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linked to the amount of ink you have used. 

Just because you have shown ‘working’ does not justify that your 
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Comments: 
Generally, very well done. 



 
 

Comments: 
Parts (i) and (ii) generally, very well done. 
In part (iii), candidates incorrectly evaluated the modulus. 
 

 

 





 

 



Comments: 
Parts (i) and (ii) generally, very well done. 
In part (iii), very poorly done. 













Comments: 
Generally, very well done. 

Comments: 
Generally, very well done. However, many students incorrectly calculated the exact values. 





Comments: 
Generally, very well done. However, some students the second 2 zeroes. 



Comments: 
Poorly done. Many students incorrectly calculated the exact values, or used an incorrect 
value for t. 



Comments: 
Generally, very well done. 



Question 14 

Solution Marking 
Scheme 

Marker’s Comments 

a) Let 
1
1
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∫ ∫
∫

∫

1 mark for 
correct 
substitution 
or 
equivalent. 

1 mark for 
correct use 
of 
integration 
by parts. 

1 mark for 
correct 
answer. 

- Candidates who
used the right
substitution
tend to correctly
answer the
question
correctly.

- Significant
number of
candidates made
error with
integrating by
parts section of
their working.

b) Prove true for n = 2

LHS = 1 31
2 2

+ =

RHS = 2(2) 4
2 1 3

=
+

   Since LHS > RHS 
   ⸫ true for n = 2 

    Assume the statement is true for n = k where k Z +∈ , 2k ≥  

i.e. 1 1 21 ...
2 1

k
k k

+ + + >
+

   To prove true for n = k + 1 

i.e. 1 1 1 2 21 ...
2 1 2

k
k k k

+
+ + + + >

+ +

LHS > 2 1
1 1

k
k k

+
+ +

      (From Assumption) 

(SEE NEXT PAGE) 

1 mark for 
correctly 
proving 
statement is 
true for n = 
2. 

2 marks for 
correctly 
proving the 
statement is 
true for n = 
k +1. 

- Majority of the
candidates were
able to prove
the n = 2 case
correctly.

- Many
candidates were
not able to gain
full marks for
proving the case
for n = k +1.

- Candidates need
to prove strictly
one side is
greater than the
other side with
REASONING.
Marks were not
given if
candidates fail
to do so.
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 
> ≥ + + 

⸫ true for n = k + 1 

By the principle of Mathematical Induction, the result is true for 
all positive integers n ≥ 2. 

- Candidates did
not gain full
marks by just
stating
2 1 2 2

1 2
k k

k k
+ +

>
+ +

for k ≥ 2. More 
details were 
needed to 
explain the 
statement 
above. 

- Candidates
should avoid
proving both
sides of the
inequality at the
same time.

c) i)
2 3

2 3

2 4 2

2 4 2

1 4 12
2
1 4 12
2
1 6
2

At 0, 10
5

2 12 10

d v x x
dx
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  = − 
 

= −

= − +

= =
=

∴ = − +

∫

1 mark for 
correct 
working. 

1 mark for 
correct 
answer 

- Majority of the
candidates did
well in this
question.

   ii) 

( )( )( )( )

2 4 2

2 2

2( 6 5)
2( 5)( 1)

2 5 5 1 1

v x x
x x

x x x x

= − +

= − −

= − + − +
2For 0 : 5 or 1 1 or 5v x x x≥ ≤ − − ≤ ≤ ≥

As v2 ≥ 0 and the particle starts at the origin, it must remain 
within the interval -1 ≤ x ≤ 1 or it will reach negative for v2. 

1 mark for 
correctly 
working out 
the correct 
intervals for  
x for which 
v2 ≥ 0 or 
equivalent 
solution 

1 mark for 
stating the 
particle 
starts at the 
origin and 
is bounded 
by the 
region. 

- Significant
number of
candidates made
a silly mistake

2 5
5

x
x

=
= ±

And use that to 
explain their result. 
Marks were penalised. 

- This is NOT
SHM, check
equation.
Candidates were
penalised for
saying it was.



- The information
that the particle
starts at origin
is important and
must be stated
clearly in the
solution to
support their
reasoning.
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∫
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1 mark for 
correct 
substitution 
and 
working. 

1 mark for 
finding 
correct 
values for a 
and b. 

- Majority of
candidates did
well in this
question.
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1 mark for 
correct 
integration. 

1 mark for 
showing 
ALL 
necessary 
working to 
achieve the 
result. 

- Candidates were
penalised for
not showing all
necessary steps.
Since it is a
SHOW
question,
candidates need
to provide every
step, not assume
the marker’s
will follow
through with
shortcuts.

- Some
candidates did
not how to
integrate cot u
which is a
concern.



e) 
i) Let α be the complex number at point B
⸫ ike θα =   where k OB=
OB is a chord in a circle of radius R (given) 
CA is perpendicular to OB (tangent perpendicular to radius) 
CD bisects OB (radius to chord bisects the chord) 
⸫ OB = 2 × OA 
⸫ OC2 = CA2 + OA2 (Pythagoras’ Theorem) 

2 2

2 2

2 22

OA OC CA

R r

OB R r

= −

= −

∴ = −
2 22 iR r e θα∴ = −  

1 mark for 
the correct 
answer 

- Many
candidates did
not attempt this
question or did
not get the
modulus at
point B correct.

ii) 
and  has an angle of depression of

from point .
2

DC R DC

Cπ θ

=

 − − 
 

Then let D be represented by the complex number γ 
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= + −
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But from the diagram cos r
R

θ =

( )22 R Rr∴ −

( )

( )

2 2 2 2

2

Let tan (1)
1 cos (From diagram)

sin

sin cos cos sin
2 2 2 2= (Using half angle)

2sin cos
2 2

2sin
2=

2sin cos
2 2

tan (2)
2

Arg

Arg

γ φ
θγ

θ
θ θ θ θ

θ θ

θ

θ θ

θ

=

−
=

 + − − 
 

=

1 mark for 
showing 
how the 
modulus is 
derived. 

1 mark for 
how the 
argument is 
derived. 

- Majority of the
candidates did
not do well in
this question.

- Whilst many
candidates did
not attempt this
question, many
candidates
“fudged” their
result by
starting from
the end or
showed
minimal
working to
verify the result.
Marks were
penalised for
lack of logical
working to
verify the result.



Equating (1) and (2) 
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