

Mathematics

Extension 2

This is a trial paper ONLY. It does not necessarily reflect the format or the contents of the 2007 HSC Examination Paper in this subject.

General Instructions

- Reading Time - 5 minutes
- Working time - $\mathbf{3}$ hours
- Attempt ALL questions
- ALL questions are of equal value
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied
- Board-approved calculators may be used
- Diagrams are not to scale
- Each question attempted should be started on a new sheet. Write on one side of the paper only.

Question One (15 marks)
a) i) Show that $\sin (A-B)+\sin (A+B)=2 \sin A \cos B$
ii) Hence or otherwise find $\int \sin 3 x \cos x d x$
b) Find $\int x \sqrt{x^{2}+7} d x$
c) By completing the square find $\int \frac{d x}{\sqrt{x^{2}-4 x+8}}$
d) i) Given that $\frac{4 x^{2}+3 x+33}{\left(x^{2}+16\right)(x+1)} \equiv \frac{A x+B}{\left(x^{2}+16\right)}+\frac{C}{(x+1)}$ where A, B
and C are real numbers, find A, B and C
ii) Hence find $\int \frac{4 x^{2}+3 x+33}{\left(x^{2}+16\right)(x+1)} d x$
e) Find $\int \frac{4 d x}{x^{2} \sqrt{x^{2}-4}}$
a) Given $z_{1}=2-i$ and $z_{2}=3+4 i$ express $z_{1} z_{2}$ in the form $a+b i$
b) i) Express $\frac{1-3 i}{1+2 i}$ in modulus argument form.
ii) Hence find $\left(\frac{1-3 i}{1+2 i}\right)^{7}$ in simplest modulus argument form
c) i) Find the square roots of $-15-8 i$ in the form $a+b i$
ii) Hence solve $z^{2}+(2 i-3) z+(5-i)=0$2
d) Sketch the region represented by $0 \leq \operatorname{Re}\left(z^{2}\right) \leq 4$ on an Argand Diagram 3
e) The equation $|z+2|+|z-6|=10$ represents an ellipse 3 in the Argand diagram. Sketch the ellipse, and clearly showing the centre and the lengths of the minor and major axes

a) The diagram above shows the graph of $y=f(x)$. The graph has a minimum turning point at $(1,-1)$, a horizontal point of inflexion at the origin and is asymptotic to the positive X - axis
Draw separate $1 / 3$ page sketches of the graphs of the following showing relevant features:
i) $y=f(-x)$
ii) $y=|f(x)|$
iii) $y^{2}=f(x)$2
iv) $y=\frac{f(x)}{x}$
v) $y=\frac{d}{d x}[f(x)]$
b) In the diagram below, SX is a diameter of the circle centre O

i) Prove that $\mathrm{PQ} \perp \mathrm{QR}$
ii) Prove $\angle \mathrm{PYQ}=\angle \mathrm{SXR}$

Question Four (15 marks)

a) Given the hyperbola $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
i) Determine the eccentricity $\quad 1$
ii) Find the co ordinates of the foci 1
iii) Determine the equations of the directrices 1
iv) Determine the equations of the asymptotes 1
v) Sketch the hyperbola 1
b) i) Show that the point P with co ordinates $(2 \sec \theta, \sqrt{5} \tan \theta)$ lies $\quad 1$ on the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
ii) From the equation of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ derive the equation 3 of the tangent at the point $\mathrm{P}(2 \sec \theta, \sqrt{5} \tan \theta)$
iii) The tangent cuts the asymptotes at the points A and B. Find the co ordinates of A and B
iv) Show that P is the midpoint of AB

Question Five (15 marks)

Mark

a) Without using calculus draw a $1 / 3$ page sketch of the graph of $y=\frac{1}{x^{2}+x-6}$
b) Find the equation of the tangent to the curve $x^{2}+y^{2}+x y-4=0$ at the point $(0,2)$
c) The polynomial $P(x)=x^{4}-4 x^{3}+11 x^{2}-14 x+10$ has roots $a+i b$, 3 $a+2 i b$ where a and b are real. Find the values of a and b
d) The cross section of a water trough is in the shape of a right isosceles triangle. The trough is 200 centimetres long.

Water is flowing into the trough at the rate of $12 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Find the rate of change of the upper surface area

Question Six (15 marks)
Marks
a) If α, β, γ are the roots of the equation $x^{3}+6 x^{2}+5 x+5=0$ find the equation with roots:
i) $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$
ii) $\frac{1}{\alpha \beta}, \frac{1}{\beta \gamma}, \frac{1}{\alpha \gamma}$
b) A 4 kg mass at R rotates about PQ . How fast must the mass rotate (in metres per second) if the tension T_{1} in the string PR is to be equal to the tension T_{2} in the string $Q R$?

c) A solid has a base and top in the shape of a sector of a circle as shown below. The height of the solid is 20 cm . All other dimensions are shown on the right below. Note that angles are given in radians

Cross sections are taken perpendicular to the height. A typical slice is shown h centimetres from the top of the solid. A linear relationship exists between r and h, θ and h,
i) Find r in terms of h and θ in terms of h
ii) Hence find the volume of the solid
a) Given that $P(x)=3 x^{3}-11 x^{2}+8 x+4$ has a double root, fully factorise $P(x)$
b) i) Use De Moivre's show $\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta$
ii) Hence solve $\sin 5 x=\sin x$ for $0 \leq x \leq 2 \pi$
c) The diagram below show the graphs of $x^{2}+y^{2}=a^{2}$ and the line $x=b$ where $b>a$

i) The shaded strip of width δx and height h is rotated about the line $x=b$ to form a cylindrical shell. Find expressions for R, r and h and hence the volume of the shell formed.
ii) Hence find the volume of the solid formed when when $x^{2}+y^{2}=a^{2}$ is rotated about the line $x=b$
a) Use Mathematical Induction to prove the following $\cos (x+n \pi)=(-1)^{n} \cos x$ where $n>0$
b) From a point 1.3 metres above a sphere of radius 1.7 metres a mass of 6 kilograms is on the end of a string of length 1.7 metres. The mass moves in a horizontal circle of radius 0.8 metres with an angular velocity of $2 \mathrm{rad} . \mathrm{s}^{-1}$

i) Copy the diagram and show all forces
ii) Find the tension in the string
iii) Find the normal force exerted by the sphere on the mass
iv) Explain what would happen to the mass if the tension in the string and the normal force were equal.
c) The equation $x^{3}+p x^{2}+q x+r=0$ has one root equal to the sum of the3 other two. Show that $p^{3}-4 p q+8 r=0$
(a) i) $\sin A \cos B-\sin B \cos A+\sin A \cos B+\sin B \cos A$

$$
=2 \sin A \cos B
$$

ii) $\frac{1}{2} \int(\sin 2 x+\sin 4 x) d x$

$$
=-\frac{\cos 2 x}{4}-\frac{\cos 4 x}{8}+c
$$

S.C. H.S Exta 2

Trial HSC
2007
solutions
b) Let $u=x^{2}+7$

$$
\begin{gathered}
\frac{d u}{d x}=2 x \\
\frac{d x}{2 x}=d x \\
\int x \sqrt{\mu} \frac{d u}{2 x} \\
=\frac{\mu^{\frac{3}{2}}}{\frac{3}{2} x^{2}}+c \\
=\frac{\sqrt{\left(x^{2}+7\right)^{3}}}{3}+c
\end{gathered}
$$

e) let $x=2 \sec \theta$

$$
\begin{aligned}
\frac{d x}{d \epsilon} & =-2(\cos \epsilon)^{-4} x-\sin \theta \\
& =2 \sec \epsilon \tan \theta \\
d x & =2 \sec \epsilon \tan G \cdot d \theta \\
\int \frac{8 \sec \epsilon \tan \theta \cdot d \theta}{4 \sec ^{2} \theta \sqrt{4 \sec ^{2} \theta-4}} & =\int \frac{2 \tan \theta}{\operatorname{sen} \theta \sqrt{4-\tan ^{2} \theta}} \\
& =\int \frac{d \theta}{\operatorname{sen} \theta} \\
& =\int \cos \theta \cdot d \theta \\
& =\sin \theta+c \\
& =\frac{\sqrt{x^{2}-4}}{x}+c
\end{aligned}
$$

$$
=\ln \left(x-2+\sqrt{(x-2)^{2}+4}\right)+c
$$

C)
d) i) $4 x^{2}+3 x+33=(x+1)(A x+B)+\left(x^{2}+16\right) c$
enten $x=-1, \quad 34=17 c$

$$
c=2
$$

" $x=0,33=B+16 C$

$$
B=1
$$

$$
\begin{aligned}
4 x^{2} & =A x^{2}+C x^{2} \\
A & =2
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \int\left(\frac{2 x+1}{x^{2}+16}+\frac{2}{x+1}\right) d x \\
= & \int\left(\frac{2 x}{x^{2}+16}+\frac{1}{x^{2}+16}+\frac{2}{x+1}\right) d x \\
= & \ln \left(x^{2}+1 y\right)+\frac{1}{4} \tan ^{-1} \frac{x}{4}+2 \ln (x+1)+c
\end{aligned}
$$

(d)

$$
R_{2}((x+y)) J=N+\cdots
$$

$$
=10+5 i
$$

$$
\text { b) i) } \frac{1-3 i}{1+2 i} \times \frac{1-2 i}{1-2 i}
$$

$$
=\frac{1-2 i-3 i-c}{1+4}
$$

$$
=\frac{-5-5 i}{5}
$$

$$
=-1-i
$$

$$
r=\sqrt{1^{2}+1^{2}} \quad \theta=\tan ^{-1}\left(\frac{1}{-1}\right)
$$

$$
=\sqrt{2} \quad /=-(\pi-\pi)
$$

$$
=-\frac{3 \pi}{4}
$$

$$
\therefore \sqrt{2} \sin \left(-\frac{3 \pi}{4}\right)
$$

$$
\text { ii) } \begin{aligned}
& (\sqrt{2}) 7 \text { is }\left(-\frac{3 \pi}{4} \times 7\right) \\
= & 8 \sqrt{2} \cos \left(-\frac{21 \pi}{4}\right) \\
= & 8 \sqrt{2} \operatorname{cis} \frac{3 \pi}{4}
\end{aligned}
$$

c) i)

$$
\begin{aligned}
& (a+b i)^{2}=-15-8 i \\
& a^{2}-b^{2}=-15 \quad 2 a b=-8 \\
& a=-\frac{4}{N}
\end{aligned}
$$

$\frac{16}{h^{2}}-h^{2}+15=0$

$$
16-b^{4}+15 b^{2}=0
$$

$$
b^{4}-15 l^{2}-16=0
$$

$$
\left(l^{2}-16\right)\left(l^{2}+1\right)=0
$$

$$
b= \pm 4 \quad a=\mp 1
$$

\therefore saruare roots are $/$ $\pm(1-4 i)$
ii)

$$
\begin{aligned}
z & =\frac{-2 \lambda+3 \pm \sqrt{(2 i-3)^{2}-4(5-i)}}{2} \\
& =\frac{-2 i+3 \pm \sqrt{-4-12 i+9-20+4 i}}{2}=\frac{-2 i+3 \pm \sqrt{-15-8 i}}{2}=\frac{-2 x+3 \pm(1-4 i)}{2}=\frac{4-6 i i}{2}
\end{aligned}
$$

Question Four
(6) (i)

$$
\begin{aligned}
& \frac{x^{2}}{4}-\frac{y^{2}}{5}=1 \quad P(2 \sec \theta,(5 \tan \theta) \\
& \frac{(2 \sec \theta)^{2}}{4}-\frac{(\nu 5 \tan \theta)^{2}}{5}=\frac{4 \sec ^{2} \theta}{4}-\frac{5 \tan ^{2} \theta}{5}=1
\end{aligned}
$$

\therefore Plies on the happentola $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
(ii)

$$
x=2 \sec \theta \quad y=\sqrt{5} \tan \theta
$$

$$
\begin{aligned}
& \quad \frac{d x}{d \theta}=2 \sec \theta \tan \theta \cdot \quad \frac{d y}{d \theta}=\sqrt{2}-\sec ^{2} \theta \\
& 1 \frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\frac{\sqrt{5 \sec \theta}}{2 \tan \theta} .
\end{aligned}
$$

Ega of tangent $y-\sqrt{5 \tan \theta}=\frac{15 \sec \theta}{2 \tan \theta}(x-2 \sec \theta)$.

$$
\begin{gathered}
1.2 y \tan \theta-2 / 5 \tan ^{2} \theta=\sqrt{ } \operatorname{sinec} \theta-2 \sqrt{5} \sec ^{2} \theta . \\
3 \quad \sqrt{5 \sec \theta-2 y \tan \theta=2 / 5 .} \\
1 \quad \frac{x \sec \theta}{2}-y \frac{\tan \theta}{\sqrt{5}}=1
\end{gathered}
$$

(iii) Asymptotes of ly pernbola $y= \pm \frac{b}{a} x= \pm \frac{\sqrt{5}}{2} x$.
co-ord's of A. where $y=\frac{\sqrt{5}}{2} x$ cuts tangent.

$$
\begin{aligned}
& \frac{x \sec \theta}{2}-\frac{\sqrt{8}}{2} \times \cdot \frac{\tan \theta}{15}=1 . \\
& \Rightarrow \sec (\sec \theta-\tan \theta)=2 \Rightarrow x=\frac{2}{\sec \theta-\tan \theta} \\
& \Rightarrow=\frac{2}{\sec \theta-\tan \theta} \times \frac{\sec \theta+\tan \theta}{\sec \theta+\tan \theta} \Rightarrow x-2(\sec \theta+\tan \theta) \\
& A(2(\sec \theta+\tan \theta, \sin (\sec \theta+\tan \theta)) y=\sqrt{\sec (\sec \theta+\tan \theta) .}
\end{aligned}
$$

2
Co-onds of B andere $y=-\frac{\sqrt{5}}{2} x$.
4

$$
\begin{array}{r}
\therefore \frac{x \sec \theta}{2}+\frac{x 5}{2} x \frac{\tan \theta}{\sqrt{5}}=1 \\
x(\sec \theta+\tan \theta)=2 \\
\Rightarrow x=\frac{2}{\sec \theta+\tan \theta} \times \frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta} \\
-\therefore x=2(\sec \theta-\tan \theta) \\
y=-\frac{\sqrt{5}}{2} \cdot 2(\sec \theta-\tan \theta) \\
y=\sqrt{5}(\tan \theta-\sec \theta) \\
B(2(\sec \theta-\tan \theta), \sqrt{5}(\tan \theta-\sec \theta))
\end{array}
$$

2
(iv) $A(2(\sec \theta+\tan \theta), \sqrt{5}(\sec \theta+\tan \theta))$

$$
B(2(\sec \theta-\tan \theta), \sqrt{5}(\tan \theta-\sec \theta))
$$

Mid-pt

$$
x=\frac{2 \sec \theta+2 \tan \theta+2 \sec \theta-2 \operatorname{tac} \theta}{2}
$$

$$
x=2 \sec \theta
$$

2

$$
y=\frac{\sqrt{5} \sec \theta+\sqrt{5} \tan G+\sqrt{5} \tan G-\sqrt{5 \sec \theta} \theta}{2}
$$

$$
y=\sqrt{5} \tan \theta
$$

whech is $P(2 \sec \theta, \sqrt{ } \operatorname{san} \theta)$.
$\because P$ is mid-pt of AB

Questron Five
(a)

$$
y=\frac{1}{x^{2}+x-6}=\frac{1}{(x+3)(x-2)}
$$

3

(b)

$$
x^{2}+y^{2}+x y-4=0
$$

Requere tangent at $(0,2)$

$$
2 x+2 y \cdot \frac{d y}{d x}+y+x \cdot \frac{d y}{d x}=0
$$

$$
\frac{d y}{d x}(2 y+x)+(2 x+y)=0
$$

3

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{-(2 x+y)}{2 y+x} \\
& \operatorname{at}(0,2) \frac{d y}{d x}=-\frac{(2)}{4}=-\frac{1}{2}
\end{aligned}
$$

Leqa of tangent $y-2=-\frac{1}{2}(x-0)$

$$
\begin{aligned}
& y-2=-\frac{1}{2} x \\
& 2 y-4=-x \\
& x+2 y-4=0
\end{aligned}
$$

Question Five
(c) $P(x)=x^{4}-4 x^{3}+1 / x^{2}-14 x+10$.
rooto $a+i$ on an $a+2 i b$
by proppenty of corijugates a-ito and $a-2 i b$ are also noors

Product of noots $(a+i b)(a-i b)(a+2 i b)(a-2 i b$,

$$
=\left(a^{2}+b^{2}\right)\left(a^{2}+4 b^{2}\right) .
$$

Sum of roots

$$
\begin{aligned}
& a+i b+a-i b+a+2 i b+a-2 i b=4 \\
& -4 a=4 \Rightarrow a=1 \\
& \left.1+b^{2}\right)\left(1+4 b^{2}\right)=10 \\
& 1+5 b^{2}+4 b^{4}=10 \\
& 4 b^{4}+5 b^{2}-9=0 \\
& 4 A^{2}+54-9=0
\end{aligned} \quad \text { Put } A=b^{2}
$$

Now $\left(1+b^{2}\right)\left(1+4 b^{2}\right)=10$
3
$(4 A+9)(A-1)=0$
$\therefore A=\frac{-4}{9} \quad A=1$
$A \neq-\frac{4}{9}$
as $A^{9}=b^{2}$.
$\because b^{2}=1$

$$
\therefore b= \pm 1
$$

$\left.\begin{array}{rl}-: \text { rootsare } 1 & \pm i \\ 1 & \pm 2 i\end{array}\right\}$

Questron Five

\therefore Volume of water when water level $=h$

$$
V=200 \times h^{2} \mathrm{~cm}^{2}
$$

$$
\frac{d r}{d h}=400 \mathrm{~h} .
$$

Hrea of Upper sunflace $A=200 \times 2 h=400 \mathrm{hcm}^{2}$.
Requere $\frac{d A}{d t} \quad \frac{d A}{d t}=\frac{d A}{d L_{h}} \cdot \frac{d H}{d V} \cdot \frac{d V}{d t} \quad \frac{d A}{d h}=400$
when $h=12$.

$$
\begin{gathered}
\frac{d A}{d t}=400 \times \frac{1}{400 h} \times 12 \mathrm{~cm}^{3} / \mathrm{se} \\
h=12 .
\end{gathered}
$$

$6 \quad \therefore \frac{d A}{d t}=1 \mathrm{~cm}^{2} / \mathrm{sec}$

Questron Six
©

$$
x^{3}+6 x^{2}+5 x+5=0
$$

has roots α, β, γ.

$$
\therefore \alpha+\beta+\gamma=-6 \quad \alpha \beta+\beta \gamma+\gamma \alpha=5 \quad \alpha \beta \gamma=-5 .
$$

(i) requini equ with poots. $\frac{1}{\alpha}, \frac{1}{13}, \frac{1}{\gamma}$.

$$
\begin{aligned}
& \therefore x=\frac{1}{x} \Rightarrow x=\frac{1}{x} \\
& \therefore P(x)=\left(\frac{1}{x}\right)^{3}+6\left(\frac{1}{x}\right)^{2}+5\left(\frac{1}{x}\right)+5=0 \\
& \frac{1}{x^{3}}+\frac{6}{x^{2}}+\frac{5}{x}+5=0 \\
& \therefore: P(x)=5 x^{3}+5 x^{2}+6 x+1=0
\end{aligned}
$$

(ii) requin equ with sook. $\frac{1}{\alpha B}, \frac{1}{1 B \gamma}, \frac{1}{\alpha \gamma}$

$$
\therefore \frac{\gamma}{\alpha \beta \gamma}, \frac{\alpha}{\alpha \beta \gamma}, \frac{\beta}{\alpha \beta \gamma}
$$

\therefore equmits moots. $\frac{\alpha}{-5}, \frac{\beta}{-5}, \frac{\gamma}{-5}$.
$2 \quad \therefore \quad x=\frac{x}{-5} \Rightarrow x=-5 x$.

$$
\begin{aligned}
\therefore & P(x)= \\
& (-5 x)^{3}+6(-5 x)^{2}+5(-5 x)+5=0 \\
& \therefore P(x)=25 x^{3}+150 x^{2}-25 x+5=0 \\
& P 0 x^{2}+5 x-1=0
\end{aligned}
$$

(b)

Verticially:

$$
T_{1} \cos \theta=T_{2} \cos (90-\theta)+m g .
$$

$$
T_{1} \cos \theta=T_{2} \sin \theta+m g
$$

$$
\begin{aligned}
& \sin \theta=\frac{r}{12} \\
& r=\frac{12 \times \frac{5}{13}}{}
\end{aligned}
$$

$$
T_{1} \times \frac{12}{13}=T_{1} \times \frac{5}{13}+40
$$

$$
12 T_{1}=5 T_{1}+40 \times 13
$$

$$
7 T_{1}=40 \times 13
$$

$$
T_{1}=\frac{40 \times 13}{7} \text { Newtons. }
$$

Horiiontally: $T_{1} \sin \theta+T_{2} \cos \theta=m \frac{v^{2}}{r_{2}}$ f

$$
\begin{aligned}
& T_{1} \sin \theta+T_{2} \cos \theta=m \frac{v^{2}}{v^{2}} \Rightarrow \frac{40 \times 13}{7}\left(\frac{17}{13}\right)=\frac{4 \times 13}{60} v^{2} \\
& T_{1}\left(\frac{5}{13}\right)= 4 \times \frac{60}{\frac{60}{13}} \\
& \therefore v^{2}=\frac{600 \times 17}{7 \times 13} \Rightarrow v \doteqdot 10.6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Question Six
(c)

Quostion Seven
a)

$$
\begin{aligned}
& r(x)= 3 x^{3}-11 x^{2}+8 x+4 \\
& p^{\prime}(x)= 9 x^{2}-22 x+8 \\
& r n+\quad r^{\prime}(x)=0 \\
& 9 x^{2}-22 x+8=0 \\
&(9 x-1)(x-2)=0
\end{aligned}
$$

(i) Uniar relationship $r=m h+b$.
$h=0$ when $r=2 \quad \therefore b=2$.
$h=20$ when $r=8$.

$$
\begin{aligned}
\because 8 & =20 m+2 \\
6 & =20 m \Rightarrow n=\frac{3}{10}
\end{aligned}
$$

$$
\because r=\frac{3}{10} a+2
$$

$$
\theta=n h+c
$$

$$
\begin{array}{rlrl}
h & =0 \quad \theta=\frac{7 \pi}{4} & \therefore c & =\frac{7 \pi}{4} \tag{3}\\
h & =20 \quad \theta=\frac{5 \pi}{4} \quad \therefore \frac{5 \pi}{4} & =20 n+\frac{7 \pi}{4} \\
& \therefore 20 n & =\frac{-\pi}{2} \\
& n & =\frac{-\pi}{40} \\
\theta & =-\frac{\pi}{40} h+\frac{7 \pi}{4} &
\end{array}
$$

(ii)

$$
\begin{aligned}
\text { Area of a slece } & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \cdot\left(\frac{3}{10} h+2\right)^{2} \cdot \frac{\pi}{4}\left(7-\frac{h}{10}\right)
\end{aligned}
$$

Volume of a slicie $\delta V=\frac{\pi}{8}\left(\frac{34}{10}+2\right)^{2}\left(7-\frac{h}{10}\right) \cdot \delta h$
Volume of Solid $v \doteq \sum_{0}^{20} \frac{\pi}{8}\left(\frac{3 h+20}{10}\right)^{2}\left(7 \frac{-h}{10}\right)$. Sh.
lin $\delta h \rightarrow 0$
lin $\delta a \rightarrow 0$.
3 Ky defn. $V=\frac{\pi}{8} \int_{0}^{20}\left(\frac{3 h+20}{10}\right)^{2}\left(\frac{70-4}{10}\right) \cdot d h$.

$$
\left.\begin{array}{rl}
V & =\frac{\pi}{8000} \int_{0}^{20}\left(9 h^{2}+120 h+400\right)(70-h) \cdot d h . \\
V & =\frac{\pi}{8000} \int_{0}^{20}\left(630 h^{2}+8400 h+28000-9 h^{3}-120 h^{2}-400 h\right) \\
V & =\frac{\pi}{8000}\left[210 h^{3}+4200 h^{2}+28000 h-\frac{9}{4} h^{4}-40 h^{3}-200 h^{2}\right)^{2} \\
V & =\frac{\pi}{800}[
\end{array}\right]
$$

b)
i)

$$
((\rightarrow) \theta+i \sin \theta)^{5}=c^{5}+5 c^{4} i-10 c^{2} s^{3}-10 e c^{2} s^{3}+5 \cos ^{4}+i s^{5}
$$

now $(\omega, \theta+i \sin \theta)^{J}=\cos 5 \theta+i \sin \theta$
Equate linaginary

$$
\begin{aligned}
\sin 50 & =5 c^{4}-10 c^{2} s^{3}+s^{5} \\
& =5\left(1-s^{2}\right)^{2}-10\left(1-s^{2}\right) s^{3}+s^{5} \\
& =5\left(1-2 s^{2}+s^{4}\right) s-10 s^{3}+10 s^{5}+s^{3} \\
& =5 s-10 s^{3}+5 s^{5}-10 s^{2}+10 s^{5}+s^{3}
\end{aligned}
$$

$$
\sin 5 \theta=16 \sin ^{5} \theta-200^{\circ}+50
$$

11)

$$
\text { 11) } \begin{aligned}
& \sin x=16 \sin ^{5} x-20 \sin ^{3} x+5 \sin x \\
& 0=16 \sin 5 x-20 \sin ^{3} x+4 \sin x \\
& 0=4 \sin x\left(4 \sin ^{4} x-5 \sin ^{2}+1\right) \\
& 0=4 \sin x\left(4 \sin ^{2} x-1\right)\left(\sin ^{2} x-1\right) \\
& 4 \sin x=0, \sin 2=\frac{1}{4} \sin 2 x=1 \\
& \sin x=0 \quad \sin x= \pm \frac{1}{2} \sin x= \pm 1 \\
& x=0, \pi, 2 \pi \frac{\pi}{6}, \quad 5 \frac{\pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{\pi}{2}, \frac{3 \pi}{2} \\
& 0,180,360^{\circ} 30^{\circ}, 150^{\circ}, 210^{\circ} 330^{\circ}, 90^{\circ}, 2,70^{\circ} \\
&(9 \sin)
\end{aligned}
$$

Inaivicanci purts mäk cirules Total undurlined and cirul, N.A O. musing questien roper the ade initiallea

1) $\begin{array}{rlrl}R & =b-x & y^{2} & =a^{2}-x \cdot 13 / 16 \\ r & =b-x-\Delta x & y & =\sqrt{a^{2}-x^{2}} \\ \text { (all (c row+) }\end{array}$
(allurrent)
Question
Eight
$/ 16$
\Rightarrow i) $\begin{aligned} & \text { i) } \\ & \text { LYSe } H=1 \\ & n=1\end{aligned}$
LBS $=$ (0) $(\lambda+\pi)$

$$
\frac{1}{2}\left\{\begin{aligned}
V_{\text {sha }} & =\pi\left(R_{1}^{2}:-r^{2}\right) 2 y \\
& =\pi(R+r)(R-r) 2 y \\
& =\pi(2 b-2 x-\Delta x)(b-x-b+x+\Delta x) 2 y \\
& =\pi(2 b-2 x-\Delta x) \Delta x 2 y \\
& =\pi\left(2 b-\Delta x-2 x \Delta_{x}-(\Delta x)^{2}\right) 2 y \\
& =\pi(2 b-2 x) 2 y \Delta x\left[\left(\Delta x^{2}\right) v_{s \text { mall }}\right] \\
& =4 \pi(b-x) \Delta x y \\
& =4 \pi(b-x) \Delta x \sqrt{a^{2}-x^{2}}
\end{aligned}\right.
$$

11) $V_{\text {golial }}=\lim _{x_{n} \rightarrow 0} 4 \pi(b-x) \sqrt{a^{2}-x} \cdot \Delta_{n} \mid n(x+e$ it answer to

$=4 \pi b \int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x-4 \pi \int_{-a}^{a} \frac{x \sqrt{a^{2}-x^{2}} d x}{a}$ max of 1 mari full
$=4 \pi b \int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x-0\left[\int_{-a}^{a} \lambda a 2-x+d x\right.$ od $]$ y
$=4 \pi b\left(\frac{\pi a^{2}}{2}\right) \quad$ (area of a semi circle y)
$=2 \pi^{2} a^{2} b$
$=\cos \pi \cos \pi-\sin x \sin \pi$
$=-\cos x$
RUS $=$-cos x true for $n=1$
Assume true for $n=k$
$\cos (x+k \pi)=(-1)^{k} \cos x$
3 prose tue for $n=k+1$
ie cos $\left[(x+(k+1) \pi]=(-1)^{k+1} \cos x\right.$
$L H S=\cos [(x+k \pi)+\pi]$
$=\cos (x+k \pi) \cos \pi-\sin (x+k \pi) \sin \pi$
$=(-1)^{k} \cos ^{*} \lambda(-1)^{\prime}-(0) 1 / f^{*} r-m$ assumed
$=(-1)^{k+1} \cos \pi$
$=R H s$
4/thence if true for $n=1$, true for
$n=1+1$, true for $n=1$, hence true
for $n=1+1=2$ ard so on for all positive
integers
Notes
lead to the step below.

- at step 3 write out what you ain to
prove ard work on one side or twi
-aides indeperdantly
- Suotity each live where needed

19471357 (hanged question \Rightarrow fromstalls to slices

18 (cont)

h) 11$) \sin \theta=\frac{8}{17}, \quad$ cis $\theta=\frac{15}{17}$

Veriticilly, $m=6 \mathrm{l} y$,

$$
\begin{gather*}
\frac{\text { Veritically }}{\operatorname{tisis} \theta+N \cos \theta}=m_{y} \Leftarrow 1 \\
\frac{15 T}{17}+\frac{15 N}{17}=60 \\
15 T+15 N=1020 \\
N=68-T \quad \text { (A) } \tag{A}
\end{gather*}
$$

Horizontally

$$
\begin{aligned}
T \sin \theta-N \sin \theta & =m r \omega^{2} \\
\frac{8 T}{17}-\frac{8 N}{17} & =6(0.8)(4) \Leftarrow 1 \\
8 T-8 N & =326.4 \\
+-N & =40.8 \\
T-(68-T) & =40.8 \\
2 T & =108.8 \\
T & =54.4 \text { nlewtons } 1 /
\end{aligned}
$$

can be CFPA if $\left(90^{\circ}-\theta\right)$ used
Label I, N, mvur, N for twe morly
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$y=10 \mathrm{~ms}^{-1}$ $\mu=2 \mathrm{rad})^{-1}$ if (900) used

$$
\text { (i1) } \quad \begin{aligned}
N & =68-54.4 \\
& =13.6 \text { Newtuns } \quad\left[\begin{array}{ccc}
\text { CAN BE CFPA] }
\end{array}\right]
\end{aligned}
$$

iv) If $T=N$ [NO CARRYTIROUCH ERROKI]

$$
\text { then } T \sin \theta-T \sin \theta=m r w^{2}
$$ If $w=0 \underbrace{\text { nass is not moving }} \underbrace{}_{2 \text { or }}(2 \mathrm{molh})$)

c)

$$
\begin{aligned}
& \alpha=\beta+\gamma \\
\therefore r, o+1 & \alpha=(\beta+\gamma), \beta, \gamma
\end{aligned}
$$

Produet two at a tine

$$
\begin{aligned}
(\beta+\gamma) \beta+(\beta+\gamma) \gamma+\beta \gamma & =q \\
\beta^{2}+\alpha \beta+\beta \gamma+\gamma^{2}+\beta \gamma & =q \\
(\beta+\gamma)^{2}+\alpha \beta & =q
\end{aligned}
$$

prodmet $\beta r(\beta+\gamma)=-r$

$$
\begin{aligned}
& \text { subst ins } p^{3}-4 p q+\delta \gamma=0 \\
&=[-2(\beta+\gamma)]^{3}-4\left[-2(\beta+\gamma)\left[(\beta+\gamma)^{2}+\alpha \beta\right]-8[\beta \gamma(\beta+\gamma)]\right. \\
&=-8(\beta+\gamma)^{3}+8\left[(\beta+\gamma)^{3}+(\beta+\gamma) \alpha \beta\right]-8[\beta \gamma(\beta+\gamma)] \\
&=-8(\beta+\gamma)\left[(\beta+\gamma)^{2}-(\beta+\gamma)^{2}-\alpha \beta+\alpha \beta\right] \\
&=0
\end{aligned}
$$

(1) Sumof roots $2 \alpha+2 \beta=-p$
method 1
c) rosts are $\alpha, \beta, \alpha+\beta$
metber 2
)

$$
\text { Sum } 2 \beta+2 \gamma=-p \Rightarrow-2(\beta+\gamma)=p
$$

$$
\text { Produet } \beta r(\beta+\gamma)=-r
$$

$$
\begin{array}{lllllll}
A & B & C & D & E & C & H \\
2 & 8 & 5 & 1 & 7 & 3 & 4
\end{array}
$$

$$
\begin{aligned}
& \text { Now } \alpha+\beta \text { is a root } \therefore \frac{-k}{2} \text { is a moot } \\
& \text { subot } \lambda=\frac{-p}{2} \text { in } x^{3}+p x^{2}+q x+r=0 \\
& \left(-\frac{p}{2}\right)^{3}+p\left(-\frac{p}{2}\right)^{2}+q\left(\frac{-p}{2}\right)+r=0 \quad y \\
& \frac{-p^{3}}{8}+\frac{p^{3}}{4}+\frac{p q}{2}+r=0 \\
& -p^{3}+2 p^{3}+4 p q+8 r=0 \\
& p^{3}+4 p q+8 r=0 \quad y \\
& \alpha+\beta=-\frac{p}{2}
\end{aligned}
$$

