligned}
& \int \frac{1}{x \ln x} d x \\
= & \int \frac{\left(\frac{1}{x}\right)}{\ln x} d x \\
= & \ln (\ln x)+C
\end{aligned}
$$

$$
\text { ii) } \begin{array}{r}
\int x \ln x d x \\
u=\ln x \quad v^{\prime}=x \\
u^{\prime}=\frac{1}{x}=\frac{x^{2}}{2} \\
=\frac{x^{2} \ln x}{2}-\int \frac{x}{2} d x \\
=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c
\end{array}
$$

$$
\text { iii) } \begin{aligned}
& \int \frac{x+1}{x^{2}+x+1} d x \\
= & \frac{1}{2} \int \frac{2 x+1}{x^{2}+x+1} d x+\frac{1}{2} \int \frac{d x}{x^{2}+x+1} \\
= & \frac{1}{2} \ln \left(x^{2}+x+1\right)+\frac{1}{2} \int \frac{d x}{\left(x^{2}+x+\frac{1}{4}\right)+\frac{3}{4}} \\
= & \frac{1}{2} \ln \left(x^{2}+x+1\right)+\frac{1}{2} \int \frac{d x}{\frac{3}{4}+\left(x+\frac{1}{2}\right)^{2}} \\
= & \frac{1}{2} \ln \left(x^{2}+x+1\right)+\frac{1}{2} \cdot \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)+C \\
= & \frac{1}{2} \ln \left(x^{2}+x+1\right)+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+C
\end{aligned}
$$

c) $\int_{0}^{\frac{1}{2}} 1 \cdot \cos ^{-1} x d x$

$$
\begin{array}{r}
u=\cos ^{-1} x \quad \Delta^{v^{\prime}}=1 \\
u^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} v_{0}^{\frac{1}{2}} x \\
=\left[x \cos ^{-1} x\right]_{0}^{\frac{1}{2}}+\int_{0}^{\sqrt{1-x^{2}}}
\end{array}
$$

kt $u=1-x^{2}$

$$
\frac{d u}{d x}=-2 x
$$

$$
d x=\frac{d u}{-2 x}
$$

$$
\text { when } x=\frac{1}{2}, u=\frac{3}{4}
$$

$$
x=0, u=1
$$

$$
=\frac{1}{2} \cos ^{-1}\left(\frac{1}{2}\right)-0+\int_{1 / 4}^{3 / 4} \frac{x}{\sqrt{u}} \cdot \frac{d u}{-2 x} .
$$

$$
=\frac{1}{2} \cdot \frac{\pi}{3}-\frac{1}{2} \int_{1}^{3 / 4} u^{-\frac{1}{2}} d u
$$

$$
=\frac{\pi}{6}-\frac{1}{2}\left[2 u^{\frac{1}{2}}\right]_{1}^{3 / 4}
$$

$$
=\frac{\pi}{6}-\frac{1}{2}\left[2 \cdot \frac{\sqrt{3}}{2}-2\right]
$$

$$
=\frac{\pi}{6}+\frac{2-\sqrt{3}}{2}
$$

d) i) $\frac{10}{(3+x)\left(1+x^{2}\right)}=\frac{A}{3+x}+\frac{B x+C}{1+x^{2}}$

$$
10=A\left(1+x^{2}\right)+(B x+C)(3+x)
$$

when $x=-3$

$$
\begin{aligned}
& 10=10 A \\
& A=1
\end{aligned}
$$

equate coefficients of x^{2}

$$
0=1+B
$$

$$
B=-1
$$

equate constants

$$
\begin{gathered}
10=1+3 c \\
3 c=9 \\
c=3
\end{gathered}
$$

$$
\begin{gathered}
\text { ii) } \int \frac{10 d \theta}{3+\tan \theta} \quad \frac{\sqrt{1+t^{2}}}{t}=t \\
\frac{d t}{d \theta}=\sec ^{2} \theta \\
d \theta=\frac{d t}{\sec ^{2} \theta} \\
d \theta=\cos ^{2} \theta d t \\
d \theta=\frac{d t}{1+t^{2}} \\
=\int \frac{10}{3+t} \cdot \frac{d t}{1+t^{2}} \quad \text { using (i) } \\
=\int \frac{d t}{3+t}+\int \frac{-t+3}{1+t^{2}} d t \\
=\int \frac{d t}{3+t}-\frac{1}{2} \int \frac{2 t}{1+t^{2}} d t+3 \int \frac{d t}{1+t^{2}} \\
=\ln (3+t)-\frac{1}{2} \ln \left(1+t^{2}\right)+3 \tan ^{-1} t+c \\
=\ln (3+\tan \theta)-\frac{1}{2} \ln \left(1+\tan ^{2} \theta\right)+3 \theta+c
\end{gathered}
$$

2) a) i)

$$
\begin{aligned}
|z| & =\sqrt{(-\sqrt{3})^{2}+(1)^{2}} \\
& =\sqrt{4} \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\alpha}{\sqrt{3}} \|^{\prime} \tan \alpha=\frac{1}{\sqrt{3}} \\
& \alpha=\frac{\pi}{6} \\
& \theta=5 \frac{\pi}{6}
\end{aligned}
$$

$$
\therefore-\sqrt{3}+i=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)
$$

ii)

$$
\begin{aligned}
(-\sqrt{3}+i)^{10} & =\left[2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)\right]^{10} \\
& =2^{10}\left(\cos \frac{50 \pi}{6}+i \sin \frac{50 \pi}{6}\right) \\
& =1024\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\
& =1024\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
& =512+512 \sqrt{3} i
\end{aligned}
$$

ii) let $2=x+i y$

$$
\begin{aligned}
& z \bar{z}-(1-i) z-(1+i) \bar{z}<2 \\
& (x+i y)(x-i y)-(1-i)(x+i y)-(1+i)(x-i y)<2 \\
& x^{2}+y^{2}-(x+i y-i x+y)-(x-i y+i x+y)<2 \\
& x^{2}+y^{2}-x-i f+i x-y-x+i y-i x-y<2 \\
& x^{2}-2 x+1+y^{2}-2 y+1<2+1+1 \\
& (x-1)^{2}+(y-1)^{2}<4
\end{aligned}
$$

iii) $0<\arg [(1-i) z]<\frac{\pi}{6}$

* When two complex numbers are multiplied together The argument of the resulting complex number is the sum of the individual arguments

c) i) Let $\sqrt{-3+4 i}=x+i y$ where $x \neq y$ are real.

$$
-3+4 i=x^{2}-y^{2}+2 x y^{i}
$$

equating real imaginary parts

$$
\begin{align*}
& x^{2}-y^{2}=-3 \\
& 2 x y=4 \tag{2}
\end{align*}
$$

rearrange (2) $y=\frac{2}{x}$
sub 20 into (1)

$$
\begin{gathered}
x^{2}-\left(\frac{2}{x}\right)^{2}=-3 \\
x^{2}-\frac{4}{x^{2}}=-3 \\
x^{4}-4=-3 x^{2} \\
x^{4}+3 x^{2}-4=0 \\
\left(x^{2}+4\right)\left(x^{2}-1\right)=0 \\
x^{2}=-4 \quad x^{2}=1 \\
\text { But } x^{2} \neq-4 \operatorname{since} \quad x= \pm 1
\end{gathered}
$$

$$
x \text { is real. }
$$

sub into $2 a$
when $x=1$

$$
x=-1
$$

$$
y=2 \quad y=-2
$$

$\therefore 1+2 i \neq 1-2 i$ are the square roots of $-3+4 i$.
ie $\pm(1+2 i)$ are the square roots of $-3+4 i$
ii)

$$
\begin{aligned}
& x^{2}-(4-2 i) x+(6-8 i)=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{4-2 i \pm \sqrt{(-(4-2 i))^{2}-4(1)(6-8 i)}}{2(1)} \\
& x=\frac{4-2 i \pm \sqrt{16-16 i-4-24+32 i}}{2} \\
& x=\frac{4-2 i \pm \sqrt{-12+16 i}}{2} \\
& x=\frac{4-2 i \pm 2 \sqrt{-3+4 i}}{2} \\
& x=2-i \pm \sqrt{-3+4 i}
\end{aligned}
$$

from (i)

$$
\begin{aligned}
& x=2-i \pm(1+2 i) \\
& x=2-i+1+2 i \quad \text { or } \quad x=2-i-1-2 i \\
& x=3+i
\end{aligned} \quad x=1-3 i
$$

\therefore the roots are $3+i$ \& $1-3 i$.
d) i) $|z-(3+4 i)|=5$ is a circle centre $(3,4)$ radius 5 .

ii)

$$
\theta=\tan ^{-1}\left(\frac{1}{2}\right) \quad(x-3)^{2}+(y-4)^{2}=25
$$

$\tan \theta=\frac{1}{2}$

$$
\begin{align*}
& m=\frac{1}{2} \\
& y=\frac{x}{2}- \tag{1}
\end{align*}
$$

sub (1) into (2)

$$
\begin{aligned}
& (x-3)^{2}+\left(\frac{x}{2}-4\right)^{2}=25 \\
& x^{2}-6 x+9+\frac{x^{2}}{4}-4 x+16=25 \\
& 4 x^{2}-24 x+36+x^{2}-16 x+64=100 \\
& 5 x^{2}-40 x+100=10 \varnothing \\
& 5 x(x-8)=0 \\
& x=0 \quad x=8
\end{aligned}
$$

sub into (1)

$$
y=0 \quad y=4
$$

The line $y=\frac{x}{2}$ intersects the circle $(x-3)^{2} r(y-4)^{2}=25$ at $(0,0)$ and $(8,4)$.

$$
\begin{aligned}
|z| & =\sqrt{8^{2}+4^{2}} \\
& =\sqrt{64+16} \\
& =\sqrt{80} \\
& =4 \sqrt{5}
\end{aligned}
$$

Quistion 3.
a, Let the pelynemial be $x^{3}-S_{1} x^{2}+S_{2} x-S_{3}=0$
now $S_{1}=\alpha+\beta+\gamma=7$.

$$
\begin{aligned}
& S_{3}=5 \\
& S_{1}^{2}=(\alpha+\beta+\gamma)^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& \text { ie. } S_{1}^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2 S_{2} . \\
& 49=29+2 S_{2} \\
& \quad: S_{2}=10 .
\end{aligned}
$$

\therefore (A) beckes. $\left(x^{3}-7 x^{2}+10 x-5=0\right.$!
b, (I) $P(x)=x^{4}+A x^{2}+B$ uthe A and B are foidtrice
Clearly $P(x) \geqslant B \therefore P(x)>0 \quad\left(\begin{array}{c}x^{4} \text { and } A x^{2} \\ \text { are }\end{array}\right.$
$\therefore P(x) \neq 0 . \therefore$ no real non-regativi) zents.
Horiz * Thure who treated P(x) us a quadiater strygled ti gain maks.

* Oiter appuovater, commorly ured, risolved calcolues to pind that B is the minimum salue.
(i1) Since the co-efficients are real, by the co-gugate noct theoum, the peur roots are; $\pm i b \times \pm i d$.

$$
\begin{aligned}
& \therefore \quad x^{4}+A x^{2}+B \equiv(x+i b)(x-i b)(x+i d)(x-i d) \\
& \equiv\left(x^{2}+b^{2}\right)\left(x^{2}+d^{2}\right) \\
& \equiv x^{4}+\left(b^{2}+d^{2}\right) x^{2}+b^{2} d^{2} \\
& \text { equating } \quad b^{2}+d^{2}=A \\
& b^{2} d^{2}=B
\end{aligned}
$$

new

$$
\begin{aligned}
& b^{4}+d^{4} \equiv\left(b^{2}+d^{2}\right)^{2}-2 b^{2} d^{2} \\
& \therefore b^{4}+d^{4}=A^{2}-2 B
\end{aligned}
$$

Nots. There suese several octur ways of dung theireguatioi.
c (i) $f(x)=x^{3}-3 a x+b$

$$
f^{\prime}(x)=3 x^{2}-3 a .
$$

For inumig pts $f_{(x)}^{(x)}=0$
ie $3\left(x^{2}-a\right)=0$.

$$
\begin{aligned}
& x^{2}=a \\
& x= \pm \sqrt{a} .
\end{aligned}
$$

\therefore turaig ts enit if x is real

(NB. to a-gne that x^{2} is pouitice therepere. $a>0$ is set anemening the quextion as anked)

$$
\begin{aligned}
f(\sqrt{a}) & =a \sqrt{a}-3 a \sqrt{a}+b \\
& =b-2 a \sqrt{a} .
\end{aligned}
$$

* $f(\mathcal{\sqrt { a }})=-a \sqrt{a}+3 a \sqrt{a}+b$

$$
=b+2 a \sqrt{a}
$$

\therefore terening paits at $(\sqrt{ } a, b-2 a \sqrt{a})$ and $(-\sqrt{a}, b+2 a \sqrt{a}$.)

For the divinest
real zeus $f(\sqrt{ } a)$ and $f(-\sqrt{ } a)$ seed to be opposite in sign.
ie. $f(\sqrt{a}) \times f(\in \sqrt{ })<0$.

$$
\begin{aligned}
&(b-2 a \sqrt{a})(b+2 a \sqrt{ })<0 \\
& b^{2}-4 a^{3}<0 \\
& \therefore b^{2}<4 a^{3}
\end{aligned}
$$

Quistion 4.
(I)

NB
Acrees nequeied zeno, turming pts, mernepts and asgnfitlés
(11)

(III)

(w)

(b) (i) nut $f(x)=O(x)+E(x)$.

$$
\begin{align*}
& \text { \& } f(-x)=O(-x)+E(-x) . \quad(N B . \tag{1}\\
& \text { ie } \left.f(-x)=-O(x)+E(x) .-O\left(-O_{(}\right)=-O(x)=E(x)\right) .
\end{align*}
$$

(1) - (2)

$$
\begin{aligned}
f(x)-f(-x) & =20(x) \\
\therefore & O(x)=\frac{f(x)-f(-x)}{2}
\end{aligned}
$$

(ii) Af $f(x)=e^{x}$

$$
O(x)=\frac{\frac{e^{x}-e^{-x}}{2}}{2} \text { or. } \frac{e^{x e}-1}{2 e^{x}}
$$

Question 5
(a)
(i)

By Pythagoras' Theorem

$$
(r-h)^{2}+x^{2}=r^{2}
$$

ie $h^{2}-2 r h+x^{2}=0$
As a quadratic in h

$$
\begin{aligned}
& \Rightarrow h \\
&=\frac{2 r \pm \sqrt{4 r^{2}-4 x^{2}}}{2} \\
& h=r \pm 9 \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

Since $h \leqslant r$
only $h=r-\sqrt{r^{2}-x^{2}}$ applies
(ii) $\Delta v=$ vol. of slice

$$
\begin{aligned}
\Delta V & =A \Delta x \\
\Delta V & =2 y h \Delta x \\
& \left.=2 \sqrt{\left(r^{2}-x^{2}\right.}\right)\left[r-\sqrt{r^{2}-x^{2}}\right] \Delta x
\end{aligned}
$$

ie $\Delta V=\left[2 r \sqrt{r^{2}-x^{2}}-2\left(r^{2}-x^{2}\right)\right] \Delta_{1}$

$$
\text { (iii) } \begin{aligned}
V & =2 \int_{0}^{r}\left(2 r \sqrt{r^{2}-x^{2}}-2 r^{2}+2 x^{2}\right) d x \\
& =2\left\{2 r \cdot \frac{1}{4} \pi r^{2}-\left[2 r^{2} x\right]_{0}^{r}+\left[\frac{2 x^{3}}{3}\right]_{0}^{r}\right\} \\
& =2\left\{\frac{\pi}{2} r^{3}-2 r^{3}+\frac{2 r^{3}}{3}\right\} \\
V & =\left\{\left(\frac{\pi}{2}-\frac{4}{3}\right) r^{3}\right\} \times 2 \min ^{3} \\
V & =\pi r^{3}-\frac{8}{3} r^{3}
\end{aligned}
$$

Vol of whole clamp (on eprice)
(5)(b) inner radius of shell $=r$
outer radius of shell $=r+\Delta r$
(i)

$$
\begin{aligned}
\Delta V & =\text { Vol. of shell } \\
& =\left[\pi(r+\Delta r)^{2}-\pi r^{2}\right] H \\
& =\pi\left[r^{2}+2 r \Delta r+(\Delta r)^{2}-r^{2}\right] H
\end{aligned}
$$

$\Delta V=2 \pi r H \Delta r$ since $(\Delta r)^{2}$ is sufficientlyswall enough to be neglected.
(ii)

 enough to be neglected.

$$
\begin{aligned}
& \text { inner radius }=x \\
& \text { height }=y
\end{aligned}
$$

$$
\Delta V=2 \pi r H \Delta r
$$

$$
\Delta V=2 \pi x y \Delta x
$$

where $x=r, y=H$

$$
\begin{aligned}
V & =2 \pi \int_{1}^{3} x y d x \\
& =2 \pi \int_{1}^{3} x(4-x) d x \\
& =2 \pi\left[2 x^{2}-\frac{x^{3}}{3}\right]_{1}^{3} \\
& =2 \pi\left[(18-9)-\left(2-\frac{1}{3}\right)\right] \\
& =2 \pi \times \frac{22}{3}=\frac{44 \pi}{3} \text { units }^{3}
\end{aligned}
$$

Question 6

$$
\begin{aligned}
& \text { (a) }{ }^{\text {let }} S^{\prime}(-2,0) S(2,0) T(x, y) \\
& \text { (i) } T S^{\prime}+T S=6 \\
& \sqrt{(x+2)^{2}+y^{2}}+\sqrt{(x-2)^{2}+y^{2}}=6
\end{aligned}
$$

Squaring, rearranging, squaring

$$
\Rightarrow \quad \frac{x^{2}}{9}+\frac{y^{2}}{5}=1
$$

(4) Ausiliony civcle of radins 3
(ii) centro $(0,0)$ is

$$
x^{2}+y^{2}=9
$$

(4)
(iii)

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
& 5=a\left(1-e^{2}\right) \Rightarrow e=\frac{2}{3}
\end{aligned}
$$

Foci ($\pm a e, 0$) is $(\pm 2,0)$
Directrices $x= \pm \frac{a}{e} \Rightarrow \frac{ \pm 9}{2}=x$
(iv)

$$
\begin{aligned}
& N(3 \cos \theta, 0) \\
& P(3 \cos \theta, \sqrt{5} \sin \theta) \\
& Q(3 \cos \theta, 3 \sin \theta)
\end{aligned}
$$

(vi)

Tangent at P is

$$
\begin{equation*}
\frac{x \cos \theta}{3}+\frac{y \sqrt{5} \sin \theta}{5 \sin \theta}=1 \tag{4}
\end{equation*}
$$

Tangent at Q
grod. is

$$
\begin{aligned}
& 2 x+2 y y^{\prime}=0 \\
& y^{\prime}=-\frac{x}{y}
\end{aligned}
$$

at Q grad is $-\frac{3 \cos \theta}{3 \sin \theta}=-\cot \theta$
$E q^{n}$ is $y-3 \sin \theta=-\cot \theta(x-3 \cos \theta)$
(vii) $\Rightarrow y \sin \theta+x \cos \theta=3$
(a) Solving (A) and (B)

$$
\begin{align*}
& 5 x \cos \theta+3 \sqrt{5} y \sin \theta=15 \tag{4}\\
& x \cos \theta+y \\
& 5 \times(B) \Rightarrow 5 x \cos \theta+5 y \sin \theta=3 \tag{c}\\
& (\theta-\text { (c) } \Rightarrow(3 \sqrt{5}-5) y \sin \theta=0 \\
& 3 \sqrt{5}-5 \neq 0, \sin \theta \neq 0 \text { except at } C, D \\
& \Rightarrow y=0 \quad x=\frac{3}{\cos \theta} \cos \theta \neq 0
\end{align*}
$$

$\therefore \forall x$ point $R\left(\frac{3}{\cos \theta}, 0\right)$ lies on the y axis.
(B)

$$
O N \cdot O R=3 \cos \theta \cdot \frac{3}{\cos \theta}=9
$$

\therefore independent of P and Q.
7. (a) (i) Show that $z^{5}+1=(z+1)\left(z^{4}-z^{3}+z^{2}-z+1\right)$.

Solution: R.H.S. $=z\left(z^{4}-z^{3}+z^{2}-z+1\right)+\left(z^{4}-z^{3}+z^{2}-z+1\right)$
$=\left(z^{5}-z^{4}+z^{3}-z^{2}+z\right)+\left(z^{4}-z^{3}+z^{2}-z+1\right)$
$=z^{5}+1$
$=$ L.H.S.
(ii) If z is a solution to $z^{5}+1=0$ where $z \neq-1$, prove that $1+z^{2}+z^{4}=z+z^{3}$.

Solution: $(z+1)\left(z^{4}-z^{3}+z^{2}-z+1\right)=0$ but $z \neq-1$, $\therefore z^{4}-z^{3}+z^{2}-z+1=0$. Hence $1+z^{2}+z^{4}=z+z^{3}$.
(iii) Hence show that $\cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}$.

Solution:

From the diagram

$$
\text { if } \begin{aligned}
z^{5} & =-1 \\
z & =\operatorname{cis} \pm \frac{\pi}{5}, \operatorname{cis} \pm \frac{3 \pi}{5},-1
\end{aligned}
$$

Method 1: We take $z=\operatorname{cis} \frac{\pi}{5}$.

$$
\begin{aligned}
1+z^{2}+z^{4} & =z+z^{3} \text { from (ii), } \\
\frac{1}{z^{2}}+1+z^{2} & =\frac{1}{z}+z \\
2 \cos \frac{2 \pi}{5}+1 & =2 \cos \frac{\pi}{5} \\
2 \cos \frac{\pi}{5}-2 \cos \frac{2 \pi}{5} & =1 \\
2 \cos \frac{\pi}{5}+2 \cos \frac{3 \pi}{5} & =1 \\
\therefore \cos \frac{\pi}{5}+\cos \frac{3 \pi}{5} & =\frac{1}{2} .
\end{aligned}
$$

Method 2: We consider the roots of $z^{4}-z^{3}+z^{2}-z+1=0$ from (ii), taken one-at-a-time, $\operatorname{cis} \frac{\pi}{5}+\operatorname{cis} \frac{-\pi}{5}+\operatorname{cis} \frac{3 \pi}{5}+\operatorname{cis} \frac{-3 \pi}{5}=1$.

$$
\text { But } z+\bar{z}=2 \mathfrak{R e}(z)
$$

$$
\text { so cis } \frac{\pi}{5}+\operatorname{cis} \frac{-\pi}{5}=2 \cos \frac{\pi}{5} \text { etc. }
$$

$$
\therefore 2 \cos \frac{\pi}{5}+2 \cos \frac{3 \pi}{5}=1
$$

$$
\text { and } \cos \frac{\pi}{5}+\cos \frac{3 \pi}{5}=\frac{1}{2}
$$

(b) For integer values of k where $k=0,1,2, \ldots$ define I_{k} as follows:

$$
I_{k}=\int_{0}^{\frac{\pi}{2}} \cos ^{k} x d x
$$

(i) Express I_{k+2} in terms of k and I_{k}.

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
u=\cos ^{k+1} & u^{\prime}=(k+1)(-\sin x) \cos ^{k} x
\end{aligned} \begin{aligned}
v^{\prime} & =\cos x \\
v & =\sin x
\end{aligned} \\
& \qquad \begin{aligned}
I_{k+2} & =\int_{0}^{\frac{\pi}{2}} \cos ^{k+1} x \cdot \cos x d x, \\
= & {\left[\sin x \cos ^{k+1} x\right]_{0}^{\frac{\pi}{2}}+(k+1) \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cdot \cos ^{k} x d x } \\
= & 0+(k+1) \int_{0}^{\frac{\pi}{2}}\left(\cos ^{k} x-\cos ^{k+2} x\right) d x, \\
& =(k+1) I_{k}-(k+1) I_{k+2}, \\
(k+2) I_{k+2} & =(k+1) I_{k}, \\
I_{k+2} & =\left(\frac{k+1}{k+2}\right) I_{k} .
\end{aligned}
\end{aligned}
$$

(ii) Hence find an expression for $I_{2 n}$, where $n=0,1,2, \ldots$

Solution: $\quad I_{0}=\int_{0}^{\frac{\pi}{2}} d x \quad=I_{2 \times 0} \quad$ i.e. $n=0$,

$$
=\frac{\pi}{2}
$$

$$
I_{2}=I_{0+2} \quad=I_{2 \times 1} \quad \text { i.e. } n=1,
$$

$$
=\frac{1}{2} \cdot I_{0}
$$

$$
=\frac{1}{2} \cdot \frac{\pi}{2}
$$

$$
I_{4}=I_{2+2} \quad=I_{2 \times 2} \quad \text { i.e. } n=2
$$

$$
=\frac{3}{4} \cdot I_{2}
$$

$$
=\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} .
$$

$$
I_{6}=I_{4+2} \quad=I_{2 \times 3} \quad \text { i.e. } n=3
$$

$$
=\frac{5}{6} \cdot I_{4}
$$

$$
=\frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2},
$$

$$
=\frac{6}{6} \cdot \frac{5}{6} \cdot \frac{4}{4} \cdot \frac{3}{4} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}
$$

$$
=\frac{1}{2^{6}} \cdot \frac{6!}{(3!)^{2}} \cdot \frac{\pi}{2}
$$

$$
I_{2 n}=\frac{1}{2^{2 n}} \cdot \frac{(2 n)!}{(n!)^{2}} \cdot \frac{\pi}{2}
$$

(c) In $\triangle A B C$, in the diagram on the right, $A B=A C$.

Produce $C A$ to P and $A B$ to Q so that $A P=B Q$.

(i) Show that $\angle O A P=\angle O B Q$.

Solution: In $\triangle \mathrm{s} A O C, A O B$,

$$
\begin{aligned}
A C & =A B(\text { data }) \\
O A & =O B=O C(\text { equal radii }) \\
\therefore \triangle A O C & \equiv \triangle A O B(\mathrm{SSS}), \\
\angle O A C & =\angle O B A(\text { corresp. } \angle \mathrm{s} \text { in congruent } \triangle \mathrm{s}), \\
\angle O A P+\angle O A C & =180^{\circ}(=\angle P A C), \\
\angle O B Q+\angle O B A & =180^{\circ}(=\angle A B Q), \\
\therefore \angle O A P & =\angle O B Q
\end{aligned}
$$

(ii) Prove that A, P, Q, and O, the centre of the circle, $A B C$ are concyclic.

Solution: In $\triangle \mathrm{s} O A P, O B Q$,

$$
A P=B Q \text { (data })
$$

$\angle O A P=\angle O B Q$ (shown above),
$O A=O B$ (equal radii),
$\therefore \triangle O A P \equiv \triangle O B Q(\mathrm{SAS})$,
$\angle A P O=\angle B Q O$ (corresp. $\angle \mathrm{s}$ in congruent $\triangle \mathrm{s}$),
$\angle B Q O=\angle A Q O$ (common),
$\therefore \angle A P O=\angle A Q O$
$\therefore A, P, Q$, and O are concyclic
(equal angles subtended by the chord $A O$).
8. (a) A particle is projected vertically upwards in a resisting medium where the resistance varies as the square of the velovity and k is the constant of variation. If the velocity of projection is $v_{0} \tan \alpha$,
(i) Show that the maximum height, H, reached is given by:

$$
H=\frac{1}{2 k} \ln \left(\frac{g+k v_{0}^{2} \tan ^{2} \alpha}{g}\right)
$$

$$
\begin{aligned}
\ddot{x} & =-k v^{2}-g \\
v \frac{d v}{d x} & =-\left(k v^{2}+g\right) \\
\frac{d v}{d x} & =-\frac{k v^{2}+g}{v} \\
\int_{0}^{H} d x & =-\frac{1}{2 k} \int_{u}^{v} \frac{2 k v d v}{k v^{2}+g} \\
0-H & =-\frac{1}{2 k}\left[\ln \left(k v^{2}+g\right)\right]_{u}^{0}
\end{aligned}
$$

Now, replacing u with $v_{0} \tan \alpha, H=\frac{1}{2 k} \ln \left(\frac{g+k v_{0}^{2} \tan ^{2} \alpha}{g}\right)$.
(ii) Show that the particle returns to the point of projection with velocity $v_{0} \sin \alpha$ given that v_{0} is the terminal velocity.

$$
\begin{gathered}
\ddot{x}=k v^{2}-g, \\
v \frac{d v}{d x}=k v^{2}-g . \\
\text { At terminal velocity, } \ddot{x}=0, \\
\therefore k v_{0}^{2}=g, \\
\text { i.e. } v_{0}^{2}=\frac{g}{k} \text { or } v_{0}=\sqrt{\frac{g}{k}} . \\
\int_{H}^{0} d x=-\frac{1}{2 k} \int_{0}^{-v} \frac{2 k v d v}{k v^{2}-g}, \\
0-H=\frac{1}{2 k}\left[\ln \left(k v^{2}-g\right)\right]_{0}^{-v}, \\
-H=\frac{1}{2 k} \ln \left(\frac{k v^{2}-g}{-g}\right),
\end{gathered}
$$

Now, equating $H \mathrm{~s}$,

$$
\begin{aligned}
\frac{1}{2 k} \ln \left(\frac{g+k v_{0}^{2} \tan ^{2} \alpha}{g}\right) & =\frac{1}{2 k} \ln \left(\frac{g}{g-k v^{2}}\right), \\
\text { So, } \quad \frac{g+k v_{0}^{2} \tan ^{2} \alpha}{g} & =\frac{g}{g-k v^{2}}
\end{aligned}
$$

$$
\begin{aligned}
1+\frac{k v_{0}^{2}}{g} \cdot \tan ^{2} \alpha & =\frac{1}{1-\frac{k}{g} v^{2}}, \\
1+\tan ^{2} \alpha & =\frac{1}{1-\frac{v^{2}}{v_{0}^{2}}}, \\
\frac{\sec ^{2} \alpha}{v_{0}^{2}} & =\frac{1}{v_{0}^{2}-v^{2}}, \\
v_{0}^{2}-v^{2} & =v_{0}^{2} \cos ^{2} \alpha, \\
& =v_{0}^{2}-v_{0}^{2} \sin ^{2} \alpha, \\
v^{2} & =v_{0}^{2} \sin ^{2} \alpha, \\
v & =v_{0} \sin \alpha .
\end{aligned}
$$

(iii) Show that the time of ascent is $\frac{v_{0} \alpha}{g}$

Solution: From part (i),

$$
\begin{aligned}
\ddot{x} & =-\left(g+k v^{2}\right) \\
\frac{d v}{d t} & =-\left(g+k v^{2}\right) \\
\int_{0}^{T} d t & =-\int_{u}^{0} \frac{d v}{g+k v^{2}}, \\
& =\frac{1}{k} \int_{0}^{v_{0} \tan \alpha} \frac{d v}{v_{0}^{2}+v^{2}}, \text { using } \frac{g}{k}=v_{0}^{2} \text { from (ii) } \\
T & =\frac{1}{k} \cdot \frac{1}{v_{0}}\left[\tan ^{-1} \frac{v}{v_{0}}\right]_{0}^{v_{0} \tan \alpha}, \\
& =\frac{1}{k v_{0}} \tan ^{-1} \tan \alpha,
\end{aligned}
$$

\therefore time of ascent,

$$
\begin{aligned}
T & =\frac{\alpha}{k v_{0}}, \quad \text { but } k=\frac{g}{v_{0}^{2}}, \\
& =\frac{\alpha}{v_{0}} \cdot \frac{v_{0}^{2}}{g}, \\
& =\frac{v_{0} \alpha}{g} .
\end{aligned}
$$

(iv) Show that the time of descent is $\frac{v_{0}}{g} \ln (\sec \alpha+\tan \alpha)$.

Solution: $H \xlongequal{H} \quad k v^{2} \uparrow$

$$
\begin{aligned}
\ddot{x} & =k v^{2}-g \\
\frac{d v}{d t} & =k v^{2}-g . \\
\int_{0}^{T} d t & =\int_{0}^{-v_{0} \sin \alpha} \frac{d v}{k v^{2}-g}, \\
& =\frac{1}{k} \int_{0}^{-v_{0} \sin \alpha} \frac{d v}{v^{2}-v_{0}^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{v^{2}-v_{0}^{2}} & \equiv \frac{A}{v+v_{0}}+\frac{B}{v-v_{0}}, \\
1 & \equiv A\left(v-v_{0}\right)+B\left(v+v_{0}\right)
\end{aligned}
$$

Put $v=v_{0}, \quad B=\frac{1}{2 v_{0}}$,
put $v=-v_{0}, \quad A=-\frac{1}{2 v_{0}}$.
Then, $T=\frac{1}{2 k v_{0}} \int_{0}^{-v_{0} \sin \alpha}\left(\frac{1}{v-v_{0}}-\frac{1}{v+v_{0}}\right) d v$,
$=\frac{1}{2 k v_{0}}\left[\ln \left(v-v_{0}\right)-\ln \left(v+v_{0}\right)\right]_{0}^{-v_{0} \sin \alpha}$,
$=\frac{1}{2 k v_{0}}\left\{\ln \left(\frac{-v_{0} \sin \alpha-v_{0}}{-v_{0}}\right)-\ln \left(\frac{v_{0}-v_{0} \sin \alpha}{v_{0}}\right)\right\}$,
$=\frac{1}{2 k v_{0}} \ln \left\{\left(\frac{\sin \alpha+1}{1-\sin \alpha}\right) \cdot\left(\frac{1+\sin \alpha}{1+\sin \alpha}\right)\right\}$,
$=\frac{1}{2 k v_{0}} \ln \left\{\frac{(\sin \alpha+1)^{2}}{\cos ^{2} \alpha}\right\}$,
$=\frac{1}{k v_{0}} \ln \sqrt{(\sec \alpha+\tan \alpha)^{2}}$,
$=\frac{1}{k v_{0}} \ln (\sec \alpha+\tan \alpha)$.
(b) Prove by induction that, for all integers n where $n>1$, that

$$
\frac{4^{n}}{n+1}<\frac{(2 n)!}{(n!)^{2}}
$$

Solution: Test for $n=2$:

$$
\begin{aligned}
\text { L.H.S. } & =\frac{4^{2}}{3}, & \text { R.H.S. } & =\frac{4!}{(2!)^{2}}, \\
& =5 \frac{1}{3} . & & =6 .
\end{aligned}
$$

\therefore True for $n=2$.
Now, assume true for $n=k \geq 2$,

$$
\text { i.e. } \frac{4^{k}}{k+1}<\frac{(2 k)!}{(k!)^{2}}
$$

Then testfor $n=k+1$,

$$
\text { i.e. } \frac{4^{k+1}}{k+2}<\frac{(2 k+2)!}{((k+1)!)^{2}}
$$

L.H.S. $=\frac{4.4^{k}}{k+1} \times \frac{k+1}{k+2}$,
$<\frac{(2 k)!}{(k!)^{2}} \times \frac{4(k+1)}{k+2}$ by the assumption,
$<\frac{(2 k+2)!}{((k+1)!)^{2}} \times \frac{(k+1)^{2}}{(2 k+2)(2 k+1)} \times \frac{4(k+1)}{(k+2)}$,
$<\frac{(2 k+2)!}{((k+1)!)^{2}} \times \frac{\left(2 k^{2}+4 k+2\right)}{\left(2 k^{2}+5 k+2\right)}$,
$<\frac{(2 k+2)!}{((k+1)!)^{2}} \times\left(1-\frac{k}{2 k^{2}+5 k+2}\right)$,
$<\frac{(2 k+2)!}{((k+1)!)^{2}}$ as $\left(1-\frac{k}{2 k^{2}+5 k+2}\right)<1$.
Alternatively, R.H.S. $=\frac{(2 k)!}{(k!)^{2}} \times \frac{(2 k+2)(2 k+1)}{(k+1)^{2}}$,

$$
\begin{aligned}
& >\frac{4^{k}}{k+1} \times \frac{2(2 k+1)}{(k+1)} \text { by the assumption, } \\
& >\frac{4^{k+1}}{k+2} \times \frac{(k+2)}{4(k+1)} \times \frac{2(2 k+1)}{(k+1)} \\
& >\frac{4^{k+1}}{k+2} \times \frac{\left(2 k^{2}+5 k+2\right)}{\left(2 k^{2}+4 k+2\right)} \\
& >\frac{4^{k+1}}{k+2} \times\left(1+\frac{k}{2 k^{2}+4 k+2}\right) \\
& >\frac{4^{k+1}}{k+2} \text { as }\left(1+\frac{k}{2 k^{2}+4 k+2}\right)>1
\end{aligned}
$$

\therefore The statement is true for $n=k+1$ if true for $n=k$.
As true for $n=2$, so true for $n=3,4, \ldots$ and so on for all natural numbers $n>1$.

