2013

TRIAL HIGHER SCHOOL

CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time - 5 minutes.
- Working time - 180 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- Show all necessary working in

Questions 11-16

Total Marks - 100 Marks

Section I 10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II 90 Marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section.

Examiner: External Examiner

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1) Given $z=r(\cos \theta+i \sin \theta)$, then $\left|\frac{\bar{z}}{z^{2}}\right|$ equals
(A) r
(B) r^{2}
(C) $\frac{1}{r}$
(D) $-r$
2) If $1+i$ is a root of the polynomial $x^{3}-4 x^{2}+6 x-4=0$. The other roots are:
(A) $1-i$ and -2
(B) $1+i$ and -2
(C) $1-i$ and 2
(D) $1+i$ and 2
3) If the polynomial equation $P(x)=0$, has roots α, β, γ then the roots of the polynomial equation $P(3 x+2)=0$ are
(A) $\frac{\alpha}{3}-2, \frac{\beta}{3}-2, \frac{\gamma}{3}-2$
(B) $\frac{\alpha-2}{3}, \frac{\beta-2}{3}, \frac{\gamma-2}{3}$
(C) $3 \alpha+2,3 \beta+2,3 \gamma+2$
(D) $\alpha+\frac{2}{3}, \beta+\frac{2}{3}, \gamma+\frac{2}{3}$
4) The gradient of the tangent to the curve $2 x^{3}-y^{2}=7$ at the point $(2,-3)$ is:
(A) $\quad-4$
(B) -2
(C) 2
(D) 4
5) The area bounded by the parabola $x^{2}=4 a y$ and the line $y=a$ is rotated about the line $y=$ a. To find the volume of the resulting solid, the slicing technique is used.

The area of a typical slice is given by
(A) $\pi(a-y)^{2}$
(B) $\pi\left(a^{2}+y^{2}\right)$
(C) $\pi(a-x)^{2}$
(D) $\pi\left(a^{2}+x^{2}\right)$
6) The equation of the conic whose distance from the point $(1,0)$ is half its distance from the line $x=4$ is given by:
(A) $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
(B) $\frac{x^{2}}{4}+\frac{y^{2}}{4}=1$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$
(D) $\frac{x^{2}}{3}-\frac{y^{2}}{4}=1$
7) The number of different arrangements of the letters of the word SERVICES which begin and end with letter S is:
(A) $\frac{8!}{2!}$
(B) $\frac{6!}{2!}$
(C) $\frac{6!}{(2!)^{2}}$
(D) $\frac{8!}{(2!)^{2}}$
8) Given the curve $y=f(x)$, then the curve $y=f(|x|)$ is represented by
(A) A reflection of $y=f(x)$ in the y-axis
(B) A reflection of $y=f(x)$ in the x-axis
(C) A reflection of $y=f(x)$ for $x \geq 0$ in the y-axis
(D) A reflection of $y=f(x)$ for $y \geq 0$ in the x-axis
9) Using the substitution $x=\pi-y$, the definite integral

$$
\int_{0}^{\pi} x \sin x \cdot d x
$$

will simplify to:
(A) 0
(B) $\frac{\pi^{2}}{4}$
(C) $\frac{\pi}{2} \int_{0}^{\pi} \sin x \cdot d x$
(D) $\int_{0}^{\pi} \sin x \cdot d x$
10) Which of the following statements is false?
(A) $\int_{-3}^{3} x^{3} e^{-x^{2}} \cdot d x=0$
(B) $\int_{-4}^{4} \frac{x^{2}}{x^{2}+4} \cdot d x=2 \int_{0}^{4} \frac{x^{2}}{x^{2}+4} \cdot d x$
(C) $\int_{0}^{\pi} \sin ^{4} \theta \cdot d \theta>\int_{0}^{\pi} \sin 4 \theta \cdot d \theta$
(D) $\int_{0}^{1} x^{4} \cdot d x<\int_{0}^{1} x^{5} \cdot d x$

End of Section I

Total marks - 90
Attempt Questions 11-16
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Find

$$
\int x \tan ^{-1} x \cdot d x
$$

(b) Use completion of squares to evaluate

$$
\begin{equation*}
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\sqrt{15-4 x-4 x^{2}}} \tag{2}
\end{equation*}
$$

(c) Use the substitution $t=\tan \frac{\theta}{2}$ to evaluate

$$
\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \frac{d \theta}{2 \cot \frac{\theta}{2}-\sin \theta}
$$

(d)
(i) Find the real number A, B and C such that

$$
\frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)}=\frac{A}{1-x}+\frac{B x+C}{x^{2}+1}
$$

(ii) Hence find

$$
\begin{equation*}
\int \frac{3 x^{2}-x+8}{(1-x)\left(x^{2}+1\right)} \cdot d x \tag{2}
\end{equation*}
$$

(e) $\quad P(2 \sec \theta, \tan \theta)$ is a point on the hyperbola $H: \frac{x^{2}}{4}-y^{2}=1$

If the tangent at P cuts the asymptotes at Q and R as shown in the figure above, find the coordinates of Q and R in terms of θ. Show that P is the mid-point of $Q R$.
(f) Find a and b where a and b are real numbers if $(a+i b)^{2}=21-20 i$.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Given that α, β and γ are the roots of the equation

$$
2 x^{3}+3 x^{2}-5 x+8=0
$$

find the polynomial equation with roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.
(b) Let $z=3(\cos \theta+i \sin \theta)$
(i) Find $\overline{1-z} \quad 1$
(ii) Express the imaginary part of $\frac{1}{1-z}$ in terms of θ.
(c) Sketch the region for z in the Argand plane defined by:

$$
|z-1+i|<2 \quad \text { and } \quad-\frac{\pi}{4} \leq \arg (z-1+i) \leq \frac{5 \pi}{4}
$$

(d) If $z_{1}=2 i$ and $z_{2}=1+3 i$ are two complex numbers, describe the loci of z such that: $z=z_{1}+k\left(z_{2}-z_{1}\right)$, when
(i) $k=1$
(ii) $0<k<1$
(iii) k is any real number.
(e) The polynomial $P(x)=x^{3}+a x+b$ has zeroes α, β and $2(\alpha-\beta)$.
(i) Show that $a=-13 \alpha^{2}$ and $b=12 \alpha^{3}$.
(ii) Deduce that the zeroes of $P(x)$ are $-\frac{13 b}{12 a},-\frac{13 b}{4 a}$ and $\frac{13 b}{3 a}$.
(f) Given $1, \omega$ and ω^{2} are the cube roots of unity and each are represented by the points A_{1}, A_{2} and A_{3} respectively on an Argand diagram.

Find the value of $A_{1} A_{2} \times A_{1} A_{3}$, where ' $A_{1} A_{2}$ ' represents the length $A_{1} A_{2}$.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Consider solid $A B C D E F$ whose height is h, and whose base is a rectangle $A B C D$, where $A B=a, B C=b$ and the top edge $E F=c$.

Consider a rectangular slice $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (parallel to the base $A B C D$) which is x units from the top edge with width δx
(Note: $B^{\prime} C^{\prime} \| B C$ and $A^{\prime} B^{\prime} \| A B$)
(i) Show that the volume δV of the slice is given by

$$
\delta V=\left(\frac{a}{h} x\right)\left(c+\frac{b-c}{h} x\right) \delta x
$$

(ii) Hence show that the volume of the solid $A B C D E F$ is

$$
\begin{equation*}
\frac{h a}{6}(2 b+c) \tag{2}
\end{equation*}
$$

Question 13 continues on the next page
(b) The acceleration of a motor car on a straight road is $a-b v^{2}$ where v is the velocity, a and b are positive constants. Let x be the displacement of the motor car from its starting point at time t. Initially, $x=0, v=0$.
(i) Show that at time t, the velocity is given by

$$
v=\sqrt{\frac{a}{b}}\left(1-e^{-2 b x}\right)^{1 / 2}
$$

(ii) Show that the velocity of the motor car has a limiting value of V where V is $\sqrt{\frac{a}{b}}$.
(iii) The velocity p is attained in a displacement l after starting and the velocity q is attained after a further displacement of l where p and q are positive constants and $0<q<\sqrt{2} p$. Show that

$$
V=\frac{p^{2}}{\sqrt{2 p^{2}-q^{2}}}
$$

(c) The region bounded by $y=0, y=e^{x}, x=0$ and $x=2$ is revolved about the line $y=0$. Find the volume of the resulting solid by using the cylindrical shell method.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a) Given that $y=\cos ^{n} x \sin n x$
(i) Show that

$$
\frac{d y}{d x}=2 n \cos ^{n} x \cos n x-n \cos ^{n-1} x \cos (n-1) x
$$

Hence show that

$$
2 n \int \cos ^{n} x \cos n x d x-n \int \cos ^{n-1} x \cos (n-1) x d x=\cos ^{n} x \sin n x+C
$$

(ii) Using the result of (i), show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x \cdot d x=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos ^{n-1} x \cos (n-1) x \cdot d x \tag{2}
\end{equation*}
$$

(iii) Let

$$
\begin{equation*}
I_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \cos n x \cdot d x \tag{2}
\end{equation*}
$$

Find I_{1}, hence find I_{8}.
(iv) Hence find

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{8} x \cos 8 x \cdot d x \tag{2}
\end{equation*}
$$

(b) There are eleven men waiting for their turn in a barber shop. Three particular men are A, B and C. There is a row of 11 seats for the customers. Find the number of ways of arranging them so that no two of A, B and C are adjacent.
(c) The curve C has equation $y=\frac{(x-1)^{2}}{x+2}$
(i) Obtain the equations of the asymptotes of the curve C.
(ii) On the same diagram, draw a sketch of C and of the curve with equation $y=-\frac{1}{x}$.

Deduce the number of real roots of the equation $x^{3}-2 x^{2}+2 x+2=0$.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) The graph of $y=f(x)$ is shown below. On separate axes, neatly sketch:

(i) $y=[f(x)]^{2}$
(ii) $y=f(1-x)$
(iii) $y=\ln [f(x)]$
(b)
(i) Prove

$$
\begin{equation*}
\frac{\cos \theta+i \sin \theta-1}{\cos \theta+i \sin \theta+1}=i \tan \frac{\theta}{2} \tag{2}
\end{equation*}
$$

(ii) Find the five roots of the equation $\omega^{5}=1$ and express your answers in the form of $r(\cos \theta+i \sin \theta)$, where $r>0$ and $-\pi<\theta \leq \pi$.
(iii) Hence show that the roots of the equation

$$
\begin{equation*}
\left(\frac{2+z}{2-z}\right)^{5}=1 \tag{*}
\end{equation*}
$$

are $2 i \tan \left(\frac{k \pi}{5}\right)$, where $k=0, \pm 1, \pm 2$.
(iv) By expressing the equation in part (iii) (*) in the form of $z^{5}+m z^{3}+n z=0$, show that

$$
\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}
$$

(c)

$A B$ is a diameter of the circle and O is the centre. C is a point on $A B$ and D is a point on the circle. $D E$ is the tangent of the circle at D and $C E \perp D E$. Copy the diagram in your booklet.

Extend $D C$ to intersect the circle at F such that $D F$ is a chord of the circle. Similarly, join $D O$ and extend $D O$ to intersect the circle at G. $D G$ now is another diameter for the circle $B D F G$.
(i) Prove $\triangle C E D$ is similar to $\triangle D F G$.
(ii) Hence or otherwise, prove that $A B \times C E=A C \times C B+C D^{2}$.

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) It is given that

$$
\frac{r+1}{r-1}=1+\frac{2}{r}+\frac{2}{r^{2}}+\cdots+\frac{2}{r^{n}}+\frac{2}{r^{n}(r-1)}
$$

(i) Show that

$$
\begin{equation*}
\sum_{r=2}^{n}[\ln (r+1)-\ln (r-1)]=\ln \frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

(ii) Hence prove by mathematical induction that

$$
\sum_{r=2}^{n} \ln \left[1+\frac{2}{r}+\frac{2}{r^{2}}+\cdots+\frac{2}{r^{n}}+\frac{2}{r^{n}(r-1)}\right]=\ln \frac{n(n+1)}{2} \quad \text { for } n=2,3,4, \ldots \quad 3
$$

Question 16 continues on the next page

(b) Given that z_{1}, z_{2} and z_{3} are three complex numbers which satisfy

$$
z_{1}+z_{2}+z_{3}=0
$$

(i) $\quad z_{1}$ and z_{2} are indicated in the Argand diagram as shown in the figure below.

Copy the diagram in your booklet and sketch on the same diagram a possible location for z_{3}. Explain your decision.
(ii) Given that the arguments of z_{1}, z_{2} and z_{3} are α, β and γ respectively, and their moduli are $1, k$ and $2-k$ respectively, where $0<k<2$. Express z_{1}, z_{2} and z_{3} in mod-arg form.
(iii) Prove that

$$
\left\{\begin{array}{c}
\cos \alpha+k \cos \beta+(2-k) \cos \gamma=0 \tag{1}\\
\sin \alpha+k \sin \beta+(2-k) \sin \gamma=0
\end{array}\right.
$$

(iv) From (iii), by eliminating α or otherwise, prove that

$$
k^{2}+(2-k)^{2}+2 k(2-k) \cos (\beta-\gamma)=1
$$

(v) By considering $|\cos (\beta-\gamma)| \leq 1$, find the range of values of k.

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

YEAR 12 - EXTENSION 2 - MATHEMATICS - 2013 TRIAL

ANSWER SHEET

INSTRUCTIONS:

- Cross the box that indicates the correct answer

1	A	B	x	D
2	A	B	12	D
3	A		C	D
4	x	B	C	D
5	x	B	C	D
6		B	C	D
7	A		C	D
8	A	B	x	D
9	A	B	x	D
10	A	B	c	

Question (1)

$$
\begin{aligned}
& \text { (a) } \int x \tan ^{-1} x d x \\
& =\int \tan ^{-1} x \frac{d}{d x}\left(\frac{1}{2} x^{2}\right) d x \\
& =\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2} \int \frac{x^{2} d x}{1+x^{2}} \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{\left(1+x^{2}\right)-1}{1+x^{2}} d x . \\
& =\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2}\left[x-\tan ^{-1} x\right] \\
& =\frac{1}{2}\left(x^{2} \tan ^{-1} x+\tan ^{-1} x-x\right)+c
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{15-4 x-4 x^{2}}} \\
= & \int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{-4\left(x^{2}+x-\frac{15}{4}\right)}} \\
= & \int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{-4\left(x+\frac{1}{2}\right)^{2}+4^{2}}} \\
= & \frac{1}{2} \int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{4-\left(x+\frac{1}{2}\right)^{2}}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& =\frac{1}{2}\left[\sin ^{-1}\left(\frac{\left.x+\frac{1}{2}\right)}{2}\right]_{-1 / 2}^{1 / 2}\right. \\
& =\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{12}
\end{aligned}
$$

$$
\text { (c) } \left.\begin{array}{rl}
& \int_{\pi / 2}^{2 \pi / 3} \frac{d \theta}{2 \cot \frac{\theta}{2}-\sin \theta} \begin{array}{c}
\text { Let t=tan} \frac{\theta}{2} \\
d \theta=\frac{2 d t}{1+t^{2}}
\end{array} \\
-\pi<\theta<\pi
\end{array}\right]=\frac{1}{\left(\frac{2}{t}-\frac{2 t}{1+t^{2}}\right)}
$$

(d) $3 x^{2}-x+8=A\left(x^{2}+1\right)+(B x+C)(1-x)$

When $x=1,2 A=10 \Rightarrow A=5$

$$
\begin{aligned}
& A-B=3 \therefore B=2, A+C=8 \Rightarrow C=3 \\
& \therefore \int \frac{\left(3 x^{2}-x+8\right) d x}{(1-x)\left(x^{2}+1\right)}=5 \int \frac{d x}{1-x}+\int \frac{(2 x+3) d x}{x^{2}+1} \\
& \quad=-5 \ln (1-x)+\ln \left(x^{2}+1\right)+3 \tan ^{-1} x+C
\end{aligned}
$$

question(11)
(e) $\frac{x^{2}}{4}-y^{2}=1$,
$P(2 \sec \theta, \tan \theta)$.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\sec ^{2} \theta}{2 \sec \theta \tan \theta}
$$

\therefore Equation of tgt. a $t p^{\prime}$

$$
\begin{aligned}
& y-\tan \theta=\frac{\sec \theta}{2 \tan \theta}(x-2 \sec \theta) \\
& \text { 1.e } \\
& (\sec \theta) x-(2 \tan \theta) y=2\left(\sec ^{2} \theta-\tan ^{2} \theta\right) . \\
& \left(\frac{\sec \theta}{2}\right) x-(\tan \theta) y=1
\end{aligned}
$$

The asy mptotes are $\left\{\begin{array}{l}y_{1}=\frac{1}{2} x_{1} \\ y_{2}=-\frac{1}{2} x_{2}\end{array}\right.$
(i) When $y_{1}=\frac{x_{1}}{2}$

$$
\begin{aligned}
& (\sec \theta) x_{1}-(\tan \theta) x_{1}=2 \\
& \therefore x_{1}(\sec \theta-\tan \theta)=2 . \\
& \therefore x_{1}=\frac{2}{\sec \theta-\tan \theta}, y_{1}=\frac{1}{\sec \theta-\tan \theta}
\end{aligned}
$$

(ii) When $y_{2}=\frac{-x_{2}}{2}$

$$
\begin{gathered}
(\sec \theta) x_{2}+(\tan \theta) x_{2}=2 \\
\therefore x_{2}=\frac{2}{\sec \theta+\tan \theta} \\
y_{2}=\frac{1}{\sec \theta+\tan \theta}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{sow}, \frac{x_{1}+x_{2}}{2} & =\frac{1}{\sec \theta-\tan \theta}+\frac{1}{\sec \theta+\tan \theta} \\
& =\frac{2 \sec \theta}{\sec ^{2} \theta-\tan ^{2} \theta} \\
& =2 \sec \theta
\end{aligned}
$$

$$
\begin{aligned}
\frac{y_{1}+y_{2}}{2} & =\left(\frac{\sec \theta+\tan \theta)-(\sec \theta-\tan \theta)}{2\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}\right. \\
& =\tan \theta .
\end{aligned}
$$

\therefore The mid-ptof $Q R$ is $(2 \sec \theta, \tan \theta)$
i.e the mid-pt is p

Question(11)

$$
\begin{aligned}
& \text { (f) } \quad(a+i b)^{2}=21-20 i \\
& a^{2}+i 2 a b-b^{2}=21-20 i
\end{aligned}
$$

Equate teal and imaginary pts.

$$
\begin{aligned}
& \left\{\begin{aligned}
a^{2}-b^{2} & =21 \\
2 a b & =-20 .
\end{aligned}\right. \\
& \text { Now, }\left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+4 a^{2} b^{2} \\
& =21^{2}+20^{2} \\
& =841 \\
& \therefore a^{2}+b^{2}=29 \\
& a^{2}-b^{2}=21 \\
& \therefore 2 a^{2}=50, a^{2}=25 \\
& \therefore a= \pm 5 . \\
& \text { If } a=5, b=-2 \\
& a=-5, b=2 \text {. }
\end{aligned}
$$

Question (12)
(a) $2 x^{3}+3 x^{2}-5 x+8=0$. Let $y=\frac{1}{x}, x=\frac{1}{y}$.

$$
\begin{aligned}
& \therefore \quad \frac{2}{y^{3}}+\frac{3}{y^{2}}-\frac{5}{y}+8=0 \\
& \Rightarrow \quad 8 y^{3}-5 y^{2}+3 y+2=0
\end{aligned}
$$

(b) $z=3 \cos \theta+i 3 \sin \theta$,

$$
\begin{aligned}
1-z & =(1-3 \cos \theta)-i 3 \sin \theta \\
\overline{1-z} & =(1-3 \cos \theta)+i 3 \sin \theta \\
\frac{1}{1-z} & =\frac{1}{(1-3 \cos \theta)-i 3 \sin \theta} \times \frac{(1-3 \cos \theta)+i 3 \sin \theta}{(1-3 \cos \theta)+i 3 \sin \theta} \\
& =\frac{1-3 \cos \theta+i 3 \sin \theta}{(1-3 \cos \theta)^{2}+9 \sin ^{2} \theta} \\
& =\left(\frac{(1-3 \operatorname{sos} \theta)+i 3 \sin \theta}{1-6 \cos \theta+962^{2} \theta+9 \sin ^{2} \theta}\right. \\
& =\frac{1-3 \cos \theta+i 3 \sin \theta}{10-6 \cos \theta}
\end{aligned}
$$

$$
\therefore \operatorname{Im}\left(\frac{1}{(-z)}\right)=\frac{3 \sin \theta}{2(5-3 \sin \theta)}
$$

(c)

(d) $z_{1}=2 i, z_{2}=1+3 i$
(i) $k=1, \quad z=z_{1}+\left(z_{2}-z_{1}\right)$ $=z_{2}$.
\therefore locus of Z is a point $(1,3)$.
(ii) $0<k<1$, locus of Z is the line interval between $(0,2)$ and $(1,31$
(iii) $k \in \mathbb{R}$, locus of Z is the lIne through $(0,2)$ and $(1,3)$. le.

$$
y=x+2
$$

Question (12)
(e)
(i) $\sum \alpha_{i}=0 \Rightarrow \alpha+\beta+2 \alpha-2 \beta=0$

$$
\therefore 3 \alpha=\beta
$$

$$
\begin{array}{r}
\sum_{i \neq j} \alpha_{i} \alpha_{j}=a, \therefore \alpha \beta+2 \alpha(\alpha-\beta)+2 \beta(\alpha-\beta) \\
=\alpha .
\end{array}
$$

Exp aiding,

$$
\alpha \beta+2 \alpha^{2}-2 \alpha \beta+2 \alpha \beta-2 \beta^{2}=a \text {. }
$$

$b u+3 \alpha=\beta$ from (i)

$$
\begin{aligned}
\therefore \quad & 3 \alpha^{2}+2 \alpha^{2}-18 \alpha^{2}=a \\
& \Longrightarrow a=-13 \alpha^{2}
\end{aligned}
$$

Product of roots $=-b$

$$
\begin{aligned}
& \therefore \quad 2 \alpha \beta(\alpha-\beta)=-b \\
& \quad b u+3 \alpha=\beta \therefore 6 \alpha^{2}(-2 \alpha)=-b \\
& \quad \Rightarrow b=12 \alpha^{3} \\
& \therefore \frac{b}{a}=\frac{-12 \alpha}{13} \Rightarrow \alpha=\frac{-13 b}{12 a}
\end{aligned}
$$

but $3 \alpha=\beta \quad \therefore \beta=3\left(\frac{-13 b}{i 2 a}\right)$

$$
=\frac{-13 b}{4 a}
$$

(ii) (cont. $1 N \neq w, 2(\alpha-\beta)$

$\left.C_{f}\right)$

$$
\begin{aligned}
\therefore & A_{1} A_{2} \times A_{1} A_{3}=|w-1|\left|w^{2}-1\right| \\
& =\left|w^{3}-w-w^{2}+1\right| \\
& =\left|2-\left(w+w^{2}\right)\right| \because \omega+w^{2}=-1 \\
& =|2-(-1)| \\
& =|3|=3 .
\end{aligned}
$$

$\frac{\text { Question }(13)}{F}$
(a)
(i)

$$
\text { In } \triangle F B G \quad \frac{l_{1}}{b-c}=\frac{x}{h}
$$

$$
\therefore l_{i}=\left(\frac{b-c}{h}\right)^{x}
$$

$$
\begin{align*}
& A^{\prime} \\
& \delta V=\left(A^{\prime} B^{\prime}\right)\left(B^{\prime} c^{\prime}\right) \delta x \tag{3}\\
& A^{\prime} B^{\prime}=l_{2}=\left(\frac{a}{h} x\right) \\
& B^{\prime} C^{\prime}=c+\left(\frac{b-c}{h}\right) x \\
& \therefore \delta V=\left(\frac{a}{h} x\right)\left[C+\left(\frac{b-c}{h}\right) x\right] \delta x
\end{align*}
$$

(ii) $V=\lim _{\delta x \rightarrow 0} \sum_{0}^{h}\left(\frac{a}{h} x\right)\left(c+\left(\frac{b-c}{h}\right) x\right) \delta x-$

$$
\begin{align*}
\therefore V & =\int_{0}^{h}\left\{\left(\frac{a c}{h}\right) x+\left[\frac{a(b-c)}{h^{2}}\right] x^{2}\right\} d x \\
& =\left[\left(\frac{a c}{h}\right) \frac{x^{2}}{2}+\frac{a(b-c)}{h^{2}} \frac{x^{3}}{3}\right]_{0}^{h} \\
& =\frac{3 a c h+2 a h(b-c)}{6} \\
& =\frac{h a}{6}(2 b+c)
\end{align*}
$$

Question (13)
(b) $\quad v \frac{d r}{d x}=a-b r^{2}$.
separating variables, we have

$$
\begin{aligned}
& \quad \int \frac{v}{a-b v^{2}} d v=\int d x . \\
& 1 \cdot e \int \frac{1}{a-b v^{2}} d\left(\frac{a-b v^{2}}{-2 b}\right)=\int d x . \\
& \therefore \quad-\frac{1}{2 b} \ln \left(a-b v^{2}\right)=x+c
\end{aligned}
$$

When $F=0, x=0$ and $r=0$, we have $c=-\frac{1}{2 b} \ln a$.

$$
\therefore \quad-\frac{1}{2 b} \ln \left(a-b v^{2}\right)=x-\frac{1}{2 b} \ln a
$$

$1 e \quad V=\sqrt{\frac{a}{b}}\left(1-e^{-26 x}\right)^{\frac{1}{2}} \quad(\because v>0)$.
(ii) As $x \rightarrow \infty \quad V \rightarrow \sqrt{\frac{a}{b}}$
$\operatorname{Since} e^{-2 b x} \rightarrow 0$
The limiting value Vof the motorcar is $\sqrt{\frac{a}{b}}$.
(iii) When $V=\sqrt{\frac{a}{b}}$

$$
v=V \sqrt{1-e^{26 x}}
$$

When $r=p$ and $x=l$

$$
\therefore p=V \sqrt{1-e^{2 b L}}
$$

le $e^{-2 b l}=\frac{V^{2}-p^{2}}{V^{2}}$
When $r=q$ and $x=l+l=2 l$,
we have $q=V \sqrt{1-e^{4 b l}}$
$1 \cdot e e^{-4 b l}=\frac{r^{2}-q^{2}}{r^{2}}$
Eliminating displacement l, We have $\left(\frac{\gamma^{2}-p^{2}}{\gamma^{2}}\right)^{2}=\frac{\gamma^{2}-q^{2}}{r^{2}}$
le $V=\frac{p^{2}}{\sqrt{2 p^{2}-q^{2}}}(\because V>0)$

$$
\begin{aligned}
V_{1} & =\int_{1}^{e^{2}} 2 \pi y(2-x) \cdot d y \\
& =2 \pi \int_{1}^{e^{2}} y(2-\ln y) \cdot d y \\
& =2 \pi \int_{1}^{e^{2}} 2 y-y \ln y \cdot d y \\
& =2 \pi\left\{\left[y^{2}\right]_{1}^{e^{2}}-\int_{1}^{e^{2}} y \ln y \cdot d y\right\} \\
& =2 \pi\left\{e^{4}-1-\left(\left[\frac{y^{2} \ln y}{2}\right]_{1}^{e^{2}}-\int_{1}^{e^{2}} \frac{y^{2}}{2} \cdot \frac{1}{y} \cdot d y\right)\right\} \\
& =2 \pi\left\{e^{4}-1-\left(e^{4}-\left[\frac{y^{2}}{4}\right]_{1}^{e^{2}}\right\}\right. \\
& =2 \pi\left\{e^{4}-1-\left(e^{4}-\frac{e^{4}}{4}+\frac{1}{4}\right)\right\} \\
& =2 \pi\left(\frac{e^{4}}{4}-\frac{5}{4}\right) \\
& =\frac{\pi}{2}\left(e^{4}-5\right) \\
V_{2} & =\pi(1)^{2}(2) \\
V_{2} & =2 \pi \\
V_{T 0}+a l & =V_{1}+V_{2} \\
& =\frac{\pi}{2}\left(e^{4}-5\right)+2 \pi \\
& =\frac{\pi}{2}\left(e^{4}-1\right)
\end{aligned}
$$

Question (14)
(a) $y=\sin ^{n} x \sin n x$.
(iii)

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 2} \cos ^{n} x \cos n x d x \\
\therefore I_{1} & =\int_{0}^{\pi / 2} \cos ^{2} x d x=\int_{0}^{\pi / 2}\left(\frac{1+8 \pi 2 x}{2}\right) d x \\
\therefore I_{1} & =\left[\frac{x}{2}+\frac{\sin 2 x}{4}\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{4} .
\end{aligned}
$$

From (ii)

$$
\begin{aligned}
I_{8} & =\frac{1}{2} I_{7} \\
& =\frac{1}{2^{2}} I_{6} \\
& =\frac{1}{2^{7}} I_{1} \\
& =\frac{\pi}{512} .
\end{aligned}
$$

(IV) Let $y=\frac{\pi}{2}-x, d y=-d x$ and $x=\frac{\pi}{2}-y$. When $x=0, y=\frac{\pi}{2}$; When $x=\frac{\pi}{2}, y=0^{\prime}$

$$
\begin{aligned}
& \therefore \int_{0}^{\pi / 2} \sin ^{8} x \cos 8 x d x \\
& =\int_{0}^{0} \sin ^{8}\left(\frac{\pi}{2}-y\right) \cos \left[8\left(\frac{\pi}{2}-y\right)\right](-d y) \\
& =\int_{0}^{\pi / 2} \int^{\pi / 2} y \cos 8 y d y=\frac{\pi}{512} .
\end{aligned}
$$

Question (14)
(b) We first arrange the 8 persons (excluding A, B and C) in a row in 8 ! ways. Fix one of these Ways, say

(1) (2) (3) (4) (5) (6) (7) (8) (9)

We now consider A. There are 9 ways to place A in one of 9 boxes, say box (4):

Next, consider B. Since A and B Cannot be adjacent, B Can be placed only in one of the remaining 8 boxes. Like Wise, c can be placed only in one of the remaining 7 boxes.

$$
\therefore \quad(8!) 9 \times 8 \times 7=20321280
$$

(c) Since $x \neq-2$, a vertical asymptote is $x=-2$
(i)

$$
y=\frac{(x-1)^{2}}{x+2}=\frac{x^{2}-2 x+1}{x+2}=x-4+\frac{9}{x+2}
$$

An oblique asymp tote is $y=x-4$
(ii)

Given: $\quad x^{3}-2 x^{2}+2 x+2=0$

$$
\begin{aligned}
\Rightarrow & x\left(x^{2}-2 x+1\right)+x+2=0 \\
& x\left(x^{2}-2 x+1\right)=-(x+2) \\
\therefore & \frac{x^{2}-2 x+1}{x+2}=-\frac{1}{x^{1}}
\end{aligned}
$$

Since there is one intersection between the graph of $<$ and $y=-\frac{1}{x}$, there is one real root for $x^{3}-2 x^{2}+2 x+2=0$

Question (15)

(b)

(c)

$$
\begin{aligned}
& \text { (b) } \frac{\theta-\theta+i \sin \theta-1}{\cos \theta+i \sin \theta+1} \\
& =\frac{\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)+i\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)-\left(\sin ^{2} \frac{\theta}{2}+\delta^{2} \frac{\theta}{2}\right)}{\left(\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}\right)+i\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)+\left(\sin ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right)} \\
& =\frac{-2 \sin ^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \operatorname{son}^{2} \frac{\theta}{2}+i 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} \\
& =\frac{i^{2} 2 \sin \frac{\theta}{2}\left(i \sin \frac{\theta}{2}+\frac{\theta}{2}\right)}{2 \cos \frac{\theta}{2}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right)} \\
& = \\
& i \tan \frac{\theta}{2} .
\end{aligned}
$$

(ii) Let $\omega=\vdash \operatorname{cis} \theta, \omega^{5}=1$
(rcis $\theta)^{5}=1, t^{5} c$ is $5 \theta=\operatorname{cis}(2 n \pi)$

$$
\therefore r^{5}=1 \Rightarrow r=1
$$

Now, $5 \theta=2 n \pi, \quad \theta=\frac{2 n \pi}{5}(n=0$,
\therefore toots are cis 0 , $\mathrm{cis}\left(-\frac{2 \pi}{5}\right)$ cis $\left(-\frac{4 \pi}{5}\right), c$ is $\left(\frac{2 \pi}{5}\right), c$ is $\left(\frac{4 \pi}{5}\right)$

Question (15)
(iii) L e et $w=\left(\frac{2+z}{2-z}\right)$

$$
\begin{aligned}
& 2 w-w z=2+z \\
& 2 w-2=w z+z \\
& 2(w-1)=z(w+1) \\
& \therefore \quad z=2\left(\frac{w-1}{w+1}\right)
\end{aligned}
$$

Now, from (ii) $\omega=\operatorname{cis}\left(\frac{2 n \pi}{5}\right)$
for $n= \pm 1, \pm 2,0$.
From (ii) we have

$$
\begin{gathered}
\omega=\omega_{0} \frac{2 k \pi}{5}+i \sin \frac{2 k \pi}{5}, \\
k=0, \pm 1, \pm 2 . \text { When } k=0, z=0
\end{gathered}
$$

When $k=1, z=2\left[\frac{\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}-1}{\cos \frac{2 \pi}{5}+i \sin \frac{2 \pi}{5}+1}\right]$

$$
=2 i \tan \frac{2 \pi}{\bar{b}}
$$

When $\left.k=-4, z=2\left[\frac{\cos \left(\frac{-4 \pi}{5}\right)+i \sin \left(\frac{-4 \pi}{5}\right)-1}{\cos \left(-\frac{4 \pi}{5}\right)+i \sin \left(-\frac{4 \pi}{5}\right)+1}\right]\right]$

$$
\therefore z=2 i \tan \left(\frac{n \pi}{5}\right) \text { for } n=0, \pm 1, \pm 2
$$

$$
\begin{aligned}
& \text { (ir) }\left(\frac{2+z}{2-z}\right)^{5}=1 \\
& (2+z)^{5}=(2-z)^{5} \\
& 32+80 z+80 z^{2}+40 z^{3}+10 z^{4}+z^{5} \\
& =32-80 z+80 z^{2}-40 z^{3}+10 z^{4}-z^{5} \\
& \therefore 2 z^{5}-80 z^{3}+160 z=0 \\
& \quad z^{5}-40 z^{3}+80 z=0 \\
& \therefore \quad z\left(z^{4}-40 z^{2}+80\right)=0
\end{aligned}
$$

[Note: $M=-40, n=80]$.
Product of roots (excluding $)=80$ 1.e
$2^{4}\left(\lambda^{4}\right) \tan \left(\frac{2 \pi}{5}\right) \tan \left(\frac{-2 \pi}{5}\right) \times \tan \left(\frac{\pi}{5}\right) \tan \left(\frac{-\pi}{5}\right)$ $=80$

$$
\begin{aligned}
\therefore 16\left[-\tan ^{2} \frac{2 \pi}{5}\right]\left[-\tan ^{2} \frac{\pi}{5}\right] & =80 \\
\therefore \tan ^{2}\left(\frac{2 \pi}{5}\right) \tan ^{2}\left(\frac{\pi}{5}\right) & =5
\end{aligned}
$$

1.e $\tan \left(\frac{\pi}{5}\right) \tan \left(\frac{2 \pi}{5}\right)=\sqrt{5}$.

Question $15(c)$
Produce $D C$ to intersect the circle at F.
Similarly, extend DO to intersect the circle at G.

Now $A C \cdot C B=F C \cdot C D$.
(product of intercepts of intersecting chords are equal
Now

$$
\begin{array}{rl}
O W & F C \cdot C D+C D^{2} \\
& =C D(F C+C D) \\
& =C D \cdot F D . \\
A B \times C E \\
= & 2(\text { radius }) C E \\
= & D G \cdot C E .
\end{array}
$$

Toprove.

$$
A B \times C E=A C \times C B+C D^{2}
$$

it is sufficient toprore

$$
C D \cdot F D=C E \cdot D G
$$

or $\frac{F D}{C E}=\frac{D G}{C D .}$
NOW In $\triangle C E D$ and $\triangle D F G$.

$$
\begin{aligned}
\angle D F G & =90^{\circ} \text { (Angle in a semi-circle) } \\
& =\angle C E D
\end{aligned}
$$

$\angle E D C=\angle D G F$ (alternate segment theorem.)

$$
\therefore \triangle C E D \| \triangle D F G .
$$

(equiangular).

$$
\therefore \frac{E D}{C E}=\frac{D G}{C D}
$$

Corresponding sides of similar triangles $\triangle C E D$ and $\triangle D F G$ are in the same ratios.)

$$
\therefore A C \cdot C D+C D^{2}=A B \cdot C E .
$$

Question (16) (a)

$$
\text { (i) } \begin{aligned}
& \sum_{r=2}^{n}[\ln (r+1)-\ln (1-1)] \\
= & (\ln 3-\ln 1)+(\ln 4-\ln 2) \\
+ & (\ln 5-\ln 3)+(\ln 6-\ln 4) \\
& +\cdots \cdots+[\ln (n-1)-\ln (n-3)] \\
& +[\ln (n)-\ln (n-2)] \\
& +[\ln (n+1)-\ln (n-1)] \\
= & -\ln 1-\ln 2+\ln (n)+\ln (n+1) \\
= & \frac{\ln n(n+1)}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{r+1}{r-1}=1+\frac{2}{r}+\cdots+\frac{2}{r^{n}}+\frac{2}{r^{n}(r-1)} \\
& (g(r \ln) \\
\therefore & \sum_{r=2}^{n} \ln \left[1+\frac{2}{r}+\cdots+\frac{2}{r^{n}}+\frac{2}{r^{n}(r-1)}\right] \\
& =\sum_{r=2}^{n} \ln \left(\frac{r+1}{r-1}\right)
\end{aligned}
$$

Let $P(n)$ be the proposition that $\sum_{r=2}^{n} \ln \left(\frac{r+1}{r-1}\right)=\ln \frac{n(n+1)}{2}$
When $u=2$, L.H.S $=\ln 3=$ R.A.S.
$\therefore P(2)$ is true
Assume $P(k)$ is true
1.e $\sum_{r=2}^{k} \ln \left(\frac{r+1}{r-1}\right)=\ln \frac{k(k+1)}{2}$
prove true for $n=k+1$.
How when $n=k+1$, we have

$$
\begin{aligned}
& \sum_{r=2}^{k+1} \ln \left(\frac{r+1}{r-1}\right)=\sum_{r=2}^{k} \ln \left(\frac{r+1}{r-1}\right) \\
&+\ln \left(\frac{k+2}{k}\right) \\
&= \ln \left[\frac{k(k+1)}{2}\right]+\ln \left(\frac{k+2}{k}\right) \\
&= \ln \left[\frac{k(k+1)(k+2)}{2 k}\right] \\
&=\frac{\ln \{(k+1)[(k+1)+1]\}}{2}
\end{aligned}
$$

If the prop. is true for $n=k$, then it is the for $n=k+1$. B y the principal of $M . I_{1} \cdot+$ is true $\forall n \geq 2$.

Question (16) (b)
(i)

$$
z_{1}+z_{2}+z_{3}=0
$$

(ii)

$$
\overrightarrow{o z_{1}}+\overrightarrow{o z_{2}}+\overrightarrow{o z_{3}}=0
$$

$$
\begin{gathered}
z_{1}=\sin \alpha+i \sin \alpha \\
z_{2}=k \cos \beta+i k \sin \beta \\
z_{3}=(2-k) \cos \gamma+i(2-k) \sin \gamma .
\end{gathered}
$$

Where $0<k<2$
(iii) $\because z_{1}+z_{2}+z_{3}=0$

$$
\begin{aligned}
& \therefore \cos \alpha+i \sin \alpha+(k \cos \beta)+(i \sin \beta)+(2-k) \cos \gamma \\
&+i(2-k) \sin \gamma=0 \\
& \therefore \operatorname{Real}(L H S)=\operatorname{Im}(L H S)=0
\end{aligned}
$$

so

$$
\left\{\begin{array}{l}
\cos \alpha+k \cos \beta+(2-k) \cos \gamma=0 \\
\sin \alpha+k \sin \beta+(2-k) \sin \gamma=0
\end{array}\right.
$$

Make $\cos \alpha, \sin \alpha$ the subject

$$
\begin{align*}
\therefore & \cos \alpha=-[k \cos \beta+(z-k) \cos \gamma] \\
& \sin \alpha=-[k \sin \beta+(2-k) \sin \gamma] \tag{2}
\end{align*}
$$

(IV) Square (1) \& (2) and find its sun

$$
\begin{aligned}
& \therefore \cos ^{2} \alpha+\sin ^{2} \alpha \\
& =k^{2} \cos ^{2} \beta+(2-k)^{2} \cos ^{2} \gamma+2 k(2-k) \cos \beta \sin \gamma \\
& +k^{2} \sin ^{2} \beta+(2-k)^{2} \sin ^{2} \gamma+2 k(2-k) \sin \beta \sin \gamma .
\end{aligned}
$$

ie.

$$
\begin{align*}
1= & k^{2}\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+(2-k)^{2}\left(\sin ^{2} \gamma+\sin ^{2} \gamma\right) \\
& +2 k(2-k)[\sin \beta \cos \gamma+\sin \beta \sin \gamma] \\
\therefore \quad & =k^{2}+(2-k)^{2}+2 k(2-k) \cos (\beta-\gamma) \tag{3}
\end{align*}
$$

Expand (3) we have
Now from (4) we can form

$$
\left(k^{2}\right)+\left(4-4 k+k^{2}\right)+\left(4 k-2 k^{2}\right) \cos (\beta-\gamma)=1
$$

$$
\therefore\left(2 k^{2}-4 k\right)[1-\cos (\beta-\gamma)]=-3
$$

$$
\begin{equation*}
\therefore 2 k^{2}-4 k=\frac{-3}{[1-\sin (\beta-\gamma)]} \tag{4}
\end{equation*}
$$

Let $\delta=\frac{-3}{1-\cos (\beta-\gamma) .}$
Now $|\cos (\beta-\gamma)| \leq 1$ ie.

$$
\begin{equation*}
-1 \leq \cos (\beta-\gamma) \leq 1 \tag{6}
\end{equation*}
$$

Substitute the extreme.
values of (6) \Rightarrow the first approx inaction of (5) be comes

$$
-\infty<\delta \leq-\frac{3}{2}
$$

Where δ is given by (5).

$$
\begin{align*}
& \therefore \quad k= \\
& \text { i.e } k=\frac{4 \pm \sqrt{16+8 \delta}}{4} \\
& k= 1 \pm \sqrt{1+\frac{8}{2}} \text { solving for } \\
& 1+\frac{\delta}{2} \geq 0 \\
& \delta \geq-2
\end{align*}
$$

\therefore A refine ment for δ

$$
1 \dot{s}:-2 \leq \delta \leq-\frac{3}{2}
$$

so extreme values of δ are

$$
\begin{align*}
& -2,-3 / 2 \\
& \therefore 1-\sqrt{\frac{1}{4}} \leq k \leq 1+\sqrt{\frac{1}{4}} \\
& \text { ie } \frac{1}{2} \leq k \leq \frac{3}{2} \tag{10}
\end{align*}
$$

