2012

TRIAL HIGHER SCHOOL

CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes
- Working time - 180 minutes
- Write using black pen.
- Board approved calculators may be used
- Show all necessary working in

Questions 11-16

- A table of standard integrals is on the back of the multiple choice answer sheet

Total Marks - 100 Marks

Section I 10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II 90 Marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section.

Examiner: External Examiner

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

BLANK PAGE

Section I
Total marks - 10
Attempt Questions 1 - 10
Answer each question on the multiple choice answer sheet provided.

1 Let $u=7 \cos \frac{\pi}{4}+7 i \sin \frac{\pi}{4}$ and $v=a \cos b+a i \sin b$, where a and b are real constants. If $u v=42 \cos \frac{\pi}{20}+42 i \sin \frac{\pi}{20}$, then
(A) $\quad a=35$ and $b=\frac{\pi}{5}$
(B) $\quad a=6$ and $b=\frac{\pi}{5}$
(C) $a=35$ and $b=-\frac{\pi}{5}$
(D) $\quad a=6$ and $b=-\frac{\pi}{5}$

2 If $z^{2}=4 \operatorname{cis}\left(\frac{4 \pi}{3}\right)$, then z is equal to
(A) $\sqrt{3}+i$ or $-\sqrt{3}-i$
(B) $1-\sqrt{3} i$ or $-1+\sqrt{3} i$
(C) $\sqrt{3}-i$ or $\sqrt{3}+i$
(D) $1-\sqrt{3} i$ or $1+\sqrt{3} i$

3 Let $z=\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}$.
The imaginary part of $z-i$ is
(A) $-\frac{i}{2}$
(B) $-\frac{3 i}{2}$
(C) $-\frac{1}{2}$
(D) $-\frac{3}{2}$

4 The point W on the Argand diagram below represents a number w where $|w|=1 \cdot 5$.
The number w^{-1} is best represented by the point
(A) P
(B) R
(C) S
(D) T

$5 \quad P(z)$ is a polynomial in z of degree 4 with real coefficients Which one of the following statements must be false?
(A) $\quad P(z)$ has four real roots.
(B) $\quad P(z)$ has two real roots and two non-real roots.
(C) $\quad P(z)$ has one real root and three non-real roots.
(D) $\quad P(z)$ has no real roots.

6 The graph of $f(x)=\frac{1}{x^{2}+m x-n}$, where m and n are real constants, has no vertical asymptotes if
(A) $m^{2}<-4 n$
(B) $m^{2}>-4 n$
(C) $m^{2}<4 n$
(D) $m^{2}>4 n$

7 Consider the graph of $f(x)=\sin ^{3} x$ for $-\pi \leq x \leq 2 \pi$.
The area bounded by the graph of $f(x)$ and the x-axis could be found by evaluating
(A) $\int_{-1}^{1}\left(1-u^{2}\right) d u$
(B) $3 \int_{-1}^{1}\left(1-u^{2}\right) d u$
(C) $\quad-\int_{-1}^{1}\left(1-u^{2}\right) d u$
(D) $-3 \int_{-1}^{1}\left(1-u^{2}\right) d u$

8 Given that $\frac{d y}{d x}=y^{2}+1$, and that $y=1$ at $x=0$, then
(A) $y=y^{2} x+x+1$
(B) $y=\tan \left(x+\frac{\pi}{4}\right)$
(C) $y=\tan \left(x-\frac{\pi}{4}\right)$
(D) $\quad x=\log _{e}\left(\frac{y^{2}+1}{2}\right)$

9 The velocity $v \mathrm{~m} / \mathrm{s}$ of a body which is moving in a straight line, when it is $x \mathrm{~m}$ from the origin, is given by $v=\sin ^{-1} x$.
The acceleration of the body in $\mathrm{m} / \mathrm{s}^{2}$ is given by
(A) $-\cos ^{-1} x$
(B) $\cos ^{-1} x$
(C) $-\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
(D) $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

10 Let $f(x)=\frac{x^{k}+a}{x}$, where k and a are real constants.
If k is an odd integer which is greater than 1 and $a<0$, a possible graph of f could be (A)

(B)

(C)

(D)

End of Section I

Total marks - 90
Attempt Questions 11-16

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Use the substitution $x=\sin ^{2} \theta$ to evaluate $\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{(1-x)^{\frac{3}{2}}} d x$
(b) Find $\int x \sqrt{3-x} d x$.
(c) (i) By completing the square, find the exact value of $\int_{\frac{1}{8}}^{\frac{1}{4}} \frac{1}{\sqrt{2 x(1-2 x)}} d x$
(ii) Hence, evaluate $\int_{\frac{1}{8}}^{\frac{1}{4}} \frac{1-x}{\sqrt{2 x(1-2 x)}} d x$
(d) Find the value of the discriminant for the quadratic equation

$$
(1+i) z^{2}+4 i z-2(1-i)=0
$$

(e) (i) Find the value of $\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}$.
(ii) Show that $(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta)=1+\cos \theta+i \sin \theta$.
(iii) Hence show that $\left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}=0$.

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) The line $x=8$ is a directrix of the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a>b>0
$$

and $(2,0)$ is the corresponding focus. Find the value of a and b.
(b) (i) Show that $2-i$ is a solution of the equation $z^{3}-(2-i) z^{2}+z-2+i=0$.
(ii) Hence find all the solutions of the equation $z^{3}-(2-i) z^{2}+z-2+i=0$.
(c) Consider the function $f(x)=\log _{e}\left(4-x^{2}\right)$.
(i) By first sketching $y=4-x^{2}$, sketch $y=f(x)$.

Let A be the magnitude of the area enclosed by the graph of $y=f(x)$, the coordinate axes and the line $x=1$.
(ii) Without evaluating A, use (i) to show that $\log _{e} 3<A<\log _{e} 4$.
(iii) Find $\int \frac{x^{2}}{4-x^{2}} d x$.
(iv) Hence find the exact value of A in the form $a+b \log _{e} c$, 3 where a, b and c are integers.

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Prove using induction for integers $n \geq 2$.

$$
n^{n+1}>n(n+1)^{n-1}
$$

(b) The diagram below shows the graph of $y=\cos ^{-1} x$.

Using the method of cylindrical shells, find the exact volume formed if the graph above is rotated about the y-axis.

Question 13 continues on the next page
(c) The game of lawn bowls is played on a horizontal lawn.

The aim is to roll a ball (usually called a 'bowl') to come to rest as close as possible to a target ball called the 'jack'.

Bowler

View fom 如ve

All displacements are in metres.
At one stage during the game, the jack is at the point $J(1,33)$.
The path of a particular ball in this game is modelled by:

$$
x=2 \sin \left(\frac{2 t}{15}\right) \text { and } y=2+\frac{5}{3} t-\frac{5}{3} \sin \left(\frac{t}{3}\right), 0 \leq t \leq \frac{15 \pi}{2}
$$

where t is the time in seconds after the ball is released from the point P.
(i) Write down the coordinates of P.
(ii) Find expressions for the components of velocity, in metres per second, of the ball at time t seconds after the ball is released.
(iii) At the instant the ball is released, what angle does its path make with the forward direction?
Give your answer correct to 1 decimal place.
(iv) At what time, correct to the nearest tenth of a second, does the ball begin to swing left towards the jack?
(v) Determine whether the path of the ball passes through J.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
A 'parasailing' water-skier i.e. a water-skier with a parachute attached of mass 90 kg is towed by a boat in a straight line from rest.
The boat exerts a constant force of 410 N acting horizontally on the skier.
At this stage the resistance acting on the skier is a constant 50 N , which acts horizontally.
(a) By use of a force diagram, show that the acceleration of the skier is $4 \mathrm{~m} / \mathrm{s}^{2}$.
(b) By starting with $a=4$, show that the speed of the skier, is given by $v^{2}=8 x$, where x is the horizontal distance travelled by the skier.
Hence show that having been towed a distance of 32 m , his speed is $16 \mathrm{~m} / \mathrm{s}$.
After the skier has been towed 32 m across the water the drag of the parachute becomes significant. The drag of the parachute produces an additional resistance of $6 v \mathrm{~N}$ to the horizontal motion of the skier, where $v \mathrm{~m} / \mathrm{s}$ is the velocity of the skier.
Let $a \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of the skier.
(c) Show that $a=\frac{1}{15}(60-v)$
(d) Find the time required to reach a speed of $20 \mathrm{~m} / \mathrm{s}$ from a speed of $16 \mathrm{~m} / \mathrm{s}$.

Give your answer in seconds, correct to one decimal place.
After some time, the parasailing skier is being towed horizontally at a constant speed and at a fixed distance above the water.

The tow rope from the boat makes an angle of 30° to the horizontal, and the parachute cord makes an angle of θ to the horizontal.

The diagram below shows all the forces that are now acting on the parasailing water skier:
The tow rope now exerts a force, T_{1}, of 500 N on the skier.
The skier is experiencing a horizontal resistance, R, of 100 N .
Let the tension exerted by the parachute cord on the skier be T_{2},
and the force due to gravity on the skier be W.
Take $g=10$, where g is the magnitude of the acceleration due to gravity.

(e) By resolving in the horizontal and vertical directions, show that

$$
\left\{\begin{aligned}
500 \cos 30^{\circ}-T_{2} \cos \theta-100 & =0 \\
T_{2} \sin \theta-500 \sin 30^{\circ}-90 g & =0
\end{aligned}\right.
$$

Question 14 continued
(f) Show that $\tan \theta=\frac{115}{25 \sqrt{3}-10}$.
(g) Hence, find the value of T_{2} correct to the nearest integer. 2

End of Question 14

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The diagram below shows a cylindrical wedge $A B C D$, the cross sections of which are all right triangles.
Each cross section is similar to triangle AOD.
The base of each cross section is parallel to $O D$.
The height of the cylinder is equal to the diameter of its base.
Let the radius of the base be r units.

(i) Show that the typical triangular cross-section shaded has area $\left(r^{2}-x^{2}\right)$ square units.
(ii) Hence find the volume of the wedge.
(b) For positive real numbers x and y
(i) Prove that $\frac{x+y}{2} \geq \sqrt{x y}$

When is there equality?
(ii) Hence by considering $\frac{1}{a}+\frac{1}{b}$, or otherwise, prove that $\frac{2 a b}{a+b} \leq \sqrt{a b}$ for positive real numbers a, b.
(iii) Hence, or otherwise prove that $\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}>\frac{3}{x}$ for any $x>1$
(iv) If $H=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\ldots+\frac{1}{n}$, where n is an integer $n>1$,
use (iii) to show that $\lim _{n \rightarrow \infty} H=\infty$.

Question 15 continues on the next page

Question 15 continued
(c) (i) Given that ω is one of the non-real roots of $z^{3}=1$, show that $1+\omega+\omega^{2}=0$.
(ii) Using (i), or otherwise, show that

$$
\left(\frac{\omega}{1+\omega}\right)^{k}+\left(\frac{\omega^{2}}{1+\omega^{2}}\right)^{k}=(-1)^{k} 2 \cos \frac{2}{3} k \pi \text {, where } k \in \mathbb{Z}
$$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) $\quad I_{n}=\int_{0}^{a}(a-x)^{n} \cos x d x, a>0$ and n is an integer with $n \geq 0$.
(i) Show that, for $n \geq 2, I_{n}=n a^{n-1}-n(n-1) I_{n-2}$.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right)^{3} \cos x d x$
(b) In the figure below, $\triangle P Q R$ is acute angled and $A P, B Q$ and $C R$ are altitudes concurrent at X. Also $\angle X Q C=\theta$.
$\triangle A B C$ is called the pedal triangle of $\triangle P Q R$.

(i) Prove that $\angle X R B=\theta$.
(ii) Prove that X, A, Q and C are concyclic.
(iii) Deduce that $\angle X A C=\theta$.
(iv) Hence deduce that in an acute angled triangle the altitudes bisect the angles of the pedal triangle through which they pass.
(c) (i) A binary string is a sequence of $\mathbf{1 s}$ and $\mathbf{0}$ s, e.g. 110111100101 is a binary string of length 12.

In a binary string of length 50 , how many ways are there to
have a string with exactly 9 1s and that no two 1 s are adjacent? Justify your answer.
(ii) Given 50 cards with the integers $1,2,3, \ldots 50$ printed on them, how many ways are there to select 9 distinct cards, such that no two cards have consecutive numbers printed on them?
(An answer with no reasoning will get no credit.)

BLANK PAGE

Student Number: \qquad

Mathematics Extension 2 Trial HSC 2012

Select the alternative \triangle, B, C, or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
^○
B
CO
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A -
B
CO
D O

If you change your mind and have crossed out what you consider to be the comect answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A 乌楞
(correct
$C \bigcirc$
$D \bigcirc$

Section I: Multiple choice answer sheet.

Completely colour the cell representing your answer. Use black pen.
1.

2. (A) B (D)
3. (A) B (D) D
4. (A B C D
5. (A) B (D)
6.

7. (A) D D
8. (A B (C) D
9. A B C C
10.

Q11
(a)

$$
\begin{aligned}
I & =\int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{(1-x)^{3 / 2}} \quad \operatorname{let} x=\sin 2 \theta \\
& =\int_{0}^{\frac{\pi}{4}} \frac{\sin \theta}{\left(1-\sin ^{2} \theta\right)^{3 / 2}} \cdot 2 \sin \theta \cos \theta d \theta \\
& =2 \int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} \theta \cos \theta d \theta}{\cos ^{3} \theta} \\
& =2 \int_{0}^{\frac{\pi}{4}} \tan ^{2} \theta \cdot d \theta \\
& \left.=2 \cdot \int_{0}^{\frac{\pi}{4}} \operatorname{cec}^{2} \theta-1\right) d \theta \\
& =2[\tan \theta-\theta]_{0}^{\frac{\pi}{4}} \\
& =2\left[1-\frac{\pi}{4}\right] \\
& =12-\frac{\pi}{2} \cdot
\end{aligned}
$$

(b) $\int x \sqrt{3-x}$. $d x$. let $x=3-x$

$$
\begin{aligned}
& =-\int(3-x) \sqrt{x} \cdot d u \quad \therefore \quad x=3-u . \\
& =\int\left(x^{3 / 2}-3 x^{2}\right) d x \\
& =\frac{2}{5} x^{5 / 2}-2 x^{3 / 2}+c \\
& =\frac{2}{5}(3 x)^{5 / 2}-2(3-x)^{3 / 2}+c .
\end{aligned}
$$

Ql (CONTO)
c

$$
\begin{aligned}
& \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{1}{\sqrt{2 x-4 x^{2}}} d x . \\
&= \frac{1}{d} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{d x}{\sqrt{\frac{x}{2}-x^{2}}} \\
&=\frac{1}{2} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{d x}{\sqrt{\frac{1}{16}-\left(x-\frac{1}{4}\right)^{2}}} \\
&= \frac{1}{2}\left[\sin ^{-1} \frac{x-\frac{1}{4}}{\frac{1}{4}}\right]_{\frac{1}{8}}^{\frac{1}{4}} \\
&= \frac{1}{2}\left[\sin ^{-1}(4 x-1)\right]_{\frac{1}{4}}^{\frac{1}{4}} \\
&= \frac{1}{2}\left[\sin ^{-1} 0-\sin ^{-1}\left(-\frac{1}{2}\right)\right] \\
&= \frac{1}{2}\left(0-\frac{-\pi}{6}\right) \\
&= \frac{\pi}{12} .
\end{aligned}
$$

(II)

$$
\begin{aligned}
\int_{\frac{1}{8}}^{\frac{1}{4}} \frac{1-x}{\sqrt{2 x-4 x^{2}}} d x & =\frac{1}{8} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{8-8 x}{\sqrt{2 x-4 x^{2}}} d x \\
& =\frac{1}{8} \int_{\frac{1}{8}}^{\frac{6}{8}} \frac{6+2-8 x}{\sqrt{2 x-4 x^{2}}} d x . \\
& =\frac{1}{8} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{6}{\sqrt{2 x-4 x^{2}}} d x+\frac{1}{8} \int_{\frac{1}{8} \sqrt{2 x-4 x^{2}}}^{\frac{1}{4}} \frac{2-8 x}{\sqrt{2}} d x . \\
& =\frac{3}{4} \int_{\frac{1}{8}}^{\frac{1}{4}} \frac{2 x}{\sqrt{2 x-4 x^{2}}}+\frac{1}{4}\left[\sqrt{2 x-4 x^{2}}\right]_{\frac{1}{8}}^{\frac{1}{8}} \\
& =\frac{3}{4} \times \frac{\pi}{12}+\frac{1}{4}\left[\sqrt{\frac{1}{4}}-\sqrt{3 / 16}\right] \\
& =\frac{\pi}{16}+\frac{1}{4}\left(\frac{1}{2}-\frac{\sqrt{3}}{4}\right) \\
& =\frac{\pi}{16}+\frac{1}{8}-\frac{\sqrt{3}}{16} .
\end{aligned}
$$

011 CONT
(d)

$$
\begin{aligned}
\Delta & =16 i^{2}+8\left(1-i^{2}\right) \\
& =-16+8(2) \\
& =0 .
\end{aligned}
$$

(e)

$$
\text { (1) } \begin{aligned}
& \left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6} \\
= & \cos \pi+i \sin \pi \\
= & -1 .
\end{aligned}
$$

(11)

$$
\begin{aligned}
\operatorname{LHS} & =(\cos \theta+i \sin \theta)(1+\cos \theta-i \sin \theta) \\
& =\operatorname{cis} \theta(1+\operatorname{sis}(-\theta)) \\
& =\operatorname{cis} \theta+\operatorname{cis} 0 \\
& =\operatorname{cis} \theta+1 \\
& =1+\cos \theta+i \sin \theta \\
& =\text { RHS. }
\end{aligned}
$$

$$
\text { (III) } \begin{aligned}
& \left(1+\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} \\
= & {\left[\operatorname{cis} \frac{\pi}{6}\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)\right]^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} } \\
= & -1\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6}+\left(1+\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)^{6} \\
= & 0 \text { as requinadi }
\end{aligned}
$$

2012 Extension 2 Mathematics THSC:

Solutions- Question 12

Question 12 (15 marks)
(a) The line $x=8$ is a directrix of the ellipse with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad a>b>0
$$

and $(2,0)$ is the corresponding focus.
Find the value of a and b.

Solution:		$\begin{aligned} a e & =2 \quad \ldots \\ \frac{a}{e} & =8 \quad \ldots \\ {[1] \times[2]: a^{2} } & =16, \\ \therefore a & =4 . \\ \frac{S A}{A Z} & =e, \\ & =\frac{2}{4}, \\ & =\frac{1}{2} . \\ b^{2} & =a^{2}\left(1-e^{2}\right), \\ & =16\left(1-\frac{1}{4}\right), \\ & =12, \\ \therefore b & =2 \sqrt{3} . \end{aligned}$

(b) (i) Show that $2-i$ is a solution of the equation $z^{3}-(2-i) z^{2}+z-2+i=0$.

Solution:

$$
\begin{aligned}
\text { L.H.S. } & =(2-i)^{3}-(2-i)(2-i)^{2}+(2-i)-(2-i), \\
& =0, \\
& =\text { R.H.S. }
\end{aligned}
$$

$\therefore(2-i)$ is a solution.
(ii) Hence find all the solutions of the equation $z^{3}-(2-i) z^{2}+z-2+i=0$.

Solution: $z\left(z^{2}+1\right)-(2-i)\left(z^{2}+1\right)=0$, $(z-2+i)\left(z^{2}+1\right)=0$, $(z-2+i)(z+i)(z-i)=0$.
\therefore Solutions $2-i, \pm i$.
(c) Consider the function $f(x)=\log _{e}\left(4-x^{2}\right)$.
(i) By first sketching $y=4-x^{2}$, sketch $y=f(x)$.

Let A be the magnitude of the area enclosed by the graph of $y=f(x)$, the coordinate axes and the line $x=1$.
(ii) Without evaluating A, use (i) to show that $\log _{e} 3<A<\log _{e} 4$.

When $x=0, \quad f(0)=\ln 4$, $x=1, f(1)=\ln 3$.
From the sketch, it is clear that the shaded area A is between the upper rectangle's area $(1 \times \ln 4)$ and the lower rectangle's area $(1 \times \ln 3)$.
(iii) Find $\int \frac{x^{2}}{4-x^{2}} d x$.

Solution: Method 1-

$$
\begin{aligned}
I & =\int \frac{x^{2}-4+4}{4-x^{2}} d x \\
& =-\int d x+\int \frac{4}{4-x^{2}} d x \\
& =-x+\int \frac{d x}{2-x}+\int \frac{d x}{2+x} \\
& =-x-\ln (2-x)+\ln (2+x)+c \\
& =\ln \left(\frac{2+x}{2-x}\right)-x+c
\end{aligned}
$$

$$
\frac{4}{4-x^{2}} \equiv \frac{A}{2-x}+\frac{B}{2+x}
$$

$$
4 \equiv A(2+x)+B(2-x)
$$

$$
\text { put } x=-2, \quad B=1
$$

$$
x=2, \quad A=1
$$

Solution: Method 2-

$$
\begin{aligned}
I & =\int \frac{4 \sin ^{2} \theta \cdot 2 \cos \theta d \theta}{4-4 \sin ^{2} \theta} \\
& =\int \frac{2 \sin ^{2} \theta \cdot \cos \theta}{\cos ^{2} \theta} \\
& =2 \int \frac{1-\cos ^{2} \theta}{\cos \theta} d \theta \\
& =2 \int(\sec \theta-\cos \theta) d \theta \\
& =2\{\ln (\sec \theta+\tan \theta)-\sin \theta\}+c \\
& =2 \ln \left(\frac{2}{\sqrt{4-x^{2}}}+\frac{x}{\not 2} \cdot \frac{\not 2}{\sqrt{4-x^{2}}}\right)-x+c \\
& =2 \ln \left(\frac{x+2}{\sqrt{(2+x)(2-x)}}\right)-x+c \\
& =\ln \left(\frac{2+x}{2-x}\right)-x+c
\end{aligned}
$$

(iv) Hence find the exact value of A in the form $a+b \log _{e} c$, where a, b and c are integers.

Solution:

$$
\begin{aligned}
\mathrm{I} & =\int_{0}^{1} \ln \left(4-x^{2}\right) d x, & u=\ln \left(4-x^{2}\right), & v^{\prime}=1, \\
& \left.=x \ln \left(4-x^{2}\right)\right]_{0}^{1}+2 \int_{0}^{1} \frac{x^{2} d x}{4-x^{2}}, & u^{\prime}=\frac{-2 x}{4-x^{2}}, & v=x . \\
& =\{\ln 3-0\}+2\left[\ln \left(\frac{2+x}{2-x}\right)-x\right]_{0}^{1}, & & \\
& =\ln 3+2\{\ln 3-1-(\ln 1-0)\}, & & \\
& =3 \ln 3-2 . & &
\end{aligned}
$$

T Ex +2
13. (a) Prove $n^{n+1}>n(n+1)^{n-1}$ for $n \geqslant 2$

Let $n=2 \quad \angle H S=2^{3}=8, \quad$ RUS $=2(3)^{\prime}=6$
\therefore true for $n=2$.
Assume true for $n=K$

$$
k^{k+1}>k(k+1)^{k-1}
$$

$$
\text { or } k^{k}>(k+1)^{k=1}
$$

Lot $n=k+1 \quad$ RIP $(k+1)^{k+1}>(k+2)^{k}$
$O \quad \frac{(k+1)^{k+1}}{(k+2)^{k}} \geq 1$
Now LHS $=\frac{(k+1)^{k+1}}{(k+2)^{k}}$

$$
\begin{aligned}
& >\frac{(k+1)^{k+1}}{(k+2)^{k}} \times \frac{(k+1)^{k-1}}{k^{k}} \quad \text { since } \frac{(k+1)^{k-1}}{k^{k}}<1 \\
& >\frac{(k+1)^{2 k}}{\left[k(k+2)^{k}\right.} \\
= & {\left[\left(\frac{\left.k+1)^{2}\right]^{k}}{\left[k(k+2)^{k}\right]^{k}}\right.\right.} \\
= & {\left[k^{2}+2 k+1\right]^{k} }
\end{aligned}
$$

\therefore true for $n=k+1$
$-13(b)$

Area of cylindrical slice $=2 \pi x \overline{x y}$

Vol. of cyl. alice $=2 \pi x y \delta x$.

$$
\begin{aligned}
V & =\lim _{\delta x \rightarrow 0} \sum_{x=-1}^{1} 2 \pi x y \delta x \\
& =2 \pi \int_{-1}^{1} x \cos ^{-1} x d x
\end{aligned}
$$

$$
V=4 \pi \int_{0}^{1-1} x \cdot \cos ^{-1} x \cdot d x(\text { symmetric })
$$

$$
\mu=\cos ^{-1} x \quad d v=x
$$

$$
d u=\frac{-1}{\sqrt{1 x^{2}}} \quad v=\frac{x^{2}}{2}
$$

$$
\begin{aligned}
& \text { Let }(x=\sin \theta \\
& d x=\cos \theta d \theta \\
& x=0, \frac{\theta=0}{\theta=0} \\
& x=1, \theta=\frac{\pi}{2}
\end{aligned} ~(\theta) d \theta=\$
$$

$$
\begin{aligned}
& =4 \pi\left[\left[\frac{x^{2}}{2} \cdot \cos ^{-1}\right]_{0}^{1}-\int_{0}^{1} \frac{x^{2}}{2}\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x\right] \\
& =\pi \pi^{1}\left[x^{2} \cos ^{-1} x\right]_{0}^{1}+2 \pi \int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x \\
& \left.=2 \pi\left[x^{2} \cos ^{-1} x\right]_{0}^{1}+2 \pi \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} \theta}{\cos \theta} \cos \theta d \theta\right] \\
& \left.=2 \pi\left[x^{2} \cos ^{-1}\right]\right]_{0}^{1}+2 \pi \cdot \frac{1}{2} \int_{0}^{\pi / 2}(1-\cos 2 \theta) d \theta \\
& =\pi\left(\left(\frac{\pi}{2}-0\right)-(0-0)\right) \\
& =\frac{\pi^{2}}{2} \text { cubic units. } \\
& =0+\pi\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{2} \text { cubic units. }
\end{aligned}
$$

(i) $x=2 \sin \frac{2 t}{15} \quad y=2+\frac{5}{3} t-\frac{5}{3} \sin \left(\frac{t}{3}\right)$

At $t=0, x=0, y=2$

$$
\begin{equation*}
\Rightarrow P=(0,2) \tag{1}
\end{equation*}
$$

(ï)

$$
\begin{align*}
& V_{x}=2 \cos \frac{2 t}{15} \tag{1}\\
& V_{x}=\frac{4}{15} \cos \frac{2 t}{15}
\end{align*}
$$

$$
0 \leqslant t \leq \frac{15 \pi}{2}
$$

and $v_{y}=\frac{5}{3}-\frac{5}{9} \cos \frac{t}{3}(2)$

$$
\begin{equation*}
1) \tag{2}
\end{equation*}
$$

Velocity componats

$$
\begin{aligned}
& V_{x}=V \cos \alpha \\
& V_{y}=V \sin \alpha
\end{aligned}
$$

$$
\text { Then } \begin{aligned}
\tan \theta & =\frac{\sqrt{y}}{\sqrt{x}} \\
& =\frac{10}{a} \times \frac{15}{4} \\
\tan \theta & =\frac{25}{6} \\
\theta & =1.33 \text { raliano } \\
= & =6.5
\end{aligned}
$$

Then anifle made with forvand dirp =tion

$$
\begin{aligned}
& =90-76.5 \\
& =13.5^{\circ}
\end{aligned}
$$

$13(c)$
(w)

Point of inflection
Find point where
 \therefore at $t=11.8$ seconds the 11.78 second ball start to swing towards the jack.

$$
0<t<\frac{15 \pi}{2}
$$

$13(c)$
(v) $x=2 \sin \frac{2 t}{15}, \quad y=2+\frac{5}{3} t-\frac{5}{3} \sin \left(\frac{x}{3}\right)$

Find t when $x=1, y=33$

$$
\begin{aligned}
& \Rightarrow 1=2 \sin \frac{2 t}{15}(1) \text { and } 33=2+\frac{5}{3} t-\frac{5}{3} \frac{2}{\sin }\left(\frac{t}{3}\right) \\
& \sin \frac{2 t}{15}=\frac{1}{2} \\
& \frac{2 t}{15}=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6} \\
& \left.t=\frac{15 \pi}{3}, \frac{75 \pi}{12}, \frac{195 \pi}{12}+\frac{4}{3}\right) \\
& t=\frac{5 \pi}{4}, \frac{2 \pi}{4},
\end{aligned}
$$

Determine if values $t=\frac{15 \pi}{12}$ or $\frac{75 \pi}{12}$ satisfy (2).

$$
\begin{aligned}
& t=\frac{15 \pi}{12} \Rightarrow 31=\frac{5}{3} \times \frac{15 \pi}{12}-\frac{5}{3} \sin \left(\frac{15 \pi}{36}\right)=4.435 \\
& t=\frac{75 \pi}{12} \Rightarrow 31=\frac{5}{3} \times \frac{75 \pi}{12}-\frac{5}{3} \sin \left(\frac{75 \pi}{12}\right) \\
& 31=311546 \times(-6 l o z e 1)
\end{aligned}
$$

\therefore Ball does not hit the Jack.

Question 14
(a)

$N_{\text {eftere }}=B-R$

$$
\begin{aligned}
& =410-50 \\
& =360 \mathrm{~N}
\end{aligned}
$$

$F=m a$

$$
\begin{aligned}
\therefore 360 & =90 \mathrm{a} \\
a & =4 \mathrm{~m} / \mathrm{s}^{2} \quad[2]
\end{aligned}
$$

(b) Grien $a=4$

$$
\therefore \frac{d}{d x}\left(\frac{1}{2} v^{2}\right)=4
$$

I ntegrate write x :

$$
\begin{aligned}
\frac{1}{2} v^{2} & =4 x+c \\
v^{2} & =2 x+c^{\prime}
\end{aligned}
$$

Let $x=0$ whenax $t=0, v=0$

$$
\begin{aligned}
& \therefore c^{\prime}=0 \\
& \therefore r^{2}=8 x
\end{aligned}
$$

When $x=32$

$$
\begin{aligned}
v^{2} & =8 \times 32 \\
& =256 \\
\therefore v & =16 \mathrm{~m} / \mathrm{s} \quad(v>0)
\end{aligned}
$$

(c)

$$
\begin{gathered}
\text { (c) } \begin{aligned}
& R \longleftarrow B \\
& P=6 \checkmark \mathrm{~N} \\
& F=m a \\
& 410-50-6 v=90 a \\
& a=\frac{360-6 v}{90}
\end{aligned}
\end{gathered}
$$

[1]
(d)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{1}{15}(60-v) \\
& \frac{d t}{d v}=\frac{15}{60-v}
\end{aligned}
$$

Tinie from $N=16$ to $v=20$

$$
\begin{aligned}
t & =\int_{16}^{20} \frac{15}{60-v} d v \\
& =15\left[-\ln (60-v]_{16}^{20}\right. \\
& =-15[\ln 40-\ln 44] \\
& \div 1.45
\end{aligned}
$$

EXT 2 Thse 2012
Q14 (cont'd)
(1) Howiontal $a=0 \rightarrow+$

Forres Bout: $500 \cos 30^{\circ}$
Renistance: -100
Parachite: - $T_{2} \cos \theta$

$$
\therefore 500 \cos 30^{\circ}-T_{2} \cos \theta-100=0
$$

Vertical $a=0 i^{+}-(1)$
Froces Boot: -500 Anit 40°
Weight: - 90 g
Parachult: $T_{2} \sin \theta$
$\therefore T_{2} \sin \theta-500 \sin 30^{\circ}-95 g=0$
(6) From (1)

$$
\begin{aligned}
T_{2} \cos \theta & =500 \cos 30^{\circ}-100 \\
& =250 \sqrt{3}-100
\end{aligned}
$$

From (2)

$$
\begin{aligned}
T_{2} \sin \theta & =500 \sin 30^{\circ}+909 \\
& =500 \times \frac{1}{2}+900 \\
& =1150 \\
\therefore \quad \tan \theta & =\frac{1150}{250 \sqrt{3}-100} \\
& =\frac{115}{25 \sqrt{3}-10}
\end{aligned}
$$

[2]
(g) $T_{1}=\frac{1150}{\sin \theta}$
from (f) $\theta \div 73.85^{\circ}$

$$
\begin{equation*}
\therefore T_{2}=1197 \mathrm{~N} \tag{2}
\end{equation*}
$$

QI
(a)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 2 y \times y \\
& =y^{2} .
\end{aligned}
$$

Since $x^{2}+y^{2}=r^{2}$

$$
A_{x a}=a^{2}-x^{2}
$$

(ii)

$$
\begin{aligned}
\delta V & =\left(r^{2}-x^{2}\right) \delta x \\
V & =\int_{\delta x \rightarrow 0}^{\lim } \sum_{x=-r}^{r}\left(r^{2}-x^{2}\right) \delta x \\
& =\int_{-r}^{r} r^{2}-x^{2} d x \\
& =2 \int_{0}^{r} r^{2}-x^{2} d x \\
& =2\left[x r^{2}-\frac{x^{3}}{3}\right]_{0}^{r} \\
& =2\left(r^{3}-\frac{r^{3}}{3}\right) \\
& =\frac{4}{3}
\end{aligned}
$$

(b) (i)

$$
\begin{gathered}
(a-b)^{2} \geqslant 0 \\
a^{2}-2 a b+b^{2} \geqslant 0 \\
\frac{a^{2}+b^{2}}{2} \geqslant a b \\
\text { let } x=a^{2} \Rightarrow a=\sqrt{x} \\
y=b^{2} \Rightarrow b=\sqrt{y} .
\end{gathered}
$$

$$
\frac{x+y}{2} \geqslant \sqrt{x y}
$$

(ii) $\frac{\frac{1}{a}+\frac{1}{b}}{2} \geqslant \frac{1}{\sqrt{a b}}$

$$
\begin{aligned}
& \frac{a+b}{2 a b} \geqslant \frac{1}{\sqrt{a b}} \\
& \frac{2 a b}{a+b} \leqslant \sqrt{a b}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
x(x+1)+x^{2}-1+x(x-1) & =\frac{3 x^{2}-1}{x\left(x^{2}-1\right)} \\
& =\frac{3 x^{2}-3+1}{x\left(x^{2}-1\right)} \\
& =\frac{3\left(x^{2}-1\right)}{x\left(x^{2}-1\right)}+\frac{2}{x\left(x^{2}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{x}+\frac{2}{x\left(x^{2}-1\right)} \\
& x^{2}-1>0 \text { since } x>1 \\
& \therefore \cdot x\left(x^{2}-1\right)>0 \\
& \therefore \frac{2}{x\left(x^{2}-1\right)}>0 \\
& \quad \text { So } \frac{1}{x-1}+\frac{1}{x}+\frac{1}{x-1}>\frac{3}{x} .
\end{aligned}
$$

(iv)

$$
\begin{aligned}
H & =1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\cdots\left(\frac{1}{n-2}+\frac{1}{n-1}+\frac{1}{4}\right. \\
& =1+\frac{3}{3}+\frac{3}{6}+\frac{3}{9}+\cdots+\frac{3}{n-1} \quad \text { let } n-1=3 k . \\
& =1+1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\cdots+\frac{1}{k} . \\
& =1+1+1+\cdots+\frac{3}{k-1} \quad \text { let } \quad k-1=3 m . \\
& =1+1+1+\cdots+\frac{1}{m} .
\end{aligned}
$$

As $n \rightarrow \infty$ this process can be continued
Thus $M=1+1+1+1+\ldots+1+\ldots$.

$$
\therefore \lim _{h \rightarrow \infty} M<00
$$

(C) (i) Since w is a solution of

$$
\begin{aligned}
& z^{3}=1 \\
& \therefore w^{3}-1=0 \\
& (w-1)\left(w^{2}+w+1\right)=0
\end{aligned}
$$

since w is a-non-real root $w \neq 1$.

$$
\therefore w^{2}+w+1=0 \text {. }
$$

(ii)

$$
\arg (\omega)=\frac{2 \pi}{3}
$$

Given that $1+w+w^{2}=0$

$$
\begin{array}{rlr}
\text { hHS } & =\left(\frac{w}{-w^{2}}\right)^{k}+\left(\frac{w^{2}}{-w}\right)^{k} & 1+w=-w^{2} \\
& =(-1)^{k}\left(w^{-k}\right)+(-1)^{k}\left(w^{k}\right) & \\
& =(-1)^{k}\left(w^{-k}+w^{k}\right) & \\
& =(-1)^{k} 2 \cos \left(\frac{2 \pi}{3} k\right) & \text { Given } z^{n}+z^{-n}=2 \cos n \theta
\end{array}
$$

Q16.
(II) $I_{3}=\int_{0}^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right)^{3} \cos x d x$.

$$
=3\left(\frac{\pi}{2}\right)^{2}-6 I_{1}
$$

$\operatorname{sen} I_{1}=\int_{0}^{\frac{\pi}{2}}\left(\frac{\pi}{2}-x\right) \operatorname{cin} x d \pi$ $=\int_{0}^{0} \frac{\pi}{\pi / 2} \pi \cos x d x-\int_{0}^{\frac{\pi}{2}} x \cos x d x$ [Dor't use (B)] $=\left[\frac{\pi}{2} \sin x\right]_{0}^{\frac{\pi}{2}}-\left[[x \sin x]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin x d x\right]$

$$
=\frac{\pi}{2}-\left[\frac{\pi}{2}-0-[\cos x]_{0}^{\frac{\pi}{2}}\right]
$$

$$
\begin{aligned}
& =\frac{\pi}{2}-\left(\frac{\pi}{2}-1\right) \\
& =1
\end{aligned}
$$

$\therefore I_{3}=3 \frac{\pi^{2}-6}{4}$
Ahew e

$$
\begin{align*}
& \text { (a) }\left(\frac{1}{n} I=\int_{0}^{a}(a-x)^{n} \cos x d x\right. \text {. } \\
& =\int_{0}^{0}(a-x)^{2} \frac{x}{d x}(\sin x) \cdot d x \text {. } \\
& =\left[(a-x)^{\sim} \tan x\right]_{0}^{a}-\sim \int_{0}^{a}(a-x)^{n-1} \sin x \cdot d x \\
& =0-n \int_{0}^{a}(a-x)^{\pi-1} \sin x d x \text {. } \\
& =-\pi \int_{0}^{a}(a-x)^{n-1} \frac{d}{d x}(-\cos x) d x \text {. } \\
& =\left[n\left((a-x)^{n-1}-\cos x\right)\right]_{0}^{a}+n(n-1) \int_{0}^{a}(a-x)^{n-r} \cdot \cos x d x \\
& =\left(0+n a^{x-1}\right)-n(x-1) \int_{0}^{a_{0}^{0}}\left(a-\left.x\right|^{n-2} \cos x d x\right. \\
& \left.\therefore I_{n}=n a^{n-1}-n(n-1) I_{n-2}| | \begin{array}{ll}
\\
A B n \geqslant n
\end{array} \right\rvert\, \tag{B}
\end{align*}
$$

Q16 (comid)
(b) (1) $B C Q R$ is a cyclic quadiciteal

$$
\angle R C Q=\angle R B P \text { (} 90^{\circ} \text { altitudes.) }
$$

in angles.ansequal swbtendeal by Thecherd RP.
$\therefore \quad \therefore \angle B R X=\angle B Q C$ (angles in the same segment ane equal)
ie $\alpha \times R B=\theta$.
(i1) $\angle \times C \varphi=\angle X A Q=90^{\circ}$ (data.)
$\therefore x A \varphi \& C$ are concyclic (apprisile angles amplemertan)
(111) $\angle X Q C=\angle X A C=\theta$ (angles in the same oegment retonding an the sune arc are equal.)
(IN) $B \times A R$ is a cychi quadibiterod

$$
\angle \times B R=\angle \times A R=90^{\circ} \text { (data) }
$$

(ARposite angles supalementing)
$\therefore \angle \times R B=\angle X A B=\theta$ (angles in the sbere segrever standry on same ave ane equal)
$\therefore \angle \times A B=\angle \times A C=\theta$
\therefore altiande PA freids $\angle B A C$. Similaly frr the acter angles.

Q16(COMTD)
(c) (1) Place the 41 o's Closes the gofs and the end plaves to places its 1 's. (itere ane 4α epacas) ie. (42 ${ }^{2}$) wang to place ite 1 's.
(II) Same logie as the athere. ie flace the raie coscentrie cards int the 42 spaces euch that no troo cumentrie cards ave adjacut ie $\binom{4^{2}}{9}$.

